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Abstract: Non-communicable diseases (NCDs) are medical conditions that, by definition,
are non-infectious and non-transmissible among people. Much of current NCDs are generally due
to genetic, behavioral, and metabolic risk factors that often include excessive alcohol consumption,
smoking, obesity, and untreated elevated blood pressure, and share many common signal transduction
pathways. Alterations in cell and physiological signaling and transcriptional control pathways have
been well studied in several human NCDs, but these same pathways also regulate expression
and function of the protein synthetic machinery and mRNA translation which have been less well
investigated. Alterations in expression of specific translation factors, and disruption of canonical
mRNA translational regulation, both contribute to the pathology of many NCDs. The two most
common pathological alterations that contribute to NCDs discussed in this review will be the
regulation of eukaryotic initiation factor 2 (eIF2) by the integrated stress response (ISR) and the
mammalian target of rapamycin complex 1 (mTORC1) pathways. Both pathways integrally connect
mRNA translation activity to external and internal physiological stimuli. Here, we review the role of
ISR control of elF2 activity and mTORC1 control of cap-mediated mRNA translation in some common
NCDs, including Alzheimer’s disease, Parkinson’s disease, stroke, diabetes mellitus, liver cirrhosis,
chronic obstructive pulmonary disease (COPD), and cardiac diseases. Our goal is to provide insights
that further the understanding as to the important role of translational regulation in the pathogenesis
of these diseases.
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1. Introduction

An understanding of complex NCDs provides mechanistic insights and often yields potential
therapeutic targets. While the translation machinery has not traditionally been thought of as druggable
target, the past decade has witnessed a rapid development of many specific therapeutics that target
the translation machinery, its upstream regulatory protein kinases (particularly mTOR), and specific
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translation factors for the treatment of a variety of human diseases, with a strong focus on oncology.
Moreover, the expression levels and activities of certain translation factors and regulatory proteins
have become reliable biomarkers for measuring the efficacy of targeted therapies in both the prevention
and treatment of NCDs. The original classification of diseases was first established by Jacques Bertillon
in 1893 and relied on the affected anatomical site rather than specific pathology or characteristics [1].
Unlike most infectious diseases, which are complex, the additional complexity of NCDs is introduced
by the long latency periods involved in their development, the association of multiple genetic and
risk factors that underlie the development of NCDs, that often involve several co-morbidities, and the
prolonged course of disease [2].

According to the World Health Organization (WHO), NCDs are the major cause of mortality and
morbidity, contributing to 41 million (71%) deaths worldwide in 2016 [3]. The four most prevalent
NCDs worldwide are cardiovascular disease, cancer, chronic respiratory disease, and diabetes [4].
Many NCDs have common underlying causes, including excessive alcohol use, smoking, obesity,
and untreated hypertension (elevated blood pressure), with effects likely sharing common signaling
transduction pathways [5-9]. Nutritional effects, which can contribute to the development of some
NCDs, can alter levels of growth factors, hormones, and cellular receptors that regulate signaling
pathways that control both transcriptional and translational gene expression [10]. These alterations
regulating translation initiation can directly control gene expression levels, with neurological, endocrine,
pulmonary, and cardiovascular functions commonly disrupted [11-15].

In this review, we will briefly provide an overview of the different processes of translation initiation
and its regulation. We will then focus on two major mechanisms of translational regulation that are
often involved in the pathology of NCDs: the elF2 ISR pathway, which includes endoplasmic reticulum
(ER) stress and unfolded protein response (URP) [16], and the mTORC1 signaling pathway. While
there are many NCDs in which the elF2/ISR and mTORC1 pathways are involved, we will focus on
Alzheimer’s disease, Parkinson’s disease, stroke, diabetes mellitus, liver cirrhosis, chronic obstructive
pulmonary disease, and heart diseases (Figure 1). In all these cases there is a clear contribution from
the elF2/ISR and mTORC1 pathways to disease pathogenesis and potential therapeutic opportunities.
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Figure 1. Pathological regulation of mTORC1 and elF2 stress response in non-communicable diseases.
Many cellular stress conditions in different tissues and organs involve activation of the ISR with elF2«
phosphorylation and dysregulation of the mTORCI signaling pathway. Particularly affected are the
brain, liver, pancreas, lungs, and heart, which contribute to chronic diseases such as Alzheimer’s,
Parkinson’s, stroke, diabetes mellitus, liver cirrhosis, chronic obstructive pulmonary disease, and
heart diseases.
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1.1. A Brief. Overview of mRNA Translation Initiation in Eukaryotes

Translation initiation in eukaryotes is a highly regulated process with the majority (>95%)
of initiation events occurring through a cap-dependent mechanism [17]. In brief, during cap
(m7G)-dependent initiation, eukaryotic initiation factor (elF) 4E binds the 5’-cap, the scaffolding
factor elF4G, the ATP-dependent RNA helicase elF4A, the poly(A) binding protein (PABP), and the
multi-protein factor elF3. This complex recruits the 43S preinitiation complex (43S PIC) consisting
of the 40S ribosomal small subunit and the ternary complex (TC) formed by elF2, GTP, and the
initiator methionyl-transfer RNA (Met-tRNA;), as well as a number of additional factors (Figure 2) [18].
Once loaded onto the mRNA, the PIC scans the 5 untranslated region (5’-UTR) of the mRNA in
a 5’ to 3’ direction until recognition of the optimal start codon, which is often but not always an
AUG [19]. Upon recognition of a start codon, elF1 is partially displaced to enable the Met-tRNA; to
establish a codon-anticodon pairing with the mRNA, the 60S ribosome subunit joins, the GTP on elF2
is hydrolyzed concurrent the start of protein synthesis and must undergo GDP to GTP exchange to
allow subsequent rounds of initiation [20]. Further, elF5 and elF5B facilitate the dissociation of certain
initiation factors, and eIF1A remains bound to the 40S ribosome, stimulating the binding of the 60S
ribosomal subunit to form a translationally active and elongation-competent 80S ribosome [21]. Finally,
the 80S complex, which has peptidyltransferase activity that catalyzes polypeptide synthesis, enters
the elongation phase of translation [18].
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Figure 2. mRNA translation initiation in eukaryotes. Translation initiation begins with the formation
of the ternary complex, comprised of elF2, GTP, and the initiator Met- tRNA;. The ternary complex
is recruited to the 40S ribosome subunit along with elF1, eIF1A, elF3, and elF5, to form the 43S
preinitiation complex (43S PIC). Briefly, during canonical cap-dependent translation, the mRNA is
bound by the elF4F complex comprised of eIF4E (the cap-binding protein), eIF4G (scaffolding protein),
and elF4A (an ATP-dependent RNA helicase), which is then recruited to the 43S PIC, along with the
poly(A)-binding protein (PABP) and elF4B. During cap-independent or internal ribosome entry, known
as (IRES)-mediated translation, some IRES trans-acting factors (ITAFs) can function as RNA chaperones
to change or stabilize secondary structures of the IRES allowing ribosome binding to the IRES, or
as adaptor proteins to interact with the ribosome or translation initiation factors. Finally, during
alternate cap-dependent translation, DAP5 together with the cap-binding activity of eIF3d carries out
cap-dependent translation through a mTORC1/elF4E cap-independent mechanism. Once the 43S PIC
is bound to the mRNA, it scans in a 5’ to 3’ direction until it recognizes an optimal start codon (AUG
is shown). Recognition of the start codon triggers the release of eIF1 and hydrolysis of eIF2-GTP to
its GDP-bound state (not shown). eIF1A stimulates the binding of the 60S ribosomal subunit to form
an elongation-competent 80S ribosome. The 80S complex, which has peptidyltransferase activity that
catalyzes polypeptide synthesis, enters the elongation phase of translation.
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1.2. Overview of Regulation of Translation Initiation by the elF2/ISR and mTORC1 Pathways

1.2.1. eIF2/ISR Regulation of Translation Initiation

Translation initiation is downregulated during the ISR by a mechanism involving the
phosphorylation of the elF2 x-subunit at Ser-51 [22,23]. As mentioned, during translation initiation,
elF2 forms a ternary complex with Met-tRNA; and GTP, which binds the 40S subunit to form the 43S
PIC (Figure 2) [24]. Phosphorylation of elF2« at Ser-51 dramatically increases the binding affinity
of eIF2 for its guanine nucleotide exchange factor (GEF) known as elF2B, resulting in sequestration
that blocks eIF2-GDP to elF2-GTP exchange activity and consequently inhibits translation [25,26].
Different stress conditions provoke elF2« phosphorylation by any of four related protein kinases:
the heme-regulated inhibitor (HRI) in red blood cells, the protein kinase RNA-activated (PKR) that
responds to viral infection, the PKR-like endoplasmic reticulum (ER) kinase (PERK) that senses ER
stress in the ISR/UPR pathway, and the general control non-depressible 2 kinase (GCN2) that responds
to a deficit in levels of certain amino acids [27]. The HRI kinase (or EIF2AK1) has two main roles
during development; it ensures a balanced synthesis of globin and heme and promotes the survival
of erythroid precursors during iron deficiency [28]. It was initially thought that HRI expression
is limited to erythrocytes, but recent studies have demonstrated that it is also present in the liver
and macrophages [29,30]. PKR (or EIF2AK2) was initially known as a kinase that is activated by
double-stranded RNA (dsRNA) typically activated during viral infection, and blocks the translation of
viral mRNAs [31]. However, PKR can become activated in response to other signals such as oxidative
and ER stress, or cytokine and growth factor signaling [32-34]. PERK (EIF2AK3) is mainly activated
by the accumulation of misfolded proteins in the ER, termed ER stress [35]. The cellular response to
ER stress involves increased expression of ER chaperones and folding enzymes to refold misfolded
proteins, a process called “unfolded protein response” (UPR), and degradation of those proteins that
are terminally misfolded, which can activate the process of endoplasmic-reticulum-associated protein
degradation (ERAD) [36]. Aiming to restore ER homeostasis, phosphorylation of el[F2cc by PERK
inhibits the synthesis of new polypeptides, thus reducing the access of nascent polypeptides to the
ER lumen [37]. GCN2 (EIF2AK4) is the major regulator of gene expression in response to amino acid
limitation and is critical for maintaining metabolic homeostasis during glucose deprivation [38,39].
Importantly, brief ISR is an adaptive and pro-survival response, aiming to relieve stress, regulate
ribosome biogenesis, and restore homeostasis, while prolonged ISR can induce cell death by activating
apoptosis [40,41]. Translation of the mammalian activating transcription factor 4 (ATF4) during ER
stress has been well-reviewed by others [42]. ATF4 translation involves two short upstream open
reading frames (UORFs): uORF1 located in the 5'-UTR of the ATF4 mRNA and uORF2 that overlaps
out-of-frame with the ATF4 coding region [43,44]. When GTP-elF2 levels in non-stressed cells are
high, scanning of 40S ribosomes downstream from uORF1 will reinitiate translation at inhibitory
uOREF2, resulting in no ATF4 expression. However, when GTP-elF2 levels are low, due to elevated
levels of elF2oc phosphorylation in stressed cells, there is a delay in re-initiation that allows the
scanning ribosomes to bypass the inhibitory uORF2, leading to increased translation of the ATF4
coding region [43]. Activation of ATF4 protects cells against oxidative and ER stress and ensures amino
acid availability for proteins [45].

1.2.2. mTORC1 Regulation of Translation Initiation

In mammalian cells, phosphoinositide 3-kinase (PI3K) is activated by several upstream activators,
in particular receptor-coupled tyrosine kinases (RTK) [46]. When an RTK is activated, PI3K complex
forms and phosphorylates the inositol ring of phosphatidylinositol-4-5-biphosphate (PIP;) to generate
phosphatidylinositol-3,4,5-triphosphate (PIP3), a secondary messenger that recruits cytoplasmic
proteins to the endo- or plasma membrane [47]. Upon PIP3 formation, protein kinase B-serine/threonine
kinase (AKT) and its upstream activating kinase, phosphoinositide-dependent kinase-1 (PDK-1),
translocate from the cytoplasm to the plasma membrane [47]. Full activation of AKT requires
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phosphorylation of two residues: Thr308 by the constitutively active PDK-1, and Ser473 by the
mammalian target of the rapamycin complex 2 (mTORC?2) [48]. AKT was the first kinase shown to
directly phosphorylate the tuberous sclerosis proteins 1 and 2, also known as TSC1 (hamartin) and TSC2
(tuberin) in response to growth factors. The TSC1-TSC2 complex plays a central role in the inhibition
of mTOR, a serine/threonine-protein kinase [49,50]. mTOR functions in two multi-subunit protein
complexes, mMTORC1, and mTORC2, each with its own distinct subunit composition and substrate
selectivity [51]. The small GTPase Rheb (Ras homolog enriched in brain) is a direct target of TSC2,
a GTPase-activating protein (GAP) stabilized by TSC1, with the activation of the TSC1/TSC2 complex
inhibiting mTORC1 by stimulating the conversion of GTP-Rheb to GDP-Rheb [51]. Phosphorylation of
TSC2by AKT causes dissociation from TSC1, preventing the complex formation and allowing GTP-Rheb
to activate mTORC]1 [52]. The nutrient-sensitive mTORC1 complex regulates ribosome biogenesis
by promoting the translation of mRNAs encoding all of the cytoplasmic ribosomal proteins, and by
stimulating transcription of ribosomal RNAs (rRNAs) [53-55]. mTORC1 stimulates translation and cell
proliferation through the phosphorylation of two main targets of ribosome biogenesis, the p70 ribosomal
protein 56 kinase (p7056K), which induces translation by ribosomal protein 56 (a component of the 40S
ribosome), and the 4E-BPs (the elF4E binding proteins (1, 2, and 3), regulating canonical translation
initiation [56-58]. mTOR-mediated S6K has an extensive effect on ribosome biogenesis, providing the
cell with nucleolar factors required for rRNA synthesis and post-transcriptional modifications [59].
Over 75% of ribosome biogenesis factors in mouse liver are controlled by S6K, showing the critical
role of the mTORC1/S6K1/rpS6 axis for ribosome biogenesis program and as a potential therapeutic
target [59]. Further, when 4E-BPs are phosphorylated they become inactive and undergo a structural
change that inhibits their binding to eIF4E, allowing eIF4E to interact with eI[F4G. However, when
4E-PBs are dephosphorylated, they are active and sequester elF4E, inhibiting binding to eIF4G and the
5’-cap, which downregulates canonical translation initiation [60]. In addition, cyclin-dependent kinase
1 (CDK1) acts as a general activator of translation allowing direct adaptation of protein synthesis [61,62],
and is able to phosphorylate the 4E-BPs under conditions when mTOR signaling is decreased by
activating mitotic cap-dependent mRNA translation [63]. It is particularly notable that the mTORC1
pathway has been shown to be hyperactivated during mitosis, despite decreased global protein
synthesis and decreased activity of mMTORC1 upstream activators, with abnormal cell proliferation
and protein synthesis [64]. This implies that there are non-canonical mechanisms for the maintenance
of cap-dependent mRNA translation that does not involve mTORC1/elF4E-mediated translation and
may be at play during the development and progression of NCDs. Studies need to be carried out that
avoid issues related to cell-cycle synchronization, which may be inducing a decrease in global protein
synthesis unrelated to translation signaling [65-67].

1.2.3. Alternate Mechanisms of mRNA Translation Initiation

Some cellular mRNAs are able to initiate translation through either a cap using the conventional
PIC or through a cap-independent mechanism using internal ribosome entry site (IRES) elements [68].
An IRES is thought to contain one or more highly structured elements possibly with single-stranded
density in the 5’-UTR of the mRNA that may serve as a landing site for e[F4G family members, elF3 or
even the 40S ribosome subunit itself, thereby bypassing a requirement for elF4E in initiation [69,70].
IRES-mediated translation is fundamentally important to promote cell survival and other responses
during cell stress that downregulates mTORC1 activity, eIF4E availability, and thereby allows translation
of certain mRNAs that adaptively respond to cell stress conditions. While many viral IRESs have been
well characterized and classified into distinct functional types based on their sequence, secondary
structures, and a requirement for canonical and non-canonical translation factors, relatively little is
understood regarding how cellular IRESs function and are recognized by the translation machinery [71].
There are few structural or sequence similarities observed between viral and cellular IRESs, and among
cellular IRESs [72]. A number of proteins have been identified which are capable of interacting with
IRESs are called IRES trans-acting factors (ITAFs) [70,73]. Some ITAFs can function as RNA chaperones
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to change or stabilize secondary structures of the IRES allowing ribosome binding to the IRES, or
as adaptor proteins to interact with the ribosome or translation initiation factors (Figure 2) [69,74].
Importantly, IRESs are capable of binding only a subset of initiation factors, which in turn can recruit
the 40S subunit internally to the mRNA [75].

In addition to mTORC1/elF4E-directed translation initiation of capped mRNAs, approximately
20% of capped mRNAs were recently shown to also utilize an alternate PIC [75]. While it had long
been thought that all cap-dependent mRNA translation requires elF4E to direct the assembly of a PIC
on mRNA, it was found that there is at least one additional mechanism that does not utilize eIF4E
and does not require mTORC1 activity, and instead uses a member of the elF4G family of proteins.
The scaffolding protein elF4G consists of three protein family members, elF4GI (major form, highest
expression, gene: EIF4GI), elFAGII (minor form, lowest expression, gene: EIF4G3) and elF4GIII (gene:
EIF4G2), also known as DAP5 (NAT1 or p97) [76-82]. DAPS5 is 65% homologous to the middle and
C-terminus of canonical translation factor el[F4G1, but lacks the N-terminal region that interacts with
cap-binding elF4E, and PABP. Like elF4GI, DAPS5 can recruit e[F4A and elF3, which bind to the 40S
ribosome subunit and mediate non-canonical translation (Figure 2) [77,83]. DAP5 has been shown to
be important for translation during stress responses by carrying out IRES-driven translation of certain
cellular mRNAs such as proto-oncogene c-Myc [84], apoptosis regulator Bcl-2 [82], cyclin-dependent
kinase 1 (CDK1) [82], apoptotic protease activating factor 1 (Apaf-1) [85], tumor protein p53 [86],
X-linked inhibitor of apoptosis (XIAP) [87], and inhibitor of apoptosis protein 2 (c-IAP1/HIAP2) among
others [88], in addition to its own mRNA, supporting its continuous translation and creating a positive
autoregulatory loop [80-82,88-90]. DAPS silencing results in a 20-30% reduction in overall protein
synthesis which is far greater than IRES-mediated translation which is ~5%. Approximately 10-20% of
mRNAs are solely dependent on DAPS5 for their translation [76,91,92], as described below.

Studies have shown that DAPS5 is important for the translation of certain capped mRNAs that
do not seem to possess IRESs, under non-stress conditions. DAP5-dependent translation is required
during cell proliferation where it is involved in the synthesis of cell cycle proteins, during translation
of non-stressed cell survival mRNAs involved in mitosis, and translation of mRNAs that induce
differentiation of human and mouse embryonic stem cells [82,93,94]. Indeed, it was recently discovered
that DAP5 carries out an alternate mechanism of cap-dependent but eIlF4E/mTORC1-independent
mRNA translation, in addition to translating certain IRES containing mRNAs [76-82]. Translation of the
majority of DAP5-dependent mRNAs requires the translation initiation factor elF3d, a component of the
multi-subunit factor elF3, which has cap-binding activity [76,95]. DAP5/elF3d-mediated cap-dependent
mRNA translation has been shown to be involved in the translation of cell survival, proliferation,
motility, DNA damage and repair response, and other mRNAs, most of which do not contain IRESs [76].
These findings suggest that DAP5/elF3d is needed for both cap-independent and cap-dependent
translation initiation mechanisms [76]. Interestingly, under ER stress, caspase-12 cleavage of DAP5/p97
produces a fragment known as p86, which enhances IRES-mediated translation of several mRNAs,
leading to the reduction of apoptosis and allowing the UPR to establish survival mechanisms in
response to cell stress [88,90]. Chronic ER stress is also characterized by an elF3d-dependent mechanism
of mRNA recruitment and limited translational recovery, critical for blocking ER overload while
sustaining translation of mRNAs that encode stress-response factors, suggesting a role of DAP5/elF3d
translation during ER stress [80,96].

Finally, the mTOR mRNA itself may use two mechanisms for its translation, demonstrating that
the mTOR mRNA utilizes both elF4E-dependent under normal conditions and elF4E-independent
translation during cellular stress conditions, but which may not be DAP5/elF3d-dependent [76,97].
In addition, the mTOR 5’-UTR forms a highly folded RNA scaffolding site, consisting of several
stem-loops that can bind the 40S ribosomal subunit with high affinity, demonstrating a novel regulatory
mechanism of mTOR gene expression and how it contributes in maintaining its biological functions [97].

It is therefore clear that certain mRNAs can use alternative translation initiation mechanisms to
restore cellular homeostasis and respond to a variety of stresses, including those induced by toxins,
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oxidative insults, hypoxia, nutrient limitation, among many others. Each stress affects proteins that
regulate cellular functions and impact protein synthesis [98,99].

2. The elF2 Stress Response in NCDs

2.1. The eIF2/ISR in Neurodegenerative Disorders

There is a poorly understood crosstalk of stress pathways that act on mRNA translation, particularly
involving mTOR regulated elF4E availability and the phosphorylation of elF2c Ser-51 during the ISR,
which is described here. During stress conditions, eukaryotic cells activate signaling pathways that
induce the cellular ISR by carrying out e[F2« Ser-51 phosphorylation, which controls specific mRNA
translation synthesis [100], as well as global protein synthesis [101]. To understand how translation
is regulated by both the mTORC1 and elF2 ISR signaling pathways under cellular stress, and their
contribution to the development of NCDs, we first provide a brief overview of the eIF2 phosphorylation
stress response and its impact on the mTORC1 signaling pathway.

A hallmark of many neurodegenerative diseases is the accumulation of misfolded proteins which is
caused by the dysregulation of signaling pathways associated with ISR/UPR [102]. The phosphorylation
of elF2« Ser-51 by activation of any of its four kinases leads to inhibition of mRNA translation, as
described earlier. In neurons, protein synthesis, most of which is cap-dependent, is required for synaptic
plasticity and long-term memory formation, both of which are impaired during Alzheimer’s disease
(AD) and Parkinson’s disease (PD) [102-105]. The biological hallmarks of AD are the accumulation
of extracellular plaque composed of abnormally folded amyloid 3 (Ap) protein, a cleavage product
of amyloid precursor protein (APP), and the buildup of intracellular neurofibrillary tangles (NFT)
of hyperphosphorylated protein tau [106]. Studies have shown abnormal hyper-phosphorylation
of elF2« in the hippocampus of APP/PS1 mice (a model of AD) and human AD patients [107,108].
To determine if elevated p-elF2« contributes to the development of AD, researchers reduced levels of
p-elF2a by deleting PERK or GCN2 in APP/PS1 mice, allowing translation to occur, which improved
synaptic plasticity [108]. Strikingly, APP/PS1 mice with either of these two elF2«x kinases deleted,
showed restored levels of vital plasticity-related proteins and markedly improved synaptic and
cognitive function comparable to that of wild-type (WT) mice [108]. Further studies also showed that
suppression of PERK using a small molecule PERK antagonist, GSK2606414, prevented tau-mediated
neuropathology, behavioral defects, and alleviated long-term depression (LTD), another synaptic
plasticity impairment seen in AD [108-110]. The accumulation of the presynaptic neuronal protein
a-synuclein (x-syn), can activate UPR signaling through PERK in dopaminergic neurons in the brain
of PD patients [111-113], whereas GSK2606414 inhibition of PERK demonstrates neuroprotective
capacity in a PD mouse model and prevents neuronal death in Parkin mutant flies [114,115]. Moreover,
Guanabenz (GBZ), an inhibitor of GADD34 (a phosphatase that carries out elF2x dephosphorylation),
showed protection against stress-induced dopamine neurodegeneration in various PD models by
enhancement of ATF4 and Parkin expression [116]. In addition, hypoxia and energy depletion
have been recognized to inhibit the initiation of mRNA translation, leading to the accumulation of
unfolded proteins in the ER, and to trigger the UPR likely as a means to restore protein balance in the
post-ischemic brain [117,118]. Although the role of ER stress in brain ischemia remains unknown, it is
possible that the activation of ER stress could cause neuron-protection, alleviating proteotoxic stress,
as prolonged activation of ER stress aggravates ischemic injury [119]. Translation is also inhibited
at the level of translation initiation during ischemia-reperfusion (IR) by a stress response involving
p-elF2a and activation of PERK [120,121]. Several studies have reported that after ischemia-reperfusion,
there is an increase in mRNA and protein levels of GADD34, consistent with a short duration of
p-elF2«x in brain reperfusion [122-125]. Notably, melatonin was reported to inhibit ER stress in neurons
exposed to oxygen and glucose deprivation by decreasing p-PERK and p-elF2¢, thus reducing neuronal
apoptosis and modulating protein levels in cerebral ischemia. These results indicate that attenuation
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of post-ischemic ER stress could be a potential therapeutic approach against neurodegenerative
diseases [126].

2.2. The elF2/ISR in Metabolic and Inflammatory Disorders

Metabolic disorders such as obesity, diabetes, liver cirrhosis, as well as cardiovascular diseases,
are among the most severe risks to human health. Despite their different physiological and
clinical symptoms, they share certain pathological characteristics, including intracellular stress and
physiological organismal inflammation provoked by chronic metabolic stress, such as ER and oxidative
stress [127]. P-elF2« is essential to preserve ER integrity and to control insulin biosynthesis in 3
cells [128]. When this protective mechanism is compromised, it is thought to contribute to the onset of
diabetes mellitus [128]. Analysis of mutations in PERK and elF2x supports this view and suggests
there could be a more complex role for the elF2 stress response in regulating metabolism and diverse
cellular functions of {3 cells [129]. For example, a mutation or knock-out (KO) of PERK demonstrated its
essential requirement for the survival of pancreatic 3 cells and promoted early development of diabetes
in mice [130,131]. A mutation in the phosphorylation site of elF2c (e[F20-Ser51Ala) when coupled to a
high-fat diet in mice causes pancreatic {3 cell deficiency and induces symptoms of diabetes through
induction of glucose intolerance and hyperglycemia [128,132]. Moreover, KO models of the other e[F2x
kinases (HRI, GCN2, and PKR) did not develop significant defects in glucose homeostasis [133-135].

In an obese state, chronically elevated levels of free fatty acids and blood glucose can trigger ER
stress, as well as insulin resistance, which can be abolished by increased production of insulin and
other secreted proteins in the ER of pancreatic 3 cells [136]. It was shown that in hepatocyte-specific
non-phosphorylatable (Ser51Ala) elF2« knock-in mice, when fed a 60% high fructose diet, had an
increase of liver fibrosis and hepatocyte death, suggesting that p-el[F2«x could protect hepatocytes against
oxidative stress [129]. Further, liver fibrosis involves a wound healing response leading to excessive
accumulation of extracellular matrix (ECM) proteins and nodule formation [137]. Hepatic cirrhosis
develops from liver fibrosis after a long period of liver-cell injury resulting from a necro-inflammatory
response of continuous cell proliferation and inflammatory mediated cell death which causes chronic
oxidative stress. Hyperammonemia, a high release of ammonia in the blood by the liver, is also
associated with cirrhosis, as it alters protein homeostasis in the whole-body rather than just the
liver [138]. However, hyperammonemia also induces a cellular stress response through p-elF2¢, which
is mediated by GCN2, leading to translation inhibition by eIF2 phosphorylation due to reduced cellular
amino acid pools [139]. This is consistent with the well-studied amino acid deficiency response, in which
the ISR is activated by GCN2-eIF2« phosphorylation, increasing translation of ATF4 and GADD34
mRNAs. Importantly, during hyperammonemia, GCN2 is activated, but ATF4 and GADD34 are not
translated, which results in dysregulation of both mRNA translation and proteostasis, the integrated
ER-associated protein biosynthesis and degradation system [23,140]. Notably, nutritional deficits are
also frequently detected in patients with cirrhosis, including low serum levels of metabolic substrates
in plasma and muscle, resulting in skeletal muscle loss driven by hyperammonemia and reduced
protein synthesis resulting from elF2 phosphorylation [141,142]. Evidence that the phosphorylation of
elF2 is one driver of pathogenesis was shown by studies in which a single dose of a leucine enriched
amino acid mixture in patients with alcoholic cirrhosis displayed a reduction in GCN2 activation.
These results demonstrated that leucine deficiency results from molecular and metabolic stress in
skeletal muscle and promotes pathogenic disease through the eIlF2 phosphorylation pathway [140].

Oxidative stress often induces ER stress, as there is a tight crosstalk between the two stress responses,
amplifying disease progression by induction of inflammation [127]. Consequently, oxidative stress
induced by cigarette smoking exposure (CSE) causes accumulation of misfolded proteins by impairing
ER folding capacity and increasing proteins involved in the endoplasmic-reticulum-associated protein
degradation (ERAD) process, both proposed to play a role in the pathogenesis of COPD [143,144].
Upregulation of p-elF2c is common in severe emphysema, as is ER stress in the lungs of COPD patients,
and both cases are correlated with changes in levels of expression and phosphorylation of el[F2« and
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the severity of airflow obstruction [144]. During acute CSE in mouse models, dysregulation in ER
homeostasis and induction of ER stress are observed in mice and involves phosphorylation of elF2« by
PERK. These results support the notion that pathogenesis caused by CSE results from an imbalance
between proteostasis and apoptosis [145]. Gene expression profiling studies of bronchial airway
epithelial cells have shown that in current and former smokers with and without COPD, that there is
a significant enrichment of gene expression in the airway of COPD-associated alterations, mediated
by ATF4 [146]. Blocking the end-stage activation of ATF4-mediated cell death is therefore desirable
as a means of downregulating pathogenesis in airway disease. Accordingly, a selective inhibitor
of elF2« dephosphorylation, known as Salubrinal, maintains p-elF2, inhibits ER stress-mediated
apoptosis, and reduces overall protein synthesis [147]. Salubrinal protects against apoptosis in human
bronchial epithelial cells after CSE, demonstrating that inhibition of protein synthesis through the elF2
phosphorylation pathway is actually protective, and is a potential new approach for the treatment of
COPD [146]. Salubrinal has also been used as a treatment to protect cardiomyocytes from apoptosis
during heart failure (HF), the common end-stage of cardiac disease [147]. However, other studies
that have utilized phosphor-mimetic mutants of el[F2x have shown oppositely that suppression of
translation induces more severe HF phenotypes, and persistent p-elF2c leads to cardiac insufficiency
and HF development [146]. These different outcomes and results may not actually be opposed to
each other, but rather, they show the need for dynamic regulation of elF2x Ser51 phosphorylation in
maintaining ER function.

Under normal conditions, KO mice of the different elF2c kinases (individually) display normal
development and normal cardiac structure [133,148-150]. However, when subjected to transverse
aortic constriction, GCN2 KO mice are less disposed to ventricular dysfunction, myocardial apoptosis,
and fibrosis, compared to WT mice [149]. Likewise, PKR KO mice show preserved left ventricular
contractility and reduced myocardial fibrosis when subjected to pressure overload, compared to WT
mice; although the level of hypertrophy was similar between both groups [148]. By contrast, PERK
KO mice showed impaired systolic function and increased myocardial fibrosis and apoptosis when
subjected to transverse aortic constriction, compared to WT mice [148]. Normal development was also
observed in HRI KO mice, except for mild macrocytosis (larger red blood cells) and hyperchromic
(increased hemoglobin content) [133]. Further, GBZ treatment (an inhibitor of elF2 Ser-51 phosphatase
GADD34) protects against tunicamycin-induced ER stress in cardiac myocytes of rats, while mildly
prolonging p-elF2x [151]. Therefore, elF2 phosphorylation serves a dual role as in other diseases and
can be pathogenic in certain contexts, while protective in others.

Additional studies in NCDs, are needed to more fully understand the mechanisms that lead to the
activation of eIF2« kinases, subsequent events after elF2x activation, and to better define the contrasting
effects of eIlF2 phosphorylation as disease pathogenesis mediating or disease protective. Although the
inhibition of protein synthesis induced by p-elF2« under stress can help alleviate protein misfolding
and aggregation, the persistent activation of the UPR and prolonged inhibition of mRNA translation
can also be deleterious for cells [106]. Furthermore, the phosphorylation of elF2x is not the only
mechanism that regulates mRNA translation initiation in many NCDs. As discussed next, inhibition of
the mTORC1 signaling pathway can also downregulate mRNA translation by dephosphorylation of
p70S6K and the 4E-BPs (Figure 3).
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Figure 3. Human diseases linked to eIF2 Ser-51 phosphorylation stress responses and the mTORC1
signaling pathway. (A) Cellular stress can lead to the phosphorylation of elF2 on Serine 51 of
the a subunit (elF2«x Ser51) by four elF2« kinases: heme-regulated inhibitor (HRI), protein kinase
RNA- activated (PKR), PKR-like endoplasmic reticulum (ER) kinase (PERK), and general control
nonderepressible 2 (GCN2); each responsive to different cellular stresses (schematic only showing ER
Stress). Phosphorylation of elF2« inhibits translation by blocking the activity of the guanine nucleotide
exchange factor elF2B, preventing the assembly of the e[F2-GTP-Met-tRNA; ternary complex, and
enhances translation of stress response mRNAs such as those encoding activating transcription factor
4 (ATF4), which can escape the inhibition of general translation by an indirect mechanism, resulting
in the induction of downstream genes involved in the UPR. (B) In response to ligand stimulation
(e.g., growth factors), cell receptors (e.g., RTKs) activate the kinase PI3K, phosphorylating PIP, to
produce PIP3, which then recruits AKT and allows phosphorylation of Thr308 and Ser473 through
PDK1 and mTORC2, respectively. AKT inhibits the GTPase activity of TSC2 in the TSC1/TSC2
complex, elevating levels of GTP-Rheb, which subsequently enables activation of mMTORC1. mTORC1
is then able to phosphorylate downstream proteins, p70S6K and 4E-BPs, resulting in regulation
of mRNA translation. The phosphorylation and activation of p70S6K leads to activation of the
ribosomal protein S6. Phosphorylation of the 4E-BPs results in 4E-BP inactivation and prevents their
binding and sequestration of eIF4E, allowing interaction between eIF4E and eIlF4G. When 4E-BPs
are dephosphorylated, they become active, sequestering elF4E, and blocking elF4E/eIF4G interaction,
resulting in e[F4E-mediated translation inhibition. Diseases linked to eI[F2x phosphorylation and
activation of mMTORCI signaling (described in the text) are Alzheimer’s, Parkinson’s, diabetes mellitus,
cirrhosis, COPD, and heart diseases. ‘P’ in a yellow diamond indicates activating phosphorylation.
elF, eukaryotic translation initiation factor; GTP, guanosine triphosphate; tRNA, transfer ribonucleic
acid; RTK, receptor tyrosine kinase; PI3K, phosphoinositide 3-kinase; PIP,, phosphatidylinositol
(4,5)-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-triphosphate; AKT, protein kinase B; PDK1,
phosphoinositide-dependent kinase-1; mTORC, mammalian target of rapamycin complex; Rheb, RAS
homolog enriched in brain; TSC, tuberous sclerosis; mTOR, mammalian target of rapamycin; p70S6K,
70-kDa ribosomal protein S6 kinase; 4E-BPs, elF4E-binding proteins.
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3. The mTORCI1 Signaling Pathway in NCDs

3.1. The mTORC1 Signaling Pathway in Neurodegenerative Disorders

Many studies have demonstrated a key role for the mTORC1 pathway in pathological responses in
neuronal function and development. Activation of mMTORCI signaling is crucial for long-lasting forms
of synaptic plasticity in learning and memory [152]. The brains of patients with advanced Alzheimer’s
disease (AD) showed a systematic disorder of protein synthesis that is dominated by increased levels
of phosphorylated (p) proteins, including p-mTOR (hyperactivated), p-p705S6K, p-4E-BP1 (inactivated),
and p-elF4E (likely involved in the increased activity) [153-155]. A positive correlation between total
tau and p-tau expression has also been shown, suggesting that increased activity of the mTORC1
signaling pathway may contribute to increased levels of tau, possibly its hyperphosphorylation and
its increased accumulation in NFT-bearing neurons [153-155]. Rapamycin is a well-known mTOR
allosteric inhibitor that has been used for decades to suppress T cell responses. Rapamycin and its
analogs have shown some potential as an anti-AD drug by ameliorating A3 and tau pathologies [156].
When mTORC1 is inhibited in rat neural cells and human neuroblastoma cells, the APP mRNA switches
from cap elF4E/cap-dependent translation to translation from its intrinsic 5’UTR IRES. These results
suggest that IRES-mediated translation is important for the synthesis of APP and development of the
disease, and provides a possible approach to block the progression of AD by impairing the translation
activity of the APP IRES [157]. However, reducing the mTORC1 pathway by the administration of
rapamycin is not likely a good approach, as it could impair development and proper synaptic plasticity
for learning and memory, and cortical development in AD, in addition to its immune-suppressing
effects [158]. Further evidence for the increased activity of the mTOR pathway in development AD
comes from studies with ATP-competitive mTOR inhibitors that block mTOR directly. These catalytic
mTOR inhibitors have been shown to rescue or correct hyperactivated mTOR signaling by induction of
autophagy, and have demonstrated effectiveness at blocking the phosphorylation of 4E-BP1, showing
reduced hallmarks of AD, and recovered cognitive performances [159-162].

In Parkinson’s disease (PD), expression levels of mTOR were found to be significantly increased
at the mRNA and protein levels in the temporal cortex of patients with clinical dementia, particularly
in neurons displaying accumulation of x-syn [163]. Mutations in PD patient-derived fibroblasts
cause a reduction of p-S6K levels, leading to decreased lysosomal recycling, which is essential for the
autophagic clearance of a-syn [164], again consistent with the role of hyperactive or continuously
active mTORC1 in PD development and/or disease progression. Moreover, leucine-rich repeat kinase 2
(LRRK?2), is a large multidomain protein with GTPase and kinase activity that phosphorylates and
modulates 4E-BP1/elF4E interaction [165]. There are many LRRK2 mutations reported in PD patients,
of which the G2019S mutation in the kinase domain is the most prevalent, and has been shown to
regulate the mTOR pathway via p-4E-BP1 and AKT, resulting in an increase in bulk translation, which
leads to neurotoxicity and neurological disorders [166,167]. In addition to LRRK2 mutations, e[F4GI
has also been associated with PD mutations, where it is proposed to have a role in the synthesis of
mitochondrial proteins involved in PD pathogenesis [168,169]. However, a precise role for elF4GI
needs greater characterization, as it remains unclear how it is involved with other PD predisposing
genes and effects. Interestingly, rapamycin along with an S6K inhibitor (PF-4708671) was able to revert
the cognitive and affected symptoms of PD in mice, including depression and bipolar disorder, and
rapamycin administration during several stress conditions stimulates «-syn mRNA translation via its
5-UTR IRES element [170,171]. Given the potential role of mTORC1 in neurological diseases, a few
studies have confirmed that after brain ischemia, the decrease in oxygen (by blockage), glucose and
growth factors, triggers a reduction in mTORC1 activity [172]. Accordingly, the phosphorylation and
activation of mMTORC1 was shown to improve memory function and provide neuroprotection during
remote ischemic pre-conditioning (induced before stoke) [173]. During ischemic post-conditioning
(blood reperfusion after stroke), long-term brain focal ischemic damage and neurological disability
are decreased with increased mTORC1 activity, mediated by increased activities of mTOR, S6K, and
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p-4EBP1 [174]. Other studies have shown that mTOR could provide neuroprotection against cerebral
ischemic insult and irradiation injury, all by inhibition of apoptosis and autophagic cell death in
neurons [175-177].

3.2. The mTORC1 Signaling Pathway in Metabolic and Inflammatory Disorders

The mTORC1 pathway is involved in mRNA translation effects that are disrupted in certain
metabolic and inflammatory diseases. mTOR activity in normal cells is involved in insulin resistance,
muscle oxidative metabolism, white adipose tissue differentiation, and 3 cell-dependent insulin
secretion [178-180]. Notably, dysregulation of the mTORC1 pathway has been implicated in the
development of several diseases that involve metabolic and inflammatory changes, such as obesity,
which can lead to diabetes, pulmonary and cardiovascular disorders such as stroke and others [180].
S6K1 inhibition has been suggested as a new therapeutic target to improve glucose disposal in
obese patients, with one study demonstrating that S6K KO mice fed with a high-fat diet (HFD)
were protected against diet-induced obesity, whereas S6K KO mice were still insulin sensitive [181].
Like S6K1, the 4E-BP translational repressors have been found to play a critical role in body weight and
glucose homeostasis [182-184]. One study reported that high levels of glucose and insulin-stimulated
phosphorylation of 4E-BP1 and activation of mTOR, promoting the release of sequestered elF4E
in type 2 diabetes [184]. Double deletion of the two major 4E-BPs (1 and 2) in mice promotes the
development of obesity through reduced energy expenditure, lipolysis, increased adipogenesis, and
insulin resistance [182]. While restoration of 4E-BP1 expression in 4E-BP KO mice protects them
against HFD-induced obesity and insulin resistance, intriguingly, this effect was only observed in
male mice [183]. Interestingly, two new studies in mice showed that increased translation of two
proteins in the liver, TET3 and HNF4a, results in increased production of blood glucose and insulin.
Specifically, it was shown that abnormal protein signaling of TET3 contributes to the development of
fibrosis in the liver [185,186]. Based on these data it has been proposed that targeting the TET3 and
HNF4a proteins could reverse type-2 diabetes and liver fibrosis. In addition to fibrosis, patients with
cirrhosis can also develop a recognized complication, known as skeletal muscle wasting or sarcopenia,
due to an imbalance between protein synthesis and degradation of skeletal muscle proteins resulting
from chronic alcohol abuse [187-189]. It was reported that in chronic alcohol-fed rats a decrease in the
translation of skeletal muscle protein mRNAs results from a reduction in p-mTOR and p-S6K levels,
increased in 4E-BP1/elF4E association, and reduced levels of active elF4E/elF4G complex [190].

When respiratory muscles are impacted by COPD, skeletal muscle wasting or cachexia often
develops, in which insulin-like growth factor 1 (IGF-1) signaling plays a major role in promoting
disease onset and progression, resulting from the activation of the mTOR signaling pathway [191-194].
The severity of COPD has been linked to significantly low levels of IGF-1 in serum, with cachectic
COPD patients showing decreased protein levels of IGF-1 in muscle [195-198]. The activation of mTOR
in mice induces lung cell senescence, lung emphysema, pulmonary hypertension, inflammation, and
lung alterations resembling those in COPD [199]. COPD patients with low muscle mass exhibit an
increase in phosphorylation of the downstream targets 4E-BP1 and p70S6K, explained by an attempt
to compensate for the loss of muscle mass through increased protein synthesis compared to patients
with normal muscle mass [193,200]. The relationship between COPD and mTOR activation has been
identified as a new therapeutic target in COPD [201]. Furthermore, it has been reported that the 5’-UTR
of the IGF-1 receptor mRNA is translated by IRES-dependent translation, providing additional control
for its expression under stress conditions that downregulate elF4E/mTORC1-dependent canonical
mRNA translation [202].

Lastly, it was shown that reduction of mTOR signaling in adult mice induces the development
of heart failure due to the accumulation of dephosphorylated 4E-BP1. In fact, when both mTOR
and 4E-BP1 are deleted, heart failure phenotypes are improved due to unrestricted availability
of elF4E [203]. Another study reported that canonical translation initiation is strongly inhibited
following myocardial infarction, through a mechanism involving sequestration of eIF4E by 4E-BP1,
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although several other forms of regulation, including inhibition of Rheb/mTORC1 signaling were also
observed, suggesting several paths are involved to 4E-BP control [204-206]. In ischemic heart diseases,
inhibition of mTOR attenuates adverse myocardial remodeling and improves cardiac function by
blocking canonical translation through 4E-BP1 [207]. In fact, within 10 minutes of ischemia, 4E-BP1
is activated, negatively regulating translation, but then shifts to an inactive state, inducing a global
activation of translation in the non-infarcted muscle to compensate for cardiomyocyte loss [205].
Although canonical elF4E-dependent translation is downregulated, some mRNAs are still translated
in the hypoxic environment, which likely involves a switch to elF4E-independent translation via an
IRES is or the DAP5/elF3d complex [208-210]. Therefore, non-elF4E-mediated mRNA translation
plays a major role during ischemia, as most lymphangiogenic factors are translationally induced in
hypoxic cardiomyocytes [208-211]. Finally, consistent with these findings, inhibition of mTORC1
by rapamycin was recently shown to be cardioprotective in pressure-overloaded and ischemic heart
diseases, preventing cardiomyocyte apoptosis, and promoting autophagy in chronic heart failure [212].

4. Conclusions and Future Directions

Translation regulation is essential in maintaining cell division, survival, as well as protein and
cellular homeostasis [213-218]. Studies of NCDs that result from dysregulation in protein synthesis,
specifically the rate-limiting step of mRNA translation initiation, provide a new understanding of the
different key mechanisms of mRNA translation in the pathogenesis of distinct diseases. As described in
this review, translation is mediated by eukaryotic initiation factors (elFs), which have different functions
in controlling the rate of initiation and regulate gene expression during diseases. Mechanisms that drive
selective translation of specific mRNAs, such as eIF4E/mTORC1-dependent, DAP5/elF3d-dependent,
and IRES-dependent mRNA translation demonstrate plasticity in the use of different translation
initiation mechanisms and a range of requirements for the translation factors involved. A greater
characterization of these mechanisms will provide a critical understanding of their roles in the
pathogenesis of NCDs. Under stress conditions, specific proteins are altered during translation, which
may lead to a predisposition to several comorbid diseases described here, such as Alzheimer’s disease,
Parkinson’s disease, stroke, diabetes mellitus, cirrhosis, COPD, and heart diseases. The majority of
cap-dependent mRNAs are regulated at the level of initiation by the mTORCT1 signaling pathway
through control of cap binding protein elF4E, which is important for cell proliferation, regulation of
cell survival, and inflammatory responses among many others. During a number of stress conditions
(e.g., ER stress, amino acid starvation, hypoxia, etc.), IRES-mediated or non-canonical cap-dependent
translation initiation, including DAP5/elF3d directed translation initiation ensues, allowing cells to
adapt to a new state, by translating specific stress response and adaptation mRNAs including those
encoding survival proteins. Activation of elF2 stress kinases and inactivation of the mTORC1 pathway
are central to these adaptive mechanisms. It needs to be noted that the mTOR and elF2 phosphorylation
pathways also regulate the rate of translation elongation, which impacts on protein synthesis rates and
even the types of proteins made. This review however focused on the control of translation initiation
of both pathways in human non-communicable diseases.

The phosphorylation of elF2x was shown to be critical in the diseases discussed, leading to
repression of long-term memory formation and synaptic plasticity in AD [104,105], and protein
aggregation and dopaminergic neurodegeneration in PD [111-113]. Pathogenic elF2a phosphorylation
is also involved in the dysregulation of protein balance in the post-ischemic brain [117,118].
In endocrine organ diseases, aberrant metabolism, function and survival of pancreatic {3 cells for
example, as well as the development of glucose intolerance, hyperglycemia, and diabetes all involve
pathogenic complications of the el[F2« phosphorylation pathway [128-132]. This is also observed
as a driver of liver fibrosis, hepatocyte death, and skeletal muscle loss driven by hyperammonemia
during hepatic cirrhosis [141,142,219]. Severe emphysema and airflow obstruction in the lungs
of COPD patients, as well as ventricular dysfunction, apoptosis, and fibrosis of the myocardium,
cardiac insufficiency, and heart failure, are driven in part by pathogenic mechanisms of elF2«
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phosphorylation [144,148,149,220,221]. These findings highlight the critical role played by organ, tissue,
and cellular physiological stress responses through elF2 phosphorylation, and highlight elF2« kinases
as potential therapeutic targets. The other primary mechanism regulating translation in NCDs discussed
in this review is the mTORC1/elF4E regulation pathway, contributing to increased hyperphosphorylated
tau protein accumulation in NFT-bearing neurons during AD [153-155], and neurotoxicity and
accumulation and spread of pathogenic a-syn in PD brains [164-167,222]. Neuroprotection and
improved memory function during remote ischemic pre-conditioning, decreased long-term brain focal
ischemic damage, and neurological disability during ischemic post-conditioning [173,174], which also
involve pathogenic mTORC1/eIF4E signaling and regulation. Similarly, it is well established that insulin
resistance and co-morbid inability to properly regulate body weight and glucose homeostasis in diabetes
involves the mTORC1/elF4E pathway [178,179,182-184]. Skeletal muscle hyperammonemia of liver
cirrhosis [142,190], lung emphysema, pulmonary hypertension and inflammation, lung alterations in
COPD, and development of a variety of heart failure clinical manifestations including acute myocardial
infarction all involve pathogenic mTORC]1 signaling and eIF4E regulation [199,203-206]. The studies
described here provide evidence for the often collective roles of these two pathways in controlling
translation and promoting disease when disrupted as a result of physiological stresses and biological
disease mediators.

Given the complexity of NCDs and the plasticity of translational regulation, more research is
needed to better understand how pathogenic mechanisms arising from these different pathways develop
and promote the progression of NCDs. Future studies are needed to address whether differential
sensitivity to physiological and biological activators of stress responses or the cell/tissue-intrinsic
differences in translation regulation, as well as mutations in UTRs, play causal roles in the development
of NCDs. As noted, there are major points of commonality among the different NCDs described here,
involving translational regulation by elF2 and mTORC1/elF4E stress response pathways. A better
understanding holds great potential of being useful in the development of diagnostic and prognostic
tools as well as new therapeutics.
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NCDs Non-communicable diseases

elF2 eukaryotic initiation factor 2

mTORC mammalian target of rapamycin complex
4E-BPs eukaryotic initiation factor 4E- binding proteins
AD Alzheimer’s disease

PD Parkinson’s disease

COPD Chronic obstructive pulmonary disease
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