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1,2, Gert Van ZylID

3,4, Hesam Montazeri5, Jack KuipersID
1,2,

Soo-Yon Rhee6, Roger KouyosID
7,8, Huldrych F. GünthardID

7,8, Niko BeerenwinkelID
1,2*

1 Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland, 2 SIB Swiss Institute

of Bioinformatics, Basel, Switzerland, 3 Division of Medical Virology, Faculty of Medicine and Health

Sciences, Stellenbosch University, Cape Town, South Africa, 4 National Health Laboratory Service, Cape

Town, South Africa, 5 Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of

Tehran, Tehran, Iran, 6 Department of Medicine, Stanford University, Stanford, California, United States of

America, 7 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich,

Switzerland, 8 Institute of Medical Virology, University of Zurich, Zurich, Switzerland

* niko.beerenwinkel@bsse.ethz.ch

Abstract

Although combination antiretroviral therapies seem to be effective at controlling HIV-1 infec-

tions regardless of the viral subtype, there is increasing evidence for subtype-specific drug

resistance mutations. The order and rates at which resistance mutations accumulate in dif-

ferent subtypes also remain poorly understood. Most of this knowledge is derived from stud-

ies of subtype B genotypes, despite not being the most abundant subtype worldwide. Here,

we present a methodology for the comparison of mutational networks in different HIV-1 sub-

types, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for

inferring mutational networks from cross-sectional genotype data. We introduce a Monte

Carlo sampling scheme for learning H-CBN models for a larger number of resistance muta-

tions and develop a statistical test to assess differences in the inferred mutational networks

between two groups. We apply this method to infer the temporal progression of mutations

conferring resistance to the protease inhibitor lopinavir in a large cross-sectional cohort of

HIV-1 subtype C genotypes from South Africa, as well as to a data set of subtype B geno-

types obtained from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort

Study. We find strong support for different initial mutational events in the protease, namely

at residue 46 in subtype B and at residue 82 in subtype C. The inferred mutational networks

for subtype B versus C are significantly different sharing only five constraints on the order of

accumulating mutations with mutation at residue 54 as the parental event. The results also

suggest that mutations can accumulate along various alternative paths within subtypes, as

opposed to a unique total temporal ordering. Beyond HIV drug resistance, the statistical

methodology is applicable more generally for the comparison of inferred mutational net-

works between any two groups.
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Author summary

There is a disparity in the distribution of infections by HIV-1 subtype in the world. Sub-

type B is predominant in America, Australia and western and central Europe, and most

therapeutic strategies are based on research and clinical studies on this subtype. However,

non-B subtypes represent the majority of global HIV-1 infections; e.g., subtype C alone

accounts for nearly half of all HIV-1 infections. We present a statistical framework

enabling the comparison of patterns of accumulating mutations in different HIV-1 sub-

types. Specifically, we compare the temporal ordering of lopinavir resistance mutations in

HIV-1 subtypes B versus C. To this end, we combine the Hidden Conjunctive Bayesian

Network (H-CBN) model with an approximate inference scheme enabling comparisons

of larger networks. We show that the development of resistance to lopinavir differs signifi-

cantly between subtypes B and C, such that findings based on subtype B sequences can

not always be applied to sybtype C. The described methodology is suitable for comparing

different subgroups in the context of other evolutionary processes.

Introduction

HIV-1 infections are clinically manageable by combining two or more antiretroviral drugs [1],

but the accumulation of drug resistance mutations, a process driven by the evolutionary escape

dynamics of HIV-1, still limits their success [2, 3]. These therapies, although largely developed

based on studies of HIV-1 subtype B viruses, have been shown to be effective in controlling

infection without subtype-specific differences [4]. However, there is increasing evidence of dif-

ferences in mutation patterns and evolutionary rates among subtypes [4–10], but knowledge

on subtype-specific mutational pathways is very limited.

Here, we investigate the rate and partial order of accumulation of drug resistance mutations

in different HIV-1 subtypes. Specifically, we compare mutational networks to lopinavir resis-

tance in HIV-1 subtypes B versus C. Although HIV-1 subtype B is the best studied and most

prevalent subtype in America, Australia and western and central Europe, subtype C alone

accounts for nearly half of all HIV infections worldwide [11, 12]. It is therefore important to

understand whether the evolution of drug resistance in subtype C proceeds in a similar fashion

as for subtype B.

The accumulation of advantageous mutations under the selective pressure of several antire-

troviral drugs have been studied by sequencing the HIV-1 genome derived from patients over

the course of treatment [13–20]. However, such longitudinal data are not available for most

antiretroviral therapies. To leverage information from large cohorts and cross-sectional stud-

ies, different statistical models have been proposed to investigate inter-dependencies of muta-

tions. On the one hand, approaches such as Bayesian networks [21–23] and Cox proportional-

hazards models [24] provide insights into statistical dependencies between resistance muta-

tions without explicitly modeling the ordering among such mutations. On the other hand,

order-aware approaches for investigating evolutionary pathways leading to drug resistance

include mutagenetic trees [25, 26]; discrete and continuous-time Conjunctive Bayesian Net-

works (CBN) [27, 28]; and Suppes-Bayes Causal Networks (e.g., CAPRI [29, 30]). Most of the

aforementioned methods have been applied to study drug resistance mutations in HIV-1 sub-

type B infections. As an exception, Deforche et al. [21, 22] combined observations from vari-

ous subtypes to investigate dependencies among resistance mutation and polymorphisms

using Bayesian networks. The inferred network was used to explain the lower prevalence of
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protease mutation 30N in subtypes G and A as compared to subtype B through an interaction

with the polymorphic locus 89L/M.

To infer subtype-specific lopinavir mutational networks, here we use the Hidden Conjunc-

tive Bayesian Network (H-CBN) [31], an extension of the continuous-time Conjunctive Bayes-

ian Network (CT-CBN) accounting for observational errors. The CT-CBN model encodes

constraints on the temporal ordering among mutations by assuming that the occurrence of

genetic events can depend on the occurrence of predecessors. While in tree-based models the

number of direct predecessors is constrained to be at most one, this assumption is relaxed in

the CT-CBN model, where multiple predecessors are allowed. Therefore, CT-CBNs can be

viewed as a generalization of mutagenetic trees and in practice also outperform them [27, 32].

In other comparative studies using data simulated under various fitness landscapes, H-CBN

models typically provide comparable or better performance to competitors such as CAPRI [33]

and trees [33, 34] in reconstructing the mutational networks for most of the evaluated metrics.

In addition, the H-CBN model incorporates a superior error model as described below.

The partial order among mutations is inferred from observed viral genotypes. However,

genotyping is error-prone and, in fact, the H-CBN model was developed as an extension of

the CT-CBN to account for sequencing errors [31] and to improve the simple mixture error

model of the original CT-CBN [28] which featured two model components to distinguish signal

from noise. The CT-CBN model has been applied to learn mutational networks in HIV under

different selective pressures. The data sets originally analyzed included at most nine resistance

mutations, but Montazari et al. [35] presented the MC-CBN Monte Carlo expectation-maximi-

zation algorithm for parameter estimation of the mixture model applicable to hundreds of

mutations. Yet, the mixture error model has several limitations. Every genotype that violates the

ordering constraints is assumed to occur with equal probability regardless of, e.g., the number

of violations. Moreover, as the number of mutations increases the chance of obtaining an error-

free genotype decreases rapidly. For instance, with a 1% per locus error rate and 64 mutations,

we expect only around 53% of the genotypes to be correct. The mutation network is, however,

inferred exclusively from the portion of the data assigned to the signal component of the mix-

ture model, which can quickly result in a large portion of the data being discarded.

In their H-CBN extension of the CT-CBN, Gerstung et al. [31] introduced latent variables

to explicitly model the noisy observation process, which is parameterized by a per-locus error

rate. In contrast to the mixture model, genetic events that apparently violate the ordering con-

straints can be explained by the latent variables, and the assumption that all violations are

equally likely is relaxed. Moreover, instead of using only compatible genotypes to infer the

maximum likelihood network as in the mixture model, the H-CBN uses all observed genotypes

in a weighted fashion. Inference of the H-CBN model has been implemented via maximum

likelihood estimation, but the time complexity of the likelihood computation is exponential in

the number of mutations. In practice, computation quickly becomes impractical as the number

of genetic events grows beyond 14 mutations, whereas our study involves up to 20 mutations.

Here, we take advantage of the improved error model of the H-CBN, but address its limita-

tion regarding scalability in the number of mutations by employing an approximation scheme

for the estimation of model parameters. We assess the performance of our method on simu-

lated data and compare it to the original H-CBN method. Furthermore, we incorporate an

adaptive simulated annealing algorithm to infer the maximum likelihood mutational network

from the data, including different moves to explore the discrete space of networks. We com-

pare the accuracy of the networks reconstructed using this method to the MC-CBN method

which implements a mixture error model. The resulting model and inference methods, called

H-CBN2, are implemented as part of the MC-CBN R-package available at https://github.com/

cbg-ethz/MC-CBN.
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We use the H-CBN2 method to infer evolutionary pathways to lopinavir resistance in HIV-

1 subtypes B and C, confirming previous knowledge on frequently observed patterns of resis-

tance-conferring mutations in response to lopinavir treatment [36, 37]. We also devise a statis-

tical test to assess the similarity between two CBN models, which is available at https://github.

com/cbg-ethz/H-CBN2-comparison-test. When applied to subtypes B versus C, we find signif-

icant differences in their mutational networks.

Materials and methods

Ethics statement

The Swiss HIV Cohort Study (SHCS) has been approved by the ethical committees of the par-

ticipating institutions: Kantonale Ethikkommission Bern; Ethikkommission beider Basel;

Comite departemental d’éthique des specialites medicales et de medicine communataire et de

premier recours, Hôpitaux Cantonale de Genève; Commission cantonale d’éthique de la

recherche sur l’être humain, Canton de Vaud, Lausanne; Repubblica e Cantone Ticino–Comi-

tato Ethico Cantonale; Ethikkommission des Kantons St. Gallen; and Kantonale Ethikkommis-

sion Zürich. Written informed consent has been obtained from all participants.

Hidden conjunctive Bayesian network

Methods described in this section are organized as follows. We first recapitulate the probabilis-

tic graphical model underlying this work, the H-CBN. Second, we introduce a new parameter

inference method for the H-CBN model, as well as an improved structure learning algorithm

based on adaptive simulated annealing. Third, we develop a statistical test to assess structural

differences between two CBN models.

CBNs are probabilistic graphical models, in which a directed acyclic graph (DAG) repre-

sents the ordering constraints among genetic events [27]. In the CT-CBN, the time between

genetic events is modeled by independent exponential distributions [28]. The H-CBN extends

the CT-CBN model by introducing hidden variables to model the error-prone observational

process [31].

Formally, the CT-CBN is defined by a partially ordered set (poset) of genetic events, or

mutations, and a rate for each mutation to occur. A poset (P,�) consists of a set P of size

p = |P| and a binary relation�. The relation l� k indicates that mutation lmust take place

before k. Further, a relation l� k is a cover relation if l� z� k implies z = l or z = k. Drawing

a directed edge from node l to node k for every cover relation l� k yields a DAG which is tran-

sitively reduced and uniquely represents the poset [28]. It is therefore sufficient to consider

transitively reduced DAGs only.

A genotype is a subset of genetic events of P, represented by a binary vector x = (x1, . . ., xp),
where xj = 1 indicates that mutation j has occurred. A genotype x is called compatible with the

poset P if (xl, xk)6¼(0, 1) for all cover relations l� k. The collection of all genotypes compatible

with P is the genotype lattice J(P), which defines the space of all feasible mutational patterns.

The waiting time to each mutation j is represented by a random variable Tj. Their joint dis-

tribution is defined recursively as

Tj � Zj þ max
u 2 paðjÞ

Tu; Zj � ExpðljÞ; ð1Þ

where pa(j) denotes the set of parents of j in the DAG, i.e., the set of mutations which precede

mutation j. The random variable Zj is exponentially distributed with rate λj and accounts for

the time elapsed for generating and fixating mutation j, after its predecessors have occurred.
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The time at which every individual mutation emerges is generally unknown. Instead,

patients are monitored with certain regularity, and oftentimes when the viral load increases,

the virus population is sequenced. The sampling time is generally also unknown and typically

differs among patients. To account for this uncertainty, an exponentially distributed random

variable Ts� Exp(λs) is introduced. Hence, the observed data is censored, and a mutation j
occurred if and only if its waiting time tj was smaller than the sampling time ts, i.e., xj = 1 if tj<
ts and xj = 0 otherwise. The model is not identifiable as long as the rate λs is unknown. There-

fore, unless known, this scaling factor is set to λs = 1 [28, 31].

There is another hidden process, namely the generation of viral genotype data. In the

H-CBN model, a variable Y is introduced to denote the observed genotype, an error-bearing

version of the true genotype X [31]. Assuming errors are independent and identically distrib-

uted across mutations, the probability of observing genotype Y given the true underlying geno-

type X is defined by a Bernoulli process with parameter �, the per-locus error probability.

Parameter estimation via Monte Carlo Expectation Maximization

Owing to censoring of mutation times and unobserved true genotypes, the Expectation Maxi-

mization algorithm (EM) has been previously used to obtain maximum likelihood estimates

of model parameters � and λj, j = 1, . . ., p [31]. To address the limitation on the scalability in

the number of mutations, we develop a Monte Carlo Expectation Maximization algorithm

(MCEM) to jointly estimate the error rate (�) and the conditional evolutionary rate parameters

(λj, j = 1, . . ., p) for a given poset P.

In the expectation step (E step) of the MCEM algorithm, we estimate the expected value of

the complete-data log-likelihood ‘X ;Z;Y;ðl; �Þ with respect to the current conditional distribu-

tion of the hidden data (i.e., the unobserved true genotypes X ¼ ðXð1Þ; . . . ;XðNÞÞ and muta-

tion times Z ¼ ðZð1Þ; . . . ;ZðNÞÞ), given the observed genotypes Y, as well as the current

estimates of the parameters λ(k) and �(k)

EX ;ZjðY;lðkÞ ;�ðkÞÞ½‘Y;X ;Zðl; �Þ� ¼

XN

i¼1

X

xðiÞ 2 JðPÞ

Z

Rpþ1

�0

‘Y;X ;Zðl; �ÞfX;Z
�
xðiÞ; zðiÞ

�
�
�Y ¼ yðiÞ; lðkÞ; �ðkÞ

�
dzðiÞ;

ð2Þ

where k denotes the current MCEM iteration (see S1 Text for details).

For small H-CBN models, this integral has been computed by decomposing it into a sum of

integrals over all possible maximal chains in the genotype lattice [28, 31]. However, the num-

ber of maximal chains is p! in the worst case, where p is the number of mutations. Moreover,

the summation over all possible genotypes in J(P) is bounded by the total number of unob-

served true (binary) genotypes: 2p. For moderate to large numbers of mutations, the exact

computation of the expected value thus becomes computationally infeasible. To overcome this

limitation, we approximate the expected value, Eq (2), using importance sampling. The general

idea is to generate L samples of the unobserved true genotypes x and the mutation times z
from a proposal distribution Q(x, z). Then,

EX ;ZjðY;lðkÞ ;�ðkÞÞ½‘Y;X ;Zðl; �Þ� �

1

L

XN

i¼1

XL

l¼1

1

QðxðiÞl ; z
ðiÞ
l Þ
‘Y;X ;Z l; �ð ÞfX;Z xðiÞ; zðiÞ

�
�
�Y ¼ yðiÞ; lðkÞ; �ðkÞ

� �
:

ð3Þ

Intuitively, we would like to draw samples from the important region, e.g., samples that

are likely to have given rise to the observed data. We use two types of importance sampling
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schemes, which we refer to as the forward and backward sampling, and implement and com-

pare several variations of them (see next subsections).

In the maximization step (M step), we are concerned with maximizing Eq (2) with respect

to the parameters � and λj, j = 1, . . ., p. The maximum likelihood (ML) estimate �̂ of the error

rate � is found to be the conditional expectation of the sufficient statistic dH(X, Y) obtained in

the E-step,

�̂ðkÞ ¼
1

N

XN

i¼1

EX;ZjY;lðkÞ ;�ðkÞ
1

p
dHðx

ðiÞ; yðiÞÞ
� �

: ð4Þ

Similarly, the ML estimate for the rate parameters l̂ j are,

½l̂
ðkÞ
j �
� 1
¼

1

N

XN

i¼1

EX;ZjY;lðkÞ ;�ðkÞ z
ðiÞ
j

h i
: ð5Þ

Forward sampling. Assume the rate parameters λ and the poset P are known. We gener-

ate a candidate error-free genotype x by sampling the mutation and sampling times z = (z1,

. . ., zp, ts) from the corresponding exponential distributions as follows

zj � ExpðljÞ; j ¼ 1; . . . ; p; ts � ExpðlsÞ:

To determine the waiting times t = (t1, . . ., tp) we set tj = zj + maxu2pa(j) tu. Whenever, the

waiting time tj for mutation j is smaller than the sampling time ts, we record that the mutation

j has been observed. If we do this for every mutation j, we obtain a sample of an error-free

genotype x = (x1, . . ., xp). We draw samples by traversing the DAG in topological order to

ensure that we compute tu for all u 2 pa(j) before visiting any dependent mutation j. Because

we do not know the rate parameters λ, nor the poset P, in each iteration of the MCEM algo-

rithm, we use their current estimates, λ(k) and P(k).

For each observed genotype y(i), i = 1, . . .,N, we draw L samples using the forward sampling

scheme described above. A sample is a tuple of waiting times and the corresponding error-free

genotype. Because of the graph traversal and the loop over parents, the worst-case time-com-

plexity of the forward sampling is O(NLp2). We note that the candidate hidden genotypes are

generated without accounting for the observed data. Alternatively, we implement a second for-

ward sampling scheme called forward-pool. In this case, for each iteration of the MCEM algo-

rithm, we draw an initial pool of K waiting times vectors (tðlÞj , j = 1, . . ., p), with K� L, and for

each observed genotype, we choose a subset of L samples according to their similarity to the

observed genotype as explained below. For each of the waiting times samples, we first con-

struct the error-free genotype x(l) and then draw L genotypes, each with probability

ql ¼
�dHðy

ðiÞ ;xðlÞÞð1 � �Þ
p� dH ðyðiÞ ;xðlÞÞ

PK
l¼1
�dH ðy

ðiÞ ;xðlÞÞð1 � �Þ
p� dH ðyðiÞ ;xðlÞÞ

: ð6Þ

Backward sampling. For the backward sampling, we construct the sample of candidate

error-free genotypes x(l), l = 1, . . ., L, based on the observed genotype y(i) and then sample the

mutation times as

zj �
TExpðlj; 0; ts � maxu 2 paðjÞtuÞ if xj ¼ 1

ExpðljÞ otherwise;

8
<

:
ð7Þ
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where TExp is a truncated exponential distribution. Montazeri et al. [35] have used Eq (7) to

generate mutation times only from the compatible genotypes while using a mixture error

model. Here, we extend this approach to also include sampling of the hidden layer modeling

the genotyping errors, which enables us to account for all the observations.

We implement three variations of backward sampling to construct the sample of candi-

date hidden (true) genotypes. For the first strategy, we generate the genotypes x(l) by enu-

merating all compatible genotypes within Hamming distance k of the observed genotype y(i),

typically with k� 3. We then draw L waiting-time vectors for each candidate genotype

according to Eq (7). This sampling scheme is referred to as Hamming k-neighborhood sam-

pling. In the second strategy, we sample candidate genotypes by altering individual muta-

tions of the observed genotype using p independent Bernoulli trials, one for each mutation

j = 1, . . ., p, with success probability equal to the current estimate of the error rate �̂ðkÞ. We

draw L candidate genotypes some of which may be incompatible with the current poset P(k)

and, thus, obtain a zero sampling weight; i.e., they do not contribute to the estimation of the

model parameters. This sampling scheme is referred to as Bernoulli sampling. The third

approach is a two-step scheme. First, we decide uniformly at random whether to (i) leave the

genotype y(i) unperturbed, (ii) add, or (iii) remove a mutation. For (ii) and (iii), we draw a

mutation from the set of mutations that can be added or removed, respectively. If we remove

an event j, it is chosen with probability proportional to kj ¼
1

lj
þmaxl 2 paðjÞkl, which corre-

sponds to a greedy approximation of the time to mutation assuming that the process is

dominated by the slowest predecessor in each reverse breadth-first search generation. The

rationale is to remove mutations from the genotype y(i) that are likely to occur at later times

with higher probability. On the other hand, if we add an event, it is chosen with a probability

which is inversely proportional to the probability of being removed. In this case, we add

mutations that can arise faster with higher probability. In the second step of this scheme,

we ensure the genotype is compatible with the current poset P(k) by adding or removing all

incompatible mutations. This sampling scheme is referred to as the backward-add/remove

(backward-AR) sampling.

Evaluation of sampling schemes. We evaluate the accuracy of the different approxima-

tion schemes by computing the probability of a genotype y(i) and comparing it to the exact

solution [31]. Since Pr(Y = y(i)) are the factors of the likelihood, we are assessing the accuracy

of the likelihood computation. We approximate the probability of genotype y(i) by drawing L
samples from each of the proposal distributions,

PrðY ¼ yðiÞÞ �
1

L

XL

l¼1

PrðY ¼ yðiÞjxðiÞl Þ Prðx
ðiÞ
l Þ

QðxðiÞl ; z
ðiÞ
l Þ

: ð8Þ

Structure learning

Gerstung et al. [31] implemented a simulated annealing (SA) algorithm with a geometric

annealing schedule to infer the network structure of the H-CBN model. However, as the size

of the model increases, the poset search space increases rapidly (sequence A001035 in The On-

Line Encyclopedia of Integer Sequences, https://oeis.org/A001035), and the standard SA algo-

rithm is more prone to converge to local optima and to miss globally optimal or near-optimal

solutions. Here, we incorporate an adaptive simulated annealing (ASA) algorithm [38] to

improve the efficacy of the search. As in the standard SA algorithm [39], in each iteration, we
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propose an update P0 of the current poset P(k) and accept the new poset with probability

min 1; exp
� ½‘Yðl̂

ðkÞ; �̂ðkÞ; PðkÞÞ � ‘Yðl̂ 0; �̂ 0; P0Þ�
Y
ðkÞ

 ! !

:

Conventionally, the temperature Θ is gradually reduced over iterations, initially allowing

the system to explore a broad region of the search space, but ultimately moving exclusively

towards solutions that improve the likelihood. In the ASA algorithm, the cooling schedule is

adjusted according to the search progress, but following the same principle as before, i.e., grad-

ually changing the temperature such that the system is able to converge [40, 41]. We have

adopted the cooling schedule from Srivatsa et al. [42] as follows. For every interval consisting

ofm consecutive iterations, we set the temperature Ym ¼ Ym� 1 exp ðð0:5 � acm� 1
ÞarÞ, where

am−1 is the observed acceptance rate of the previous interval, ar is a custom adaptation rate,

and c ¼ � logð2Þ
log aideal

is a scaling factor accounting for deviations from an optimal acceptance rate.

Following the previous work [42], the optimal acceptance rate is set to aideal = 1/p, where p is

the number of mutations. Moreover, the adaptation rate ar is an additional free parameter

enabling to further control the abruptness of temperature changes.

The optimization includes proposing a neighboring poset, which ultimately defines how we

explore the space of posets. To this end, we implement three move types: (i) add or remove an

edge, (ii) add an element to or remove an element from the cover relations while preserving all

the remaining ones, and (iii) swap node labels. When adding an element to the cover relation,

or equivalently an edge in the DAG, we discard proposed networks which are not transitively

reduced or contain cycles.

Implementation

We collectively refer to the implementation of the methods described in the previous sections

as H-CBN2. It consists of the importance sampling schemes for parameter inference and the

adaptive simulated annealing algorithm for structure learning of the H-CBN model. The code

has been integrated into the MC-CBN R-package. We used C++ with OpenMP and the Boost

libraries to ensure computational efficiency. We also employed the Vector Statistics compo-

nent of the Intel Math Kernel Library (MKL) to efficiently generate random numbers.

Statistical test for the comparison of CBN models

To compare two CBN models, we quantify differences in their posets using the Jaccard dis-

tance. The Jaccard distance between two sets is the complement of their Jaccard index, which

is obtained by dividing the cardinality of the intersection by the cardinality of the union of the

two sets.

Based on this notion of distance, we develop a permutation test to assess whether two given

posets differ significantly from each other. Given two CBN models (e.g., estimated separately

for HIV-1 subtypes B and C), we compute the Jaccard distance between the posets, dJ. The test

quantifies how likely it is to observe the distance dJ under the null hypothesis of both data sets

having been generated by the same underlying poset. The alternative is that the two data sets

have been generated by two different posets.

We compute the distribution of the test statistic DJ under the null hypothesis as follows. We

combine all genotypes from the considered groups and randomly split the data into two dis-

joint sets S1 and S2 with N1 and N2 genotypes, respectively, where N1 and N2 are the sizes of the

two original data sets. That is, we permute the group labels of the genotypes. Then we apply

H-CBN2 to infer the poset for S1 and S2 separately and compute their Jaccard distance. We
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repeat this procedure B times and construct the distribution of the test statistic DJ under the

null by aggregating the computed Jaccard distances (Fig 1). We assess how likely it is to

observe a test statistic at least as extreme as dJ under the null hypothesis by means of comput-

ing the associated p-value

PrðDJ > dJ jH0Þ ¼ 1 � F̂ðdJÞ; ð9Þ

where F̂ðdJÞ is the empirical cumulative distribution function,

F̂ðdJÞ ¼
1

B

X

S1 ; S2 2SB

IðdJðS1; S2Þ � dJÞ; ð10Þ

where SB ¼ fðS1;j; S2;jÞ : j ¼ 1; . . . ;Bg. For the comparisons, we choose a significance level of

5% and perform B = 50 permutations of the group labels.

The code for performing this distance-based test is available at https://github.com/cbg-ethz/

H-CBN2-comparison-test.

Simulated data sets

We simulate data sets with different error rates and various numbers of mutations (p = 4, 8,

12, 16, 32, 64, 128, and 256). For each combination of the simulation settings, we generate 100

data sets with different rate parameters and different transitively reduced DAGs. We draw the

rate parameters λj uniformly at random from the interval
ls
3
; 3ls

� �
(λs = 1). We also set the

number of genotypes to N = max(50 p, 1000), where the upper limit is motivated by the num-

ber of genotypes available in our application, i.e., comparing mutational pathways in different

HIV-1 subtypes under lopinavir treatment (see next subsection).

For the assessment of the H-CBN2 importance sampling schemes, we choose error rates

reflecting moderate to high Sanger sequencing error rates (� = 0.01, 0.05, and 0.10) [43], which

are challenging for parameter inference. To compare the H-CBN2 method to the predecessor

method MC-CBN, we also simulated data with smaller error rates (� = 0, 0.001, in addition to

0.05 and 0.1) to assess the advantage of the latent error model compared to the simpler mixture

error model under these milder conditions.

Genotype data sets

We study lopinavir mutational networks in three data sets: (i) a cohort of 1064 South African

patients living with HIV-1 subtype C retrieved from the Stanford HIV Drug Resistance Data-

base (HIVDB, S1 File) [44, 45], (ii) a data set of 470 sequences of subtype B genotypes obtained

from the HIVDB (S2 File) and the Swiss HIV Cohort Study (SHCS) [46, 47], and (iii) a data set

of 755 sequences of subtype C genotypes obtained from the HIVDB excluding genotypes from

South African patients contained in the first data set (S3 File).

The HIVDB is a publicly available database that systematically aggregates data from pub-

lished studies about HIV drug resistance. The SHCS is a nation-wide, prospective observa-

tional study covering approximately 75% of all treated patients in Switzerland [47].

Results

We first evaluate and compare the different importance sampling schemes implemented in

H-CBN2 for the scalable inference of H-CBN models in a simulation study. We then apply the

best performing H-CBN2 approach to investigate the accumulation of lopinavir resistance-

associated mutations in HIV-1 in a large South African cohort. Finally, we compare the results

PLOS COMPUTATIONAL BIOLOGY Comparison of lopinavir mutational pathways in HIV-1 subtypes B and C

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008363 September 7, 2021 9 / 25

https://github.com/cbg-ethz/H-CBN2-comparison-test
https://github.com/cbg-ethz/H-CBN2-comparison-test
https://doi.org/10.1371/journal.pcbi.1008363


Fig 1. Schematic representation of the comparison of CBN models. A Data setsD1 andD2 consist ofN1 and N2 genotypes,

respectively, and, in this example, p = 4 mutations. We combined both data sets into a single oneD0 withN1 + N2 genotypes. B We

randomly split data set D0 into data sets S1 and S2 and we do so B times. C For each data set, we apply the H-CBN2 approach to

learn the structure of the network and for each pair, S1 and S2, we compute the Jaccard distance. D The empirical distribution of the

test statistic is computed by aggregating the distances between pairs S1 and S2. E We compare the inferred CBN posets from original

data setsD1 andD2 by computing the Jaccard distance and assess its significance.

https://doi.org/10.1371/journal.pcbi.1008363.g001
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for HIV-1 subtype C to a data set of HIV-1 subtype B genotypes derived from lopinavir-treated

patients and obtained from the HIVDB and the SHCS.

Simulation studies

Assessment of importance sampling schemes on simulated data. We assess the quality

of approximating the probability of a genotype y by the H-CBN2 importance sampling

schemes (Eq 8) and compare it to the exact solution. For a problem size relevant for our appli-

cation (p = 16 mutations), we vary the number of samples, L, drawn from the proposal distri-

bution and find, as expected, that the accuracy of the approximation improves with L (S1–S5

Figs). In most cases, we are able to accurately approximate the likelihood of the H-CBN model

with L = 1000 (relative absolute error� 0.02, S2 Table).

We then assess the accuracy of parameter estimation using the H-CBN2 sampling schemes

for various poset sizes and compare it to the H-CBN model [31]. We use a fixed number of

samples drawn from the proposal distribution for each of the sampling schemes. We draw

L = 10 samples for the Hamming 3-neighborhood sampling, L = 100 samples for the forward-

pool sampling, and L = 1000 for the other sampling schemes. These choices are motivated by

the preceding results on the quality of the log-likelihood approximation via importance sam-

pling (S2 Table).

We evaluate the performance of the H-CBN2 sampling schemes based on the deviation

from the true value of the estimated error rate �̂ and rate parameters l̂. To summarize results

for all the different rates l̂j , we compute the relative (median) absolute error, which is given by

medianðjl̂ � ljÞ
medianðlÞ . Generally, we observe that for a known poset P, the estimation of the error rate and

the rate parameters is accurate for small- and medium-sized posets (of up to about p = 32

mutations) under the evaluated conditions in terms of the sample size N and number L of sam-

ples drawn from the proposal distribution (Fig 2A and 2B and S7 Fig, see also S2 Text). In par-

ticular, the relative error in estimating the rate parameters λ increases more drastically for data

sets with more than 32 mutations. This is likely due to the number of genotypes being limited

to 1000, as well as the density of the network. In fact, mutations which depend on the occur-

rence of many predecessors are effectively only rarely encountered in the data sets as a conse-

quence of the noise (S8 Fig). Therefore, there is often little or no evidence in the data to

estimate the corresponding rate parameters. The estimates obtained by the Bernoulli sampling

quickly deteriorate as the number of mutations increases, and for data sets with more than 64

mutations, the relative median error for the rate parameters is outside the range displayed in

Fig 2A and 2B. This is because the fraction of incompatible genotypes increases with the num-

ber of mutations and it becomes less likely to sample candidate genotypes with non-zero

weight (i.e., compatible with the poset, S4 Fig). Only for posets with up to 12 mutations, we

can compare results to the H-CBN model. We find that most sampling schemes perform as

well as the H-CBN in terms of the accuracy of the estimated parameters.

We also assess the run time performance of various sampling schemes implemented in

H-CBN2 and compare to H-CBN (Fig 2C and S9 Fig); each run corresponds to 100 iterations

of the MCEM or EM algorithm. We observe that H-CBN is faster than any of the H-CBN2

sampling schemes for posets with up to 6 mutations. Nonetheless, with the exception of the

Hamming 3-neighborhood sampling scheme, we find an almost linear relationship between

the number of mutations and the run time of the H-CBN2 sampling schemes, whereas the

H-CBN run time grows exponentially with the number of mutations and is outperformed by

H-CBN2 for p≳ 10. We also observe that, for larger posets, the forward-pool sampling is

slower than the standard forward sampling, because the size of the pool increases with the
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number of mutations; we set K = pL to assure accurate parameter estimates (S2 Fig). As the

number of mutations increases, the computation time of the Hamming distance becomes the

limiting factor (Eq 6).

The forward sampling and the backward-AR sampling perform equally well in terms of

accuracy of the estimated model parameters for small- and medium-sized posets, even when

the number L of samples drawn from the proposal distribution is set to 100 for the backward-

AR sampling (S6(G) and S6(H) Fig. The run times of these sampling schemes with L = 1000

and L = 100, respectively, are also similar. The forward and the backward-AR sampling

schemes thus enable performing parameter estimation for posets with more than 14 mutations

and up to about 32 mutations. Since we do not observe any advantage in using the backward-

AR sampling over the forward sampling, we choose the latter for the comparisons of muta-

tional networks presented in this work.

Assessment of the simulated annealing algorithm on simulated data. So far, we

assumed that the poset P is known. In the following, we evaluate the performance of the

H-CBN2 structure learning algorithm, which, in addition to adding or removing an edge,

includes new moves to propose candidate posets, as well as an ASA schedule. We employ a

Fig 2. Assessment of H-CBN2 on simulated data. A Box plots of the difference between true (�) and estimated (�̂) error rate (y-axis) for each of the

evaluated poset sizes (x-axis). B Box plots of the relative median absolute error (RMAE; y-axis) of the estimated rate parameters l̂. C Average run time

of the MCEM/EM step (y-axis, logarithmic scale) for different poset sizes (x-axis, logarithmic scale). The blue dotted line corresponds to linear scaling,

whereas the red line corresponds to quadratic scaling. In panels A to C, different colors indicate different importance sampling schemes and we show

results of 100 simulated data sets for each of combination of the simulation settings. The true error rate is � = 0.05, the number of samples drawn from

the proposal distribution is set to L = 1000 unless specified otherwise and we run 100 iterations of the MCEM/EM algorithm. D Error in the estimation

of the log-likelihood, ‘ðl; �;PÞ � ‘ðl̂; �̂; P̂Þ. E Box plots of F1 scores for reconstructed network edges. In panels D and E, we show results of 20 different

networks with 16 mutations and an error rate of 5%. We fix the ideal acceptance rate to 1/p, and run 25,000 iterations of the simulated annealing

algorithm. The initial temperature is set to Θ0 = 50 for all runs, and for adaptive simulated annealing, three adaptation rates are evaluated (ar = 0.1, 0.3,

0.5). Comparison of H-CBN2 to MC-CBN methods in terms of F the difference in normalized log-likelihood and G F1 scores for two poset sizes and

various error rates. For the H-CBN2 results shown in panels F and G, we employ the ASA algorithm. SA: simulated annealing, ASA: adaptive simulated

annealing, +: with additional new moves.

https://doi.org/10.1371/journal.pcbi.1008363.g002
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similar approach as before: (i) draw a transitive reduced DAG and parameters at random, (ii)

generate a data set from the joint probability distribution of the model, and (iii) infer the net-

work structure in addition to the model parameters.

We first compare the accuracy of the estimated model parameters when the poset P is also

learned. We do not observe any manifest difference in the absolute error between the true and

the estimated error rate (S10(A) Fig), but the relative absolute error of the rate parameters is

marginally larger when the poset is learned in addition to the model parameters, as well as the

absolute error of the log-likelihood (S10(B) and S10(C) Fig).

Next, we compare different SA strategies for structure learning. We observe a notable

improvement in the log-likelihood of the reconstructed network after including the additional

new moves (SA+) compared to a simulated annealing algorithm (SA) with only addition and

removal of edges (Fig 2D). Incorporating, in addition, an adaptive annealing schedule yields

similar performance to SA+. Similarly, the error in estimation of the model parameters also

decreases mostly upon including the new moves (S11(A) and S11(B) Fig). We also compute

the harmonic mean of precision and recall, i.e., the F1 score, of reconstructing the elements of

the cover relation and find a clear improvement of SA+ over SA (Fig 2E).

Finally, we investigate the influence of the annealing schedule hyper-parameters, such as

the initial temperature and the adaptation rate (S10 Fig). In general, the performance of the

ASA algorithm is not critically influenced by the choice of the annealing hyper-parameters.

Moreover, the ASA algorithm is neither better nor worse than the SA+ algorithm, at least

for the test cases with p = 16 mutations. Nevertheless, the ASA algorithm has the conceptual

advantage of adjusting the temperature adaptively according to the system behaviour

rather than using a fixed schedule and thus may be more reliable across unknown likelihood

landscapes.

Comparison with MC-CBN method. Comparisons of the CT-CBN, including the

H-CBN, model to related models show that CT-CBNs oftentimes perform better in recon-

structing the mutational networks for most of the evaluated metrics [32–34]. Here, we com-

pare two recent CT-CBN methods, namely H-CBN2 and MC-CBN. We find that the gap

between the log-likelihood of the data for the underlying and the learned models is, in general,

smaller for H-CBN2 than for MC-CBN (Fig 2F) indicating a better fit. But for data sets with

10% error rate, overfitting attributed to the MC-CBN error model yields networks with no or

only a few edges. These networks are highly dissimilar to the true structures as indicated by

the low F1 score for the reconstructed network edges (Fig 2G). More generally, for all positive

error rates, H-CBN2 outperforms MC-CBN in learning the underlying DAG structure (Fig

2G). For error-free genotypes (� = 0), we find that both methods perform equally well, which

confirms the validity of the H-CBN2 method given that the MC-CBN sampling scheme is

most efficient in this limit.

Comparison of drug resistance-associated mutational networks in different

HIV-1 subtypes under lopinavir treatment

We analyze viral genotypes from a cohort of 1064 South African patients living with HIV-1

subtype C retrieved from the HIVDB. These patients were treated with lopinavir boosted with

low-dosed ritonavir. We select a subset of 21 major protease inhibitor (PI) resistance muta-

tions associated with lopinavir resistance and 15 non-polymorphic accessory mutations

according to the HIVDB [45] (S12 Fig). We follow the convention of reporting mutations rela-

tive to the amino acid sequence of the HIV-1 subtype B reference strain HXB2. Among the

selected loci, HIV-1 subtype C sequences typically differ at residue 89 from the subtype B
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reference strain: instead of a leucine (L) a methionine (M) is frequently observed [48]. This

naturally occurring polymorphism is found in 77.09% of the patient in our cohort.

We find 15 out of the 21 major PI mutations and 13 out of 15 non-polymorphic accessory

mutations in the South African cohort. The remaining unobserved mutations include PI

mutations G48M, I54A/L/M/T, and V82T, and non-polymorphic mutations L24F and A71I.

We exclude polymorphisms commonly found in wild type subtype C viruses as they likely

correspond to baseline mutations, but some of these are highly prevalent in the cohort—for

instance, I93L (97.18%), M36I (86.95%), and K20R (34.18%). Among the 1064 genotypes,

911 are wild type for the selected loci and the maximum number of co-occurring mutations

is eight.

In addition, we analyze two genotype-treatment data sets from the HIVDB corresponding

to HIV-1 subtype B and C genotypes. For the latter, we exclude genotypes from South Africa

that constitute the data set described above. All patients in these data sets were treated with

lopinavir or lopinavir and ritonavir but not with another protease inhibitor. The data sets

include 298 and 775 sequences of subtype B and C genotypes, respectively. Additionally, we

consider 172 HIV-1 subtype B sequences of the SHCS derived from patients treated with lopi-

navir as the first PI. We jointly analyze all 470 subtype B genotypes to mitigate the small sample

size.

We use H-CBN2 for analyzing and comparing the accumulation of resistance mutations in

HIV-1 subtype B and subtype C under the selective pressure of lopinavir. We employ the for-

ward sampling scheme to learn the partial order among mutations. The robustness of the net-

work estimation is investigated by using 100 bootstrap samples and the consensus networks

are shown in Figs 3A and 4 (p = 20 and p = 18, respectively). In the South African cohort (sub-

type C sequences), we identify a mutation at residue 82 in the protease as an early event. The

initial substitution is likely to be V82A, as it is predominantly observed in the data set (S12

Fig). After this initial event, we find strong support for mutations at residues 10, 33, 46, 54 and

76 (Fig 3A). For subtype B, we find strong support for a mutation at residue 46 as an initial

event (Fig 4). The inferred posets can explain previously observed mutation patterns, such as

M46I+I54V alone or in combinations with L76V or V82A in subtype B [36], as well as M46I

+I54V+V82A and L10F+M46I+I54V+L76V+V82A in subtype C [37].

At first glance, the subtype-specific H-CBN2 posets appear to be different. However, they

also share many features. We find that they have 5 cover relations in common, namely, I54V

� L24I, I54V� F53L, I54V� G73S, I54V� T74P, and I54V� L89V. In addition, in both

posets mutation at residue 82 precedes G73S and T74P, and mutation at residue 46 precedes

K43T, F53L, T74P, and L89V either in a direct manner or through an intermediary event.

To assess whether the two H-CBN2 posets are significantly different beyond reconstruction

uncertainty, we have developed a customized statistical test based on the Jaccard distance

between the posets. The distance between the maximum likelihood posets (S13 and S14 Figs)

is 0.802. To assess the significance of this result, we compare it to the empirical distribution of

pairwise distances computed between reconstructed networks after randomly permuting the

group labels (Fig 5). At a significance level of 5%, we reject the null hypothesis that the data

sets stem from the same underlying poset (p-value < 0.02, Fig 5B), for p = 18 mutations. Simi-

larly, we reject the null hypothesis while comparing subtype-specific CBN models for HIV-1

subtype B and C with p = 11 mutations (p-value = 0.04, Fig 5A). The smaller data sets are

obtained by discarding mutations with marginal counts less or equal 5 in either of the two data

sets.

As a negative control, we also compare the two H-CBN2 models for subtype C inferred

from the South African cohort versus the remaining subtype C genotypes from the HIVDB

(Fig 3). The consensus posets share 16 cover relations, namely, L10FR� K43T, L10FR�
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Fig 3. Consensus posets for lopinavir resistance for two different HIV-1 subtype C data sets. Shown are the consensus poset for A the South African

cohort and B for the remaining HIV-1 subtype C sequences retrieved from the HIVDB. Nodes in the network correspond to amino acid changes in the

HIV-1 protease, where mutations at the same locus are grouped together in one event. Only edges with a bootstrap support greater than 0.7 are shown

and the edge thickness indicates the bootstrap support. Nodes with white background show residues with at least one major PI mutation.

https://doi.org/10.1371/journal.pcbi.1008363.g003

Fig 4. Consensus poset for the accumulation of mutations in HIV-1 subtype B under lopinavir treatment. The underlying data set contains 470

genotypes retrieved from the HIVDB and SHCS. Nodes in the network correspond to amino acid changes in the HIV-1 protease, and mutations at the

same locus are grouped together. Edge labels indicate the bootstrap support, and we show only edges with a bootstrap support greater or equal to 0.7.

https://doi.org/10.1371/journal.pcbi.1008363.g004
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F53L, K20MT� F53L, L33F� T74P, M46ILV� K43T, M46ILV� F53L, M46ILV� T74P,

I54V/L� F53L, I54V/L� T74P, I54V/L� L89V, V82AMF/CS� L10FR, V82AMF/CS�

M46ILV, V82AMF/CS� I54V/L, V82AMF/CS�Q58E, V82AMF/CS� L76V, and

V82AMF/CS� I84V. Moreover, in both posets mutation at residue 10 precedes T74P and

mutation at residue 82 precedes L24I, L33F, K43T, F53L, G73S, T74P, L89V, and L90M. We

also employ the aforementioned statistical test to compare posets with different number of

mutations, namely p = 19 and p = 11 mutations. The larger poset size corresponds to all the

mutated loci common in both data sets and the threshold on the marginal mutation counts for

constructing the smaller data sets is set to 8 mutations. The Jaccard distance between these two

H-CBN2 models is 0.637 and 0.5 for posets with p = 19 and p = 11 mutations, respectively.

There is no evidence supporting that the posets learned from different data sets but the same

subtype C are different (p-values 0.42 and 0.66, respectively; Fig 5C and 5D).

Discussion

We have presented the H-CBN2 model and inference methods which are based on Monte

Carlo sampling and enable us to consider a larger number of mutations. In simulation studies,

we demonstrated that this method can be used to accurately estimate model parameters for up

to about 32 mutations. For larger numbers of mutations, the sample sizes used in this work are

insufficient to obtain accurate parameter estimates. To learn the graph, we proposed an exten-

sion of the simulated annealing algorithm, including additional move types that allow explor-

ing the space of posets more efficiently. We validated the structure learning algorithm for 16

mutations which aligns with the numbers of mutations relevant for our application to HIV-1.

Structure learning is, however, a hard problem and further improving the efficiency of this

step might be worthwhile addressing in future research.

Even though there are descriptive analyses of subtype-specific PI mutation profiles [5, 36,

37, 48], to our knowledge, this study is the first comparative analysis of pathways of accumulat-

ing mutations over time in different HIV-1 subtypes. In addition to a more systematic

approach to investigating mutation patterns, the number of observations in our study is

greater than in any of the previous studies, which ranged from 88 to 165 patients. We applied

the H-CBN2 approach to learn the partial temporal ordering of resistance mutations in HIV-1

subtypes B and C under the selective pressure of lopinavir. Our results indicate that despite

Fig 5. Empirical null distribution of pairwise Jaccard distances estimated by permuting group labels. Displayed are the histograms of Jaccard

distances for the comparison of subtypes B and C for H-CBN2 posets with A 11 mutations and B 18 mutations, as well as the histograms of Jaccard

distances for the comparison of two data sets for subtype C for H-CBN2 posets with C 11 mutations and D 19 mutations. Vertical dotted lines indicate

the distance between the CBNs obtained from the observed data.

https://doi.org/10.1371/journal.pcbi.1008363.g005
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some similarities, for the considered numbers of mutations, the mutational networks differ

significantly between the two subtypes. Moreover, we compared H-CBN2 posets for subtype C

inferred from two independent data sets as a validation of the distance-based test and the out-

come aligns with the expectation that there exists a single underlying poset explaining both

data sets better than two distinct posets.

In our analysis, we included major PI mutations associated with lopinavir resistance and

non-polymorphic accessory mutations. Although some polymorphisms, in combination with

PI resistance mutations, are associated with an increase in viral fitness [49], these are also

highly prevalent in treatment-naïve patients, especially in non-B subtypes [50–52]. Therefore,

despite observing polymorphisms with relatively high prevalence, we did not include these

mutations in our study. We also found more than one PI-associated mutation in only about

14% and 16% of the patients in the South African cohort (subtype C) and the subtype B data

set, respectively. The absence of resistance mutations in the protease gene has been repeatedly

observed at virological failure, even in the absence of reverse transcriptase inhibitors [36, 53–

56]. In addition to poor adherence to treatment [57, 58], there may be other reasons for

observing a low percentage of patients harboring PI resistance mutations, and some of them

are listed below. First, the genetic barrier to lopinavir resistance appears to be high. Barber

et al. [36] have suggested that PI resistance mutations are more likely to accumulate under pro-

longed virological failure. Second, there is increasing evidence that mutations in the gag gene

play a role in decreasing susceptibility to protease inhibitors by, e.g., inhibiting the proteolytic

cleavages necessary for protein maturation [23, 59, 60]. Virions with immature particles may

not adequately complete cell entry or reverse transcription [60]. Third, although there is no

clear consensus on the clinical relevance of minority variants, resistance mutations may exist

in the intra-host virus population at frequency below the detection threshold. Mutations are

typically detected by Sanger sequencing-based methods, while next-generation sequencing

methods could improve upon the sensitivity of detecting mutations [61, 62]. Higher-resolution

data, including multiple longitudinal samples from the same patient, offer a different perspec-

tive on studying evolution of drug resistance. In this case, phylogenetic models are well-suited

to model the evolutionary process within individual hosts. We underline that progression

models, such as CBNs, are designed for cross-sectional consensus sequences collected from

different patients under similar conditions to model the accumulation of mutations under spe-

cific evolutionary constraints, such as the same selective drug pressure. In contrast to phyloge-

netic methods, progression models do not seek to reconstruct the joint evolutionary history of

the observations, but rather aim at capturing reproducible features of the evolutionary process

in different hosts.

We have made several simplifying assumptions in our model. For example, we treat differ-

ent amino acid substitutions at the same locus as indistinguishable events. This is because

when observing a specific substitution, we do not know which other mutations at that locus

might have led to the current state. Also, the type of dependencies that CBNs can model is lim-

ited. Certain fitness landscapes and the epistatic interactions they encode may give rise to

genotype probabilities that CBNs can not represent. While some forms of both positive and

negative interactions can be captured, the effects of other epistatic interactions (e.g., reciprocal

sign epistasis) can not be represented by CT-CBNs [33, 34]. Allowing more complex interac-

tions, would require to account for different transitions between genotypes with a concomitant

increase in the number of model parameters. We consider the CT-CBN models to exhibit a

good trade-off between low model complexity and goodness of fit to the observed data.

The comparison of the cross-sectional data sets is challenging due to the existence of several

confounders. First, the data are gathered from various sources, which entails potential differ-

ences in HIV surveillance and clinical monitoring protocols. Moreover, observations come
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from distinct geographical locations, which implies, e.g., differences in socio-demographic

aspects and health-care standards. Lastly, therapeutic strategies tend to differ between devel-

oped and developing countries, and there is a limited number of observations of various sub-

types undergoing the same therapy. In the present study, the number of observations in the

subtype B data set is approximately half of the observations available for subtype C. Such an

imbalance poses additional challenges for the CBN comparisons. The spread of the empirical

distribution of Jaccard distances might be wider for imbalanced data sets, which could result

in an apparent increase in false negatives. But rather than a shortcoming of the distance-based

test, small sample size generally lead to reduced accuracy of the parameter estimates, including

the network structure.

In summary, the inferred CBN models provide insights into the evolution of drug resistance

in HIV-1 subtype C infections and enable comparisons with other subtypes, as demonstrated

for subtype B. Moreover, the methods proposed in this work can be applied to investigate sub-

type-associated differences pertaining to HIV-1 drug resistance, but more generally the meth-

odology can be adopted for comparing any two groups in the context of other evolutionary

process.
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and 100 iterations of the MCEM algorithm. The number of samples drawn from the proposal

distribution is L = 10, 100, 1000, as shown in the corresponding legend. The sample size is N =

min(50 p, 1000) and the true error rate is � = 0.05.

(PDF)
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(y-axis) for 100 simulated data sets for each of the evaluated model sizes (x-axis). B Box plots

of the relative median error (RME; y-axis) of the estimated rate parameters l̂. The relative
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Monte Carlo EM algorithm.
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relative median error (RME) and B the relative median absolute error (RMAE) for the esti-
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tions, as well as varying the number of simulated genotypes as indicated in this figure legend.

PLOS COMPUTATIONAL BIOLOGY Comparison of lopinavir mutational pathways in HIV-1 subtypes B and C

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008363 September 7, 2021 19 / 25

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008363.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008363.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008363.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008363.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008363.s010
https://doi.org/10.1371/journal.pcbi.1008363


C Percentage of mutations marginally observed in the true underlying genotypes. For these

mutations, there is evidence in the data to estimate the corresponding rate parameters. Each

box plot shows results for 100 different simulated data sets. The number of order constrains,

or equivalently, the number of edges in the simulated networks is depicted as graph density,

were 0 means independent mutations and 1 corresponds to a linear chain.

(PDF)

S9 Fig. Average run time of the MCEM step (y-axis, logarithmic scale) using various sam-

pling schemes for different poset sizes (x-axis, logarithmic scale). We also show the run

times of the H-CBN method for posets with up to 14 mutations. The benchmark is conducted

on 100 different data sets per poset size, and the number of EM iterations is set to 100. The

blue dotted line corresponds to linear scaling, whereas the red line corresponds to quadratic

scaling. We conduct the benchmark on two 12-core Intel Xeon E5–2680 v3 processors (2.5

GHz).

(PDF)

S10 Fig. Evaluation of the simulated annealing algorithm for various initial temperatures
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box plots correspond to results of the MCEM algorithm for the true poset. We use the forward
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rate to 1/p = 0.0625 and run 25000 simulated annealing iterations. P: true poset, SA: simulated

annealing, +: with additional new moves.
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Absolute error in estimating the error rate parameter �̂. B Relative median absolute error

(RMAE) of the estimated rate parameters l̂. C Jaccard distance computed on the cover

relation sets for the true and estimated poset. We show box plots corresponding to 20

different transitively reduced DAGs for simulated data sets with 16 mutations and an error
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