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Abstract: Early diagnosis is essential for improving the prognosis and survival of patients with
hepatocellular carcinoma (HCC). This study aims to explore the clinical value of lipoprotein sub-
fractions in the diagnosis of hepatitis B virus (HBV)-related HCC. Lipoprotein subfractions were
detected by 1H-NMR spectroscopy, and the pattern-recognition method and binary logistic regres-
sion were performed to classify distinct serum profiles and construct prediction models for HCC
diagnosis. Differentially expressed proteins associated with lipid metabolism were detected by
LC-MS/MS, and the potential prognostic significance of the mRNA expression was evaluated by
Kaplan–Meier survival analysis. The diagnostic panel constructed from the serum particle number
of very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density
lipoprotein (LDL-1~LDL-6) achieved higher accuracy for the diagnosis of HBV-related HCC and
HBV-related benign liver disease (LD) than that constructed from serum alpha-fetoprotein (AFP)
alone in the training set (AUC: 0.850 vs. AUC: 0.831) and validation set (AUC: 0.926 vs. AUC: 0.833).
Furthermore, the panel achieved good diagnostic performance in distinguishing AFP-negative HCC
from AFP-negative LD (AUC: 0.773). We also found that lipoprotein lipase (LPL) transcript levels
showed a significant increase in cancerous tissue and that high expression was significantly pos-
itively correlated with the poor prognosis of patients. Our research provides new insight for the
development of diagnostic biomarkers for HCC, and abnormal lipid metabolism and LPL-mediated
abnormal serum lipoprotein metabolism may be important factors in promoting HCC development.

Keywords: lipidomics; 1H-NMR; LC-MS/MS; lipoprotein subfractions; lipoprotein lipase; cancer
biomarkers; hepatocellular carcinoma

1. Introduction

Hepatocellular carcinoma (HCC) is increasingly recognized as a serious, worldwide
public health concern. It is the sixth-most common malignancy and the fourth leading cause
of cancer death in the world, with approximately 841,000 new cases and 782,000 deaths
worldwide each year. The most common risk factors for HCC are chronic infection with
hepatitis B virus (HBV) and hepatitis C virus (HCV); in the vast majority of cases, HCC
occurs in individuals with cirrhosis caused by chronic infection with HBV in China [1].
China has the largest liver disease patient population in the world; according to a statistical
study of Chinese HCC patients, HBV-related cirrhosis is the most important cause of HCC
in China, and more than 80% of HCC patients have varying degrees of HBV infection [2].

Unfortunately, due to a lack of typical clinical manifestations, HCC is difficult to
diagnose in the early stage. It has been reported that the overall median survival time of
advanced-stage HCC is only 6–10 months; however, for early-stage HCC, surgical treat-
ments such as radiofrequency ablation, selective hepatectomy, and liver transplantation
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can increase the 5-year survival rate to 60–80% [3]. Therefore, early diagnosis and timely
surgical treatment are crucial for better patient outcomes. Pathological examination is
the gold standard for diagnosing HCC; however, this method is invasive and is accompa-
nied by risks of bleeding and needle track seeding, which are not recommended before
surgery [4]. To date, alpha-fetoprotein (AFP) is the most commonly used serological test
for the early diagnosis and monitoring of the development of HCC; however, owing to a
lack of sensitivity and specificity, the application of AFP in the diagnosis and prognosis
monitoring of HCC is limited [5].

Metabolic reprogramming is recognized as a hallmark in cancer development. Tumor
cells must adjust their own metabolic states to maintain excessive proliferation rates;
compared with normal cells, the metabolic activities of tumor cells are more vigorous,
increasing tumor cell growth and invasion [6]. The associated changes in the metabolite
network structure of tumor cells indicate that cancer biomarkers should not be assessed
with regard to changes in one or several biochemical indicators but rather to changes
in a set of metabolite indicators [7]. The emergence of metabolomics, a discipline that
studies the small-molecule intermediates of metabolism in organisms at a certain time [8],
has promoted the study of cancer metabolism. As an important branch of metabolomics,
lipidomics describes spatial and temporal alterations in the content and composition
of different lipid molecules and serves as a powerful tool in the development of lipid
biomarkers for studying disease states [9]. Lipidomics has an extremely important position
in cancer research; through the high-throughput detection and quantitative analysis of
biological fluids (blood, urine, saliva, and fecal extracts), lipidomics can be used to study
the mechanism of disease occurrence and development [10].

1H-nuclear magnetic resonance (1H-NMR) is one of the most commonly used high-
throughput platforms in metabolomics research. 1H-NMR spectroscopy provides an
alternative method of measuring lipoprotein levels in serum, and quantitative detection by
1H-NMR can determine the quality, particle number, and particle size of lipoprotein subfrac-
tions by detecting the terminal methyl protons of phospholipids, unesterified cholesterols,
cholesterol esters and triglycerides [11]. As potential risk factors for HCC development,
hepatitis and liver cirrhosis are often associated with serum lipid and lipoprotein aber-
rations, and a number of reports have illustrated that the serum levels of many kinds of
lipids, lipoproteins and apolipoproteins show obvious changes in HCC patients [12,13].
Lipoprotein particle distributions have great potential for helping improve the diagnostics
of metabolic disorders [14]; however, studies estimating subfractions of lipoproteins have
been restricted to patients with cardiovascular disease and are rarely extended to the
exploration of cancer research [15–17]. Previous serum and urine metabolomics studies
have illustrated that compared with those of patients with cirrhosis or healthy controls,
several small-molecule metabolites, such as glucose, glutamine, citrate, creatine, creatinine,
carnitine, glycine, and acetate, show remarkable changes in HCC patients [18–21]. How-
ever, few studies have focused on lipid metabolism disturbances and serum lipoprotein
subfraction changes in HBV-related HCC patients. Therefore, this study aims to develop
novel diagnostic lipid biomarkers of HBV-related HCC.

In this article, we utilized 1H-NMR to detect collected serum samples and performed
multivariable and univariable statistical analysis to study the serum lipoprotein subfraction
in patients with HBV-related HCC, patients with benign liver disease (including HBV-
related hepatitis and HBV-related cirrhosis) and healthy patients. The aim of our study
was to identify serum lipidome-based biomarkers as a diagnostic multivariable model
for early-stage HCC. Furthermore, we obtained paired cancerous tissues and matched
paracancerous tissues from HCC patients to search for differentially expressed proteins
involved in lipid metabolism and explore the association with prognosis in patients with
HBV-related HCC.
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2. Results
2.1. Clinical Characteristics

The demographic and clinical characteristics of the study participants with HCC
and LD are summarized in Table 1. In the training set, the serum levels of AFP, alanine
transaminase (ALT), aspartate transaminase (AST), and total protein (TP) were significantly
different between the HCC and LD groups (p < 0.05). In the validation set, compared with
those of patients with LD, the serum AFP levels of the HCC patients were significantly
different (p < 0.05). The clinical characteristics of the normal controls (NCs) and AFP-
negative patients are summarized in Tables S2 and S3.

Table 1. Clinical characteristics of the HCC group and LD group.

Training Set Validation Set

Characteristics HCC Liver Disease p-Value HCC Liver Disease p-Value

n 51 37 24 17
Age (years) 58 (33.00 to 71.00) 59 (43.00 to 66.00) 0.889 60.50 (51.75 to 66.00) 49.00 (45.50 to 58.00) 0.010

Sex (male/female) 37/14 21/16 0.123 16/8 8/9 0.209
AFP (ng/mL) 23.88 (4.80 to 126.20) 2.69 (1.68 to 4.64) <0.001 60.50 (3.42 to 481.00) 2.66 (1.98 to 3.55) <0.001
ALT (IU/L) 36.00 (22.00 to 48.00) 25.00 (16.00 to 36.50) 0.018 24.00 (15.25 to 31.75) 21.00 (14.00 to 35.00) 0.937
AST (IU/L) 37.00 (26.00 to 59.00) 28.00 (19.00 to 36.50) 0.002 29.00 (21.50 to 38.50) 21.00 (16.00 to 29.00) 0.095
ALB (g/L) 41.60 (39.40 to 45.50) 43.50 (37.50 to 46.95) 0.422 42.55 (36.50 to 45.08) 44.90 (41.45 to 47.60) 0.058
TP (g/L) 74.50 (70.90 to 77.20) 68.40 (53.50 to 77.65) 0.016 70.45 (64.60 to 75.93) 74.40 (66.25 to 76.25) 0.404

TBIL (µmmol/L) 16.50 (13.90 to 23.60) 14.50 (11.05 to 18.63) 0.154 14.70 (11.08 to 20.98) 12.40 (9.80 to 18.25) 0.375
CRE (µmol/L) 61.00 (53.00 to 69.00) 62.00 (52.00 to 79.50) 0.244 61.50 (56.00 to 78.00) 60.00 (51.50 to 68.00) 0.255

BCLC stage

stage 0 9 / 1 /
stage A 42 / 23 /

Child-Pugh class

A 46 33 22 16
B-C 5 4 2 1

Tumor diameter
(cm)

≤3 25 / 10 /
>3 26 / 14 /

p-values: Mann–Whitney U test for continuous variables and Pearson’s chi-square test for categorical variables. Continuous data are
presented as medians with interquartile ranges (IQRs). Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST,
aspartate transaminase; ALB, albumin; TP, total protein; TBIL, total bilirubin; CRE, creatinine.

2.2. NMR Spectroscopic Multivariable Analysis

For comprehensive observation of the lipoprotein subfractions, PCA and PLS-DA
were employed to explore the intrinsic differences between different groups. The score plot
of PCA and PLS-DA (Figure S2) showed that lipoprotein subfractions of the three groups
could be distinguished, and the model parameters of PCA (R2X = 0.99, Q2 = 0.944) and
PLS-DA (R2Y = 0.447, Q2Y = 0.402, CV-ANOVA p < 0.0001) indicated that the constructed
models have favorable robustness.

To further filter the variables, the 1H-NMR serum spectra of the patients with HCC
and NCs were discriminated with the OPLS-DA model, as shown in a score plot (Figure 1a),
which illustrates that this model can significantly discriminate between HCC patients and
NCs. The predictive ability was calculated through 7-fold cross-validation (R2Y = 0.843,
Q2Y = 0.821, CV-ANOVA p < 0.0001), suggesting that the model possessed a satisfac-
tory fit with good predictive power. The loading plot indicated a brief overview of the
contribution of each lipoprotein subfraction to the OPLS-DA model (Figure 1b), and the
variables responsible for significantly contributing to the separation of the two groups are
indicated in the corresponding S-plot (Figure 1c) and S-line plot (Figure 1d). Using the
variable importance in projection (VIP) score (>1.0) from the OPLS-DA model, a total of
17 lipoprotein subfractions were selected (Figure 1e). To further assess the robustness of
the constructed OPLS-DA model and prevent it from overfitting, a 999-permutation test
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(Figure 1f) was performed, and the results (intercepts: R2 = 0.138, Q2 = −0.313) indicated
that this OPLS-DA model had high discriminability.
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Figure 1. The serum lipidomic profile discriminates between HCC patients and normal controls (NCs). (a) Score plot
was generated by the OPLS-DA model. The horizontal coordinate (1.00484 * t [1]) represents the score value of the
main component, and the vertical coordinate (1.22277 * to [1]) represents the score value of the orthogonal component.
(b) Loading plot was generated by the OPLS-DA model. The horizontal coordinate (0.99337 * pq [1]) represents the predicted
principal component, and the vertical coordinate (0.817815 * poso [1]) represents the orthogonal principal components.
The corresponding (c) S-plot and (d) S-line plot for the model displaying the discriminant variables and the associated
predictive loadings. The red circles indicate selected lipoprotein subfractions with VIP scores >1.0, and other variables
with no difference are referred to as green circles in (b,c). (e) The selected lipoprotein subfractions with VIP scores >1.0.
(f) Permutation test (999 times) of the OPLS-DA model.

Then, we applied another OPLS-DA model to distinguish HCC patients from LD
patients, and the score plot indicated that the group of HCC patients could be excellently
separated from the LD patient group (Figure 2a). A loading plot (Figure 2b) illustrated
the contribution of each lipoprotein subfraction in distinguishing HCC patients from
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LD patients, and the S-plot (Figure 2c) and S-line plot (Figure 2d) showed the variables
significantly contributing to the separation. According to the VIP score (>1.0), a total of
15 lipoprotein subfractions were selected (Figure 2e). The results of the internal validation
(R2Y = 0.530, Q2Y = 0.343, CV-ANOVA p < 0.001) and the results of the permutation test
(intercepts: R2 = 0.004, Q2 = −0.158) suggested that the constructed OPLS-DA model has
favorable robustness and could be used in the next step of analysis (Figure 2f). The relevant
lipoprotein subfractions and their statistical details are listed in Table 2.
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Figure 2. The serum lipidomic profile discriminates between HCC patients and liver disease (LD). (a) Score plot was
generated by the OPLS-DA model. The horizontal coordinate (1.00795 * t [1]) represents the score value of the main
component, and the vertical coordinate (1.27104 * to [1]) represents the score value of the orthogonal component.
(b) Loading plot was generated by the OPLS-DA model. The horizontal coordinate (0.96422 * pq [1]) represents the
predicted principal component, and the vertical coordinate (0.786795 * poso [1]) represents the orthogonal principal compo-
nents. The corresponding (c) S-plot and (d) S-line plot for the model displaying the discriminant variables and the associated
predictive loadings. The red circles indicate selected lipoprotein subfractions with VIP scores >1.0, and other variables
with no difference are referred to as green circles in (b,c). (e) The selected lipoprotein subfractions with VIP scores >1.0.
(f) Permutation test (999 times) of the OPLS-DA model.
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Table 2. Summary of the lipoprotein subfraction statistical data from OPLS-DA analysis from HCC patients, liver disease
patients, and normal controls.

HCC vs. LD HCC vs. NCs

Index Description Unit VIP p (corr) VIP p (corr) p-Value

TPCH Total Cholesterol mg/dL 1.045 −0.026 1.030 0.165 0.596
HDCH HDL-C mg/dL 0.414 0.120 1.032 0.703 2.931 × 10−14

TPA1 Apo-A1 mg/dL 1.089 0.202 1.146 0.631 3.742 × 10−10

TBPN Total Particle Number nmol/L 3.451 −0.006 3.512 0.107 0.775
VLPN VLDL Particle Number nmol/L 1.083 0.014 1.329 0.310 0.003
IDPN IDL Particle Number nmol/L 2.514 −0.347 1.379 0.277 6.318 × 10−5

LDPN LDL Particle Number nmol/L 3.465 0.069 2.772 −0.016 0.339
L1PN LDL-1 Particle Number nmol/L 3.743 −0.310 3.024 −0.512 1.399 × 10−9

L2PN LDL-2 Particle Number nmol/L 2.612 −0.209 2.118 −0.511 1.712 × 10−4

L3PN LDL-3 Particle Number nmol/L 1.451 −0.032 3.144 −0.838 <0.001
L4PN LDL-4 Particle Number nmol/L 2.708 0.221 1.645 −0.443 2.148 × 10−10

L5PN LDL-5 Particle Number nmol/L 3.232 0.296 2.737 0.643 5.121 × 10−8

L6PN LDL-6 Particle Number nmol/L 2.971 0.218 5.050 0.934 <0.001
HDA1 HDL Apo-A1 mg/dL 1.037 0.167 1.227 0.644 1.538 × 10−11

L1CH LDL-1 Cholesterol mg/dL 1.201 −0.316 0.993 −0.563 2.456 × 10−9

L6CH LDL-6 Cholesterol mg/dL 0.942 0.227 1.324 0.936 <0.001
L6AB LDL-6 Apo-B mg/dL 0.802 0.218 1.184 0.934 <0.001
H1A1 HDL-1 Apo-A1 mg/dL 1.229 0.230 0.146 −0.271 0.011
H4A1 HDL-4 Apo-A1 mg/dL 0.811 −0.083 1.306 0.773 <0.001

The characteristics of significantly different variables in the OPLS-DA model. p (corr) is the OPLS-DA loading scaled as a correlation
coefficient. The significance of the values was assessed using the Kruskal–Wallis test. VIP, variable importance in projection; HCC,
hepatocellular carcinoma; LD, liver disease; NCs, normal controls.

Next, the PCA and PLS-DA analysis of the serum AFP-negative patients showed that
lipoprotein subfractions of the three groups could be distinguished (Figure S3), with param-
eters of PCA (R2X = 0.992, Q2 = 0.947) and PLS-DA (R2Y = 0.430, Q2Y = 0.390, CV-ANOVA
p < 0.0001). The 1H-NMR serum spectra of the patients with AFP-negative HCC and NCs
were discriminated with the OPLS-DA model, as shown in a score plot (Figure 3a), and the
predictive ability was calculated through 7-fold cross-validation (R2Y = 0.848, Q2Y = 0.827,
CV-ANOVA p < 0.0001). The loading plot (Figure 3b) illustrated the contribution of each
lipoprotein subfraction in distinguishing AFP-negative HCC patients from NCs, and the
S-plot (Figure 3c) and S-line plot (Figure 3d) showed the variables significantly contributing
to the separation. Using the VIP score (>1.0) from the OPLS-DA model, a total of 18 lipopro-
tein subfractions were selected (Figure 3e). Meanwhile, the results of the permutation test
(intercepts: R2 = 0.00827, Q2 = −0.167, Figure 3f) suggested that the constructed OPLS-DA
models have favorable robustness.

Next, we applied another OPLS-DA model to distinguish AFP-negative HCC patients
from AFP-negative LD patients (Figure 4a). The loading plot (Figure 4b) illustrated the
contribution of each lipoprotein subfraction in distinguishing these two groups, and the S-
plot (Figure 4c) and S-line plot (Figure 4d) showed the variables significantly contributing
to the separation. According to the VIP score (>1.0) and S-line plot (Figure 4e) of the
OPLS-DA model, a total of 15 lipoprotein subfractions were selected. The results of the
internal validation (R2Y = 0.142, Q2Y = 0.0893, CV-ANOVA p = 0.057) and the results of
the permutation test (intercepts: R2 = 0.058, Q2 = −0.0842) suggested that the constructed
OPLS-DA model has favorable robustness and could be used in the next step of analysis
(Figure 4f). The relevant lipoprotein subfractions and their statistical details are listed in
Table 3.
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was generated by the OPLS-DA model. The horizontal coordinate (1.00453 * t [1]) represents the score value of the
main component, and the vertical coordinate (1.2866 * to [1]) represents the score value of the orthogonal component.
(b) Loading plot was generated by the OPLS-DA model. The horizontal coordinate (0.993661 * pq [1]) represents the
predicted principal component, and the vertical coordinate (0.777245 * poso [1]) represents the orthogonal principal compo-
nents. The corresponding (c) S-plot and (d) S-line plot for the model displaying the discriminant variables and the associated
predictive loadings. The red circles indicate selected lipoprotein subfractions with VIP scores >1.0, and other variables
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(f) Permutation test (999 times) of the OPLS-DA model.
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(b) Loading plot was generated by the OPLS-DA model. The horizontal coordinate (0.946694 * pq [1]) represents the predicted
principal component, and the vertical coordinate (0.889789 * poso [1]) represents the orthogonal principal components.
The corresponding (c) S-plot and (d) S-line plot for the model displaying the discriminant variables and the associated
predictive loadings. The red circles indicate selected lipoprotein subfractions with VIP scores >1.0, and other variables
with no difference are referred to as green circles in (b,c). (e) The selected lipoprotein subfractions with VIP scores >1.0.
(f) Permutation test (999 times) of the OPLS-DA model.
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Table 3. Summary of the lipoprotein subfraction statistical data from OPLS-DA analysis from AFP (-) HCC patients, AFP (-)
liver disease (LD) patients, and normal controls (NCs).

AFP (-) HCC vs. AFP (-) LD AFP (-) HCC vs. NCs

Index Description Unit VIP p (corr) VIP p (corr) p-Value

TPCH Total Cholesterol mg/dL 1.160 0.105 0.836 0.281 0.463
TPTG Total Triglycerides mg/dL 1.456 −0.450 1.047 0.060 0.075
LDCH LDL-C mg/dL 1.274 0.373 0.204 −0.013 0.214
HDCH HDL-C mg/dL 0.414 0.261 1.207 0.763 <0.001
TPA1 Apo-A1 mg/dL 0.690 0.294 1.307 0.655 5.091 × 10−14

TBPN Total Particle Number nmol/L 3.986 0.138 2.477 0.163 0.594
VLPN VLDL Particle Number nmol/L 1.794 −0.490 1.850 0.271 0.005
IDPN IDL Particle Number nmol/L 1.919 −0.537 2.066 0.309 1.076 × 10−5

LDPN LDL Particle Number nmol/L 4.282 0.350 0.463 0.035 0.084
L1PN LDL-1 Particle Number nmol/L 3.702 −0.747 3.206 −0.422 9.240 × 10−8

L2PN LDL-2 Particle Number nmol/L 1.467 −0.354 1.715 −0.465 1.573 × 10−4

L3PN LDL-3 Particle Number nmol/L 1.137 −0.110 3.224 −0.849 <0.001
L4PN LDL-4 Particle Number nmol/L 2.181 0.382 2.018 −0.511 1.325 × 10−11

L5PN LDL-5 Particle Number nmol/L 3.338 0.746 2.940 0.610 7.372 × 10−9

L6PN LDL-6 Particle Number nmol/L 3.419 0.685 5.325 0.939 <0.001
HDA1 HDL Apo-A1 mg/dL 0.703 0.298 1.418 0.675 4.663 × 10−14

LDAB LDL Apo-B mg/dL 1.004 0.350 0.109 0.035 0.084
L1CH LDL-1 Cholesterol mg/dL 1.149 −0.738 1.013 −0.475 1.382 × 10−8

L6CH LDL-6 Cholesterol mg/dL 0.942 0.717 1.398 0.930 <0.001
L6PL LDL-6 Phospholipids mg/dL 0.709 0.757 1.006 0.932 <0.001
L6AB LDL-6 Apo-B mg/dL 0.802 0.685 1.249 0.939 <0.001
H4A1 HDL-4 Apo-A1 mg/dL 0.811 0.421 1.335 0.760 <0.001

The characteristics of significantly different variables in the OPLS-DA model. p (corr) is the OPLS-DA loading scaled as a correlation
coefficient. The significance of the values was assessed using the Kruskal–Wallis test. VIP, variable importance in projection; AFP (-) HCC,
AFP-negative hepatocellular carcinoma; AFP (-) LD, AFP-negative liver disease; NCs, normal controls.

To further determine which lipoprotein subfractions could be used as biomarkers for
HCC diagnosis, the common variables in these OPLS-DA models (VIP scores > 1.0 and
p-values < 0.05) were selected for the subsequent analysis, including VLPN, IDPN, and
L1-L6PN (Table 4 and Figure 5). Detailed information on all lipoprotein subfractions is
listed in Tables S4 and S5. The absolute numbers of each lipoprotein subfraction are listed
in Table S6.

Table 4. Changes in relative levels of lipoprotein subfractions in serum samples from HCC patients, liver disease patients
and normal controls.

HCC vs. LD HCC vs. NCs AFP (-) HCC vs.
AFP (-) LD

AFP (-) HCC vs.
NCs

Index VIP Trend VIP Trend p-Value VIP Trend VIP Trend p-Value

VLPN 1.083 up 1.329 down 3.023 × 10−3 1.794 up 1.850 down 4.733 × 10−3

IDPN 2.514 up 1.379 down 6.318 × 10−5 1.919 up 2.066 down 1.076 × 10−5

L1PN 3.743 up 3.024 up 1.398 × 10−8 3.702 up 3.206 up 9.240 × 10−8

L2PN 2.613 up 2.118 up 1.712 × 10−4 1.467 up 1.715 up 1.573 × 10−4

L3PN 1.451 down 3.144 up <0.001 1.137 down 3.224 up <0.001
L4PN 2.708 down 1.645 up 2.148 × 10−10 2.181 down 2.018 up 1.325 × 10−11

L5PN 3.232 down 2.737 down 5.121 × 10−8 3.338 down 2.940 down 7.372 × 10−9

L6PN 2.971 down 5.050 down <0.001 3.419 down 5.325 down <0.001

The common variables between the two constructed OPLS-DA models were selected if their VIP scores > 1.0 and univariable p-values < 0.05.
HCC, hepatocellular carcinoma; NCs, normal controls; VIP, variable importance in projection.
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Figure 5. Comparisons between the groups of diagnostic biomarkers. Histograms indicate the median, upper, and lower
quartiles of the eight lipoprotein particle numbers used to construct the diagnostic panel. The significance of the values was
assessed using the Kruskal–Wallis test (* p < 0.05, ** p < 0.001, *** p < 0.0001). HCC, all HCC patients in the training set; LD,
all liver disease patients in the training set; AFP (-) HCC, serum AFP-negative expression HCC patients; AFP (-) LD, serum
AFP-negative expression liver disease patients; NCs, normal controls.

2.3. Biomarker Selection and Validation of the Diagnostic Model

To judge the diagnostic performance of selected variables, binary logistic regression
analysis was employed to construct the best diagnostic model. Meanwhile, the correlation
analysis showed that serum AFP levels had no significant correlation with the selected
variables, indicating that lipoprotein particles and AFP are independent of each other
(Figure S4). Meanwhile, we analyzed the correlation of selected variables with clinical
features by the nonparametric Spearman correlation test. According to the results, L1PN,
L2PN, and L3PN were strongly positively associated with age (the range of Spearman’s rank
correlation coefficient was from 0.3 to 0.5, p-value < 0.05) and negatively associated with
male gender (the range of Spearman’s rank correlation coefficient was from −0.3 to −0.5,
p-value < 0.05). Furthermore, VLPN was strongly positively associated with tumor size
(Spearman’s coefficient r = 0.326, p = 0.004) and negatively associated with liver cirrhosis
(Spearman’s coefficient r = −0.372, p = 0.001). IDPN was strongly positively associated with
tumor size (Spearman’s coefficient r = 0.306, p = 0.008). The results are shown in Figure S5
and Table S7. According to the results of ROC curve analysis, the panel composed of VLPN,
IDPN, and L1-L6PN reached excellent diagnostic performance in discriminating HCC
patients from NCs with an AUC of 1.000 (95% CI: 0.964–1.000) (Figure 6a). Furthermore,
the panel showed better diagnostic performance than serum AFP alone in discriminating
HCC patients from LD patients, as indicated by an AUC of 0.850 (95% CI: 0.758–0.917) vs.
0.831 (95% CI: 0.736–0.902), respectively, in the training set, and combining the lipidomic
biomarkers with AFP increased the AUC to 0.861 (95% CI: 0.771–0.926) (Figure 6b).
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patients. The red-, green-, and blue-colored lines indicate lipid biomarkers, AFP, and lipid biomarkers with AFP, respectively.

The diagnostic performance of the panel was further confirmed in the external valida-
tion set. The diagnostic accuracy of this panel in the validation cohort also demonstrated
a superior performance to serum AFP alone (AUC: 0.926; 95% CI: 0.800–0.984 vs. AUC:
0.833; 95% CI: 0.684–0.931), and their combination increased the AUC to 1.000 (95% CI:
0.914–1.000) (Figure 6c). Meanwhile, this panel also achieved good diagnostic accuracy
in discriminating AFP-negative HCC patients from NCs and AFP-negative LD patients,
with AUCs of 1.000 (0.964–1.000) (Figure 6d) and 0.773 (0.680–0.850) (Figure 6e), respec-
tively. The ROC results are shown in Table 5. Furthermore, to investigate whether the
diagnostic panel can more realistically reflect the diagnostic approach in regular patient
care, we unified LD patients and NCs into the non-HCC group (n = 104) and performed
a differential diagnosis analysis of the non-HCC group versus the HCC group (n = 75).
According to binary logistic regression and ROC curve analysis, the panel constructed by
these eight indicators achieved good diagnostic accuracy (AUC: 0.842; 95% CI: 0.780–0.892).
Meanwhile, we unified AFP-negative LD patients and NCs into the AFP (-) non-HCC
group (n = 100) and compared them with AFP-negative HCC patients (n = 52). The panel
constructed by these eight indicators also achieved good diagnostic accuracy (AUC: 0.837;
95% CI: 0.769–0.892) in determining serum AFP-negative expression populations. The ROC
results are shown in Table S8 and Figure S6.

These results indicate that the panel constructed by VLPN, IDPN, and L1-L6PN has
strong potential in the diagnosis of HBV-related HCC. 1H-NMR-based quantitative analysis
of serum lipoprotein subfractions thus has potential in clinical applications for discovering
specific novel diagnostic biomarkers of HBV-related HCC.
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Table 5. Test performance characteristics for the signature panel.

Experiment Set Group Dataset AUC (95% CI) Sensitivity (%) Specificity (%)

Training set HCC vs. LD AFP 0.831 (0.736 to 0.902) 74.51 81.08
panel 0.850 (0.758 to 0.917) 88.24 72.97

Panel + AFP 0.861 (0.771 to 0.926) 88.24 75.68
HCC vs. NCs panel 1.000 (0.964 to 1.000) 100.00 100.00

Validation set HCC vs. LD AFP 0.833 (0.684 to 0.931) 66.67 100.00
panel 0.926 (0.800 to 0.984) 83.33 100.00

Panel + AFP 1.000 (0.914 to 1.000) 100.00 100.00

AFP-negative HCC vs. LD panel 0.773 (0.680 to 0.850) 69.23 76.00
HCC vs. NCs panel 1.000 (0.964 to 1.000) 100.00 100.00

AUC, area under the receiver operating curve; CI, confidence interval; HCC, hepatocellular carcinoma; LD, liver disease; NCs, normal controls.

2.4. Lipoprotein Lipase (LPL) Is Upregulated in HCC and Associated with Poor Prognosis

VLDL is hydrolyzed by LPL to generate smaller denser particles and subsequently IDL
in the peripheral circulation, which is converted to LDL by further hydrolysis. Our results
showed that the serum VLDL and IDL levels of HCC patients decreased significantly, while
the serum LDL1, LDL2, LDL3, and LDL4 levels of HCC patients increased significantly.
The reason for this phenomenon may be related to the increased secretion of LPL into
the peripheral blood by tumor cells in HCC patients. We analyzed the LPL transcript
level data of HCC patients in the TCGA database and found that LPL mRNA expression
level in cancerous tissues of HCC patients showed a significant increase compared with
paracancerous tissues (Figure 7a), and the high expression of LPL showed a significant pos-
itive correlation with the poor prognosis of patients (Figure 7b), suggesting that abnormal
lipoprotein metabolism due to upregulation of LPL mRNA expression in liver tissues may
be related to the development of HCC.
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Figure 7. LPL levels are upregulated in HCC tissues and associated with poor prognosis. (a) LPL mRNA levels in HCC
(red circle) and adjacent normal (blue square) tissues in the TCGA-LIHC dataset. The p-value was assessed using the
Mann–Whitney U test (*** p < 0.0001). (b) Overall survival analysis was plotted using the TCGA database at the threshold
p-value of < 0.05.
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2.5. Identification of Differentially Expressed Protein and Lipid Metabolism-Related Pathways

Through LC-MS/MS platform analysis, a total of 5393 proteins were identified in
eight cancerous and paracancerous tissue samples. By employing an FDR adjusted p-value
of 0.01, a fold-change value >1.5 or <0.5 and a p-value < 0.05 as cutoff values, a total of
11 differentially expressed proteins (DEPs) associated with lipid metabolism were detected.
Among these, four proteins were significantly upregulated in HCC tissue, including ACSL4,
MBOA7, ACLY, and GPDM. In contrast, seven proteins were downregulated, including
GPDA, ACOX2, ECHM, ACADS, CP2C9, H17B6, and CP39A (Figures S7 and S8). Through
further pathway enrichment analysis, we found that the genes that regulate these dif-
ferential proteins were highly enriched in fatty acid biosynthesis, glycerophospholipid
metabolism, primary bile acid biosynthesis, arachidonic acid metabolism and steroid
hormone biosynthesis (Figure S9 and Table S9). Moreover, we evaluated the potential
prognostic significance of the mRNA expression of the genes encoding these proteins using
data from the GEPIA database (http://gepia2.cancer-pku.cn/ accessed on 23 August 2021).
Kaplan–Meier survival analysis revealed that high expression of MBOAT7 and GPD2 and
low expression of ACADS were associated with a poor prognosis (Figure S10).

3. Discussion

A definite differential diagnosis between early-stage HBV-related HCC and HBV-
related benign LDs, such as HBV-related hepatitis and HBV-related cirrhosis, is often
difficult due to a lack of obvious clinical, serological, or radiological evidence. At present,
AFP remains a widely used tumor-specific serological biomarker in the diagnosis and man-
agement of HCC. However, high AFP expression may be detected in certain pathological
conditions, such as deterioration of chronic liver disease, pregnancy, and the presence of
germ cell tumors or gastric cancer [5].

1H-NMR spectroscopy is the most commonly used detection platform in the appli-
cation of lipidomics; despite its lower sensitivity, NMR spectroscopy has several unique
advantages over mass spectrometry (MS). 1H-NMR is a noninvasive testing technology that
has excellent cross-laboratory reproducibility and does not require elaborate sample prepa-
ration or fractionation [8,22]. Routine lipid detections (such as the tests of serum levels of
total cholesterol (TC), triglycerides (TG), LDL cholesterol (LDL-C), and HDL cholesterol
(HDL-C)) are conventionally used in the clinical analysis of circulating lipid metabolites.
1H-NMR spectroscopy is a rapid, alternative method for quantifying lipoproteins; through
the detection of amplitudes of spectral signals emitted by lipoprotein subfractions, one can
obtain a direct indication of subclass particle concentration [11]. In this study, we utilized
a 1H-NMR high-throughput platform to detect serum lipoprotein subfractions in HBV-
related HCC patients with BCLC stage 0-A, at-risk populations (HBV-related hepatitis and
cirrhosis) and a healthy control population. In the selection of biomarkers and validation
of the diagnosis model, OPLS-DA showed a distinct separation of HCC patients from
benign LD patients and NCs. Furthermore, the OPLS-DA model achieved good accuracy
for HCC patients relative to normal controls. However, in the OPLS-DA model constructed
by the HCC and LD subjects, the Q2 value failed to reach the desired cutoff level, which
might be because of the fewer differences in the metabolic patterns due to the similarity
of liver function status between early-stage HCC and LD patients. After multivariable
and univariable statistical analyses, a total of eight lipoprotein particle numbers, including
VLPN, IDPN, L1PN, L2PN, L3PN, L4PN, L5PN, and L6PN, were selected to build the
diagnostic panel. Compared with the serum AFP level alone, the panel constructed from
the different lipoprotein particle numbers achieved a higher accuracy in discriminating
HCC in the training set and validation set than AFP alone. We also found that the panel
achieved excellent diagnostic performance in discriminating AFP-negative HCC patients
from AFP-negative LD patients and NCs.

The liver is the major organ of energy metabolism and plays a central role in lipopro-
tein metabolism by regulating the balance between β-oxidation and lipid synthesis [23].
Most serum endogenous lipids and lipoproteins are synthesized in the liver. The main
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function of lipoproteins is to transport lipids between cells, which are critical in maintain-
ing energy homeostasis as well as the pathogenesis of atherosclerosis [24]. Under normal
physiological conditions, the liver ensures homeostasis of lipid and lipoprotein metabolism,
which depends on the structural and functional integrity of hepatocytes [25,26]. However,
due to their increased demand for lipids, tumor cells show increased extracellular lipid
uptake and a high de novo lipid synthesis rate, which is necessary for HCC tumorigenesis,
survival, and progression [27]. De novo lipogenesis starts with the conversion of citrate to
oxaloacetate and acetyl-coenzyme A (CoA), which is mediated by ATP-citrate lyase (en-
coded by ACLY) [28]. Acetyl-CoA is converted to malonyl-CoA via acetyl-CoA carboxylase
(ACC) and then to saturated fatty acids (FAs) through the action of fatty acid synthase
(encoded by FASN) [28]. HCC is typically characterized by the aberrant overexpression of
enzymes in this process, such as ACLY, ACC, and FASN [28,29]. The mass spectrometry
results showed that ACLY and MBOA7 were significantly elevated in HCC patients’ can-
cerous tissues, indicating that the upregulation of de novo lipid synthesis was associated
with HCC tumorigenesis [30]. In particular, we noted that the level of long-chain ACSL4
expression in HCC cancerous tissue was significantly higher than that in paracancerous
tissue (fold change = 15.59), and members of the ACSL family are key enzymes involved
in the initial steps of FA metabolism, converting FA to fatty acyl-CoA esters [31]. As a
member of the ACSL family, ACSL4 is poorly expressed in the organs of the gastrointestinal
system, such as the liver. Chen et al. found that ACSL4 is frequently upregulated in HCC
tissues compared with normal samples and promotes HCC progression via c-Myc stability
mediated by the ERK/FBW7/c-Myc axis [32].

Under physiological conditions, lipid components such as triglycerides and choles-
terol are transported as lipoproteins in the peripheral blood. Among them, exogenous
lipids are absorbed through the intestinal epithelium and synthesized as celiac particles
(CMs), endogenous lipids entering the liver and synthesized as VLDL, both collectively
known as triglyceride-rich lipoproteins (TRLs) [33,34]. The newly secreted TRL enters the
bloodstream and needs to be marginalized along the luminal surface of capillaries and
hydrolyzed by lipoprotein lipase (LPL) expressed on the surface of vascular endothelial
cells from TG within the neutral core of CMs and VLDL to produce CMs residue and IDL,
respectively, and release free fatty acids (FFA) for use by peripheral tissues, where IDL
can be absorbed by the liver or through further TG hydrolysis to LDL [35,36]. Adipocytes,
cardiomyocytes, and skeletal muscle cells are the main sites for producing LPL. Because
these cells are far away from the capillary cavity and need to be transported through the
subendothelial space, recent studies have shown that glycosylphosphatidylinositol anchors
high-density lipoprotein binding protein 1 (GPHIBP1), which captures LPL and binds to
form the LPL–GPDIBP1 complex to mediate LPL entry into the lumen through capillary
endothelial cells and specifically binds to ApoCII in TRL to exert a hydrolytic effect [36,37].
Recent studies have shown that LPL expression appears upregulated in several types of
tumor cells and is associated with cancer progression and poor prognosis. In our study, the
serum VLDL and IDL levels of HCC patients decreased significantly, while the serum LDL1,
LDL2, LDL3, and LDL4 levels of HCC patients increased significantly. We speculated that
this phenomenon may be related to the increased secretion of LPL into the peripheral
blood by tumor cells in HCC patients. Therefore, we analyzed and found that the LPL
mRNA expression level in cancerous tissues of HCC patients showed a significant increase
compared with paracancerous tissues, and the high expression of LPL showed a significant
positive correlation with the poor prognosis of HCC patients from TCGA database. Cao
et al. found that the mRNA and protein expression levels of LPL were upregulated in
mouse and human HCC tissues and positively correlated with poor prognosis, and in vitro
experiments further showed that culturing cells in the absence or silencing of LPL signifi-
cantly reduced cell proliferation [38]. This is consistent with our findings. Wu et al. found
that the expression of the antioncogene ZHX2 was significantly reduced in nonalcoholic
fatty liver disease (NAFLD)-associated HCC and that overexpression of ZHX2 inhibited
the uptake of exogenous lipids and the ability of HCC cells to proliferate by suppressing
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LPL promoter activity, thereby delaying the progression of NAFLD-associated HCC [39].
Manupati et al. found that LPL transcript levels were upregulated 16-fold in CD44-positive
breast cancer stem cells. LPL, as a unique downstream target of CD44 signal transduction,
can activate endothelial cell-mediated angiogenesis during tumor growth. In addition,
knockdown of CD44 or intratumoral injection of tetrahydrolipostatin (LPL inhibitor) can
inhibit breast cancer progression and angiogenesis [40]. LPL also plays an important role
in the production of IDL and LDL in the human body. This suggests that the significant
differences in some indicators between the HCC group and the control group may be
related to LPL expression, such as VLPN, IDPN, L1PN, L2PN, L4PN, and L5PN. We will
explore the correlation in the future study.

The diagnostic panel constructed from serum lipoprotein particle numbers effectively
improved the detection of patients with early-stage HCC, illustrating that 1H-NMR lipopro-
tein subfraction testing plays an important role in the diagnosis of early-stage HCC. Lu et al.
observed that the L1 and L5 subfractions of LDL and VLDL promoted breast cancer cell
migration and invasion through increased Akt Ser473 phosphorylation [41]. Further an-
giogenic assays in vitro indicated that the L1 and L5 subfractions and VLDL enhanced the
secretion of angiogenic factors and promoted angiogenic activity [41]. There are few studies
on the mechanisms of lipoprotein subfractions in the tumorigenesis and development of
hepatocarcinoma, and we will explore this aspect in the future.

In addition, we recognize some limitations in our research. First, the sample size of the
external validation set was relatively small, and the patients were not equally distributed
between the HCC and LD groups. Therefore, a sufficiently sized external validation set is
required to further confirm our research conclusions. Second, since lipidomics is a branch
of systems biology, circulating lipoprotein subfractions mainly reflect an overall metabolic
shift in cancer patients and may not reflect the metabolic states of the tumor cells alone.
Therefore, in future studies, we plan to determine the relationship between abnormal
lipoprotein metabolism and HCC development at the cellular level.

4. Materials and Methods
4.1. Ethical Statement

Prior to commencing the study, ethical approval was sought from the Research Ethics
Committee of Tianjin Medical University Cancer Institute and Hospital in accordance with
the 1964 Helsinki Declaration ethical standards (NO. bc2020098). Written informed consent
was obtained from all participants, and the study was approved by the local Ethical Board.

4.2. Patients and Sample Collection

A total of 197 serum samples were enrolled at Tianjin Medical University Cancer
Institute and Hospital (Tianjin, China) from July 2018 to December 2020. All serum samples
were collected from 7:00 to 8:00 in the morning after the participants had fasted for at
least 6 h. The samples were collected from all the patients who were initially diagnosed
without liver disease-related treatment. The Barcelona Clinic Liver Cancer (BCLC) staging
system was used to assess tumor stage. In the training set, we collected 51 patients with
early-stage HBV-related HCC (BCLC stage 0-A) before surgical treatment, 37 patients with
HBV-related hepatitis and HBV-related cirrhosis (hereafter referred to as liver disease,
LD), and 50 NCs (with normal liver biochemistry, no type of malignancy or history of
other benign disease, alcohol abuse and viral hepatitis). To identify the lipoprotein profile
and establish a diagnostic model of HCC, a validation set was built from independent
early-stage HCC (n = 24) and LD (n = 17) patient serum samples collected in the same way
as those used in the training set. In addition, we selected serum AFP-negative patients
(AFP level < 20 ng/mL) in the HCC and LD groups and collected 18 HCC patients with
negative serum AFP expression for the next analysis. Next, eight pairs of cancerous
and paracancerous tissue samples of HBV-related HCC patients from the validation set
were obtained from surgical resections at Tianjin Medical University Cancer Institute and
Hospital from May 2020 to August 2020. The inclusion and exclusion criteria, sample
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collection and storage are shown in the Supplementary Materials and methods. The
collected test tube containing the blood sample was placed in a centrifuge at 4 ◦C and
centrifuged at 3000 rpm for 15 min. Then, 400 µL of serum was collected from the upper
layer of the test tube and stored at −80 ◦C until required for NMR detection. Tissue samples
were fixed in 10% formalin and embedded in paraffin. The paraffin-sectioned tissues were
serially cut into 5 µm sections and preserved at room temperature until required for mass
spectrometric measurement.

4.3. Inclusion Criteria and Exclusion Criteria

The diagnoses of HCC, hepatitis and cirrhosis were based on the American Association
for the Study of Liver Diseases (AASLD) Practice Guidelines.

The inclusion criteria were as follows:

1. Primary HCC diagnosed by histological or cellular examination.
2. Single tumor (regardless of size) or the number of tumors is less than 3 and the

maximum diameter is ≤ 3 cm, and no history of portal invasion or extrahepatic spread.
3. HCC, cirrhosis and hepatitis with a history of HBV infection confirmed by virologi-

cal assay.
4. Age > 18 years.
5. No previous treatment for HCC.
6. Knowledge of the study and agreement to follow-up.

Participants were excluded from the study if they met any of the following conditions:

1. History of other diagnosed malignancies.
2. History of anticancer treatment for HCC.
3. History of hepatitis virus infection without HBV.
4. Factors can cause abnormal elevation of serum AFP in normal controls, including

pregnancy and any type of liver disease.
5. Participants with severe illnesses, including cardiovascular disease, endocrine disease

and renal impairment.
6. Participants with lactation, current smoking and drug dependence.
7. Participants were taking lipid-lowering, hyperglycemic, anti-inflammatory, antithrom-

botic medications, dietary supplements, or antihypertensive treatment.

4.4. Magnetic Resonance Experiments

A Bruker 600 MHz NMR spectrometer was applied to estimate the lipoprotein sub-
fractions. The Bruker IVDr lipoprotein subclass analysis (B.I.-LISA) method was used to
predict the subfractions of lipoproteins for the analysis. Bruker’s Quant Ref manager within
Top Spin was used to normalize the spectra to the same quantitative scale, and the spectral
intensity was normalized to the proton concentration in units of millimoles per liter. First,
Topspin 3.6.0 was used to calibrate the chemical shift to the methyl signal of trimethylsilyl
propanoic acid (TSP), and then the alanine doublet was calibrated to 1.48 ppm; this method
requires integration of the lipoprotein -CH3 and CH2- signals appearing in the 1D 1H NMR
spectrum with chemical shifts of 0.8 and 1.25 ppm, respectively (Figure S1). The 1H-NMR
platform has good intralaboratory repeatability and interlaboratory repeatability [11], and
all tests were blind to the disease status of participants.

Lipoprotein subfractions were determined based on one-dimensional nuclear Over-
hauser effect spectroscopy (NOESY) magnetic resonance (MR) spectra using a partial
least-squares regression model. Each lipoprotein class was further subdivided into sub-
fractions according to its density: very-low-density lipoprotein (VLDL) was divided into
VLDL 1–5, low-density lipoprotein (LDL) into LDL 1–6 and high-density lipoprotein (HDL)
into HDL 1–4, with larger numbers indicating increasing density. Serum lipoprotein par-
ticle numbers (PNs) and serum concentrations of TG, cholesterol (CH), free cholesterol
(FC), phospholipids (PL), apolipoprotein A1 (Apo-A1), apolipoprotein A2 (Apo-A2), and
apolipoprotein B (Apo-B), as well as in each of the lipoprotein classes of VLDL, LDL,
intermediate-density lipoprotein (IDL) and HDL, were estimated using a regression model
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developed by Bruker BioSpin. Finally, a dataset constructed from 112 variables was used
in this study. Four-letter abbreviations were used to represent the variables; for example,
the estimated VLDL-1 content of phospholipids was named V1PL, and the estimated total
serum cholesterol was named TPCH. The NMR lipoproteins and subfractions are shown in
Table S1.

4.5. Nanoscale Liquid Chromatography-Tandem Mass Spectrometry (Nano-LC-MS/MS) Analysis

Orbitrap Q-Exactive HF mass spectrometry (Thermo Fisher Scientific, Waltham, MA, USA)
accompanied by a Thermo Scientific UltiMate 3000 UHPLC system was used to acquire
lysed peptide sample data. Peptides were redissolved in loading buffer (2% ACN) with
iRT standards (Biognosys, Schlieren, Switzerland) and separated using a 150-min gradient
method (0–3 min, 3 to 9% buffer B; 3–127 min, 9 to 63% buffer B; 127–131 min, 63%
buffer B; 131–149 min, 63 to 3% buffer B). The digested peptides were ionized at 2 kV,
and mass spectrometry analysis data were collected using data-independent acquisition
(DIA) mode. Full-scan MS1 acquisition was performed by an Orbitrap mass analyzer (scan
range 300–1400 m/z) at a high resolution of 120,000. For MS2 acquisition, the spectra were
recorded in top speed mode with a duty cycle time of 3 s. Precursor ions were selected
and fragmented using higher-energy collisional dissociation (HCD) with 32% normalized
collision energy. The maximum ion injection time for the MS2 scan was set to 35 ms, and
the dynamic exclusion for the selected ions was 60 s. All tests were blind to the disease
status of participants.

4.6. Statistical Analysis
4.6.1. Multivariable and Univariable Statistical Analysis of NMR Data

Due to the hypothesized biological mechanisms between lipid fractions and HCC
development, multivariable data analysis based on the projection principle was applied
for statistical analysis of the 1H-NMR dataset. A pattern-recognition method that can dis-
criminate between groups even in the presence of highly structured noise or confounding
factors, unsupervised principal component analysis (PCA) and supervised partial least
squares-discriminant analysis (PLS-DA), were implemented to analyze the raw data and
classify the samples. Then, orthogonal partial least-squares discriminant analysis (OPLS-
DA) was used to extract the correlated variables and optimize the maximum separation by
using the Simca version 14.1 software package (UmetricsAB, Umea, Sweden).

The models were validated using 7-fold cross-validation to quantitatively assess their
generalization ability and acquire robust statistical models. In 7-fold cross-validation,
the dataset is split into seven equal-sized subsets. In each round, one subset is used for
validation, and the remaining six subsets are used for training; this process is repeated
seven times. The goodness-of-fit parameters and R2 and Q2 values calculated with 7-fold
cross-validation as well as with cross-validated analysis of variance (CV-ANOVA, where
p < 0.05 suggests the model is superior to one chosen at random) were obtained to measure
the robustness and quality of the models. The associated R2 and Q2 parameters represent
the interpretation rate of the matrix and model predictive capability; the closer the metrics
are to 1, the larger the variance explained by the model and the more reliable its predictive
power. Furthermore, a permutation test (999 permutations) was performed to validate
the degree of overfitting based on the values of the R2-intercept and Q2-intercept. The
reproducibility and robustness of each model were validated by the Q2-intercept; the more
negative the value of the Q2-intercept was, the better the performance of the model.

In the OPLS-DA model, most of the variables related to the classification were concen-
trated in the direction of the first predicted principal component. To identify the differential
lipoprotein subfractions, the VIP scores calculated by the OPLS-DA model were used to
reflect the most influential contribution of each variable to the model. When VIP > 1.0, the
variable was considered potentially relevant. Differences in lipoprotein subfractions be-
tween the three groups were assessed by the Kruskal–Wallis test (nonnormally distributed
data) in the training sets, and p < 0.05 was considered statistically significant. Lipoprotein
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subfractions with VIP scores > 1.0 and p < 0.05 were selected and entered into a binary
logistic regression model to design the best lipoprotein subfraction combination. To fur-
ther evaluate the diagnostic performance of the potential biomarkers, receiver operating
characteristic (ROC) curves were analyzed to evaluate the accuracy of this model. Each
biomarker panel’s diagnostic performance was evaluated by using the area under the ROC
curve (AUC) and the sensitivity and specificity at the optimal cutoff point defined by the
minimum distance to the top-left corner of the ROC curve graph. For the participants’ clin-
ical characteristics, the Mann–Whitney U test was used to compare continuous variables,
and Pearson’s chi-square test was used to compare categorical variables. Correlations were
calculated by Spearman rank correlation analysis, and p < 0.05 was considered statistically
significant. Logistic regression and statistical analysis were performed by using IBM SPSS
version 26.0 (SPSS Inc., Armonk, NY, USA).

4.6.2. Quantification and Statistical Analysis of LC-MS/MS Data

The DIA data were searched using the Human-specific UniProt database
(20,365 sequences), and LC-MS/MS data were analyzed by Spectronaut (v14.5.200813.47784).
The library was generated using the default settings for trypsin/P digestion rules and
high protein and peptide confidential levels [false discovery rate (FDR) = 0.01]. The
output-quantified protein intensities were processed using Spectronaut, and a median
normalization procedure was applied to normalize the data. Proteins with at least 30%
appearance in all samples were chosen for the subsequent analysis, and missing values
were replaced with half of the minimum value of each protein intensity. A fold-change
of >1.5 or <0.5 and a p-value < 0.05 (The Mann–Whitney U test) were set as cutoff values
for the differential proteins. The protein corresponding gene and OS information of 371
cancer samples from TCGA were applied to generate survival curves with the survival
and survminer packages in the R package (version 3.6.0). Gene Ontology (GO) functional
annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
were performed using the R package (clusterProfiler, v3.16.1) and the org.Hs.eg.db (v3.11.4)
annotation database. The background genes were set to all quantified genes, and the
differential genes were input to generate the enrichment pathway list and figures.

5. Conclusions

In conclusion, this study aimed to objectively assess the clinical applicative value of
serum lipoprotein subfraction testing in the diagnosis of HBV-related HCC patients with
BCLC stage 0-A. The results clearly indicate that the lipidomic biomarker panel constructed
with the particle numbers of VLDL, IDL, LDL-1, LDL-2, LDL-3, LDL-4, LDL-5, and LDL-6
could be used in the diagnosis of HCC. Meanwhile, we found that LPL transcript levels in
cancerous tissues of HCC patients showed a significant increase compared with paracancer-
ous tissues, and the high expression of LPL showed a significant positive correlation with
the poor prognosis of patients by bioinformatic analysis. Moreover, LC-MS/MS analysis
indicated that abnormal lipid metabolism is an important influential factor in potentially
promoting HBV-related HCC development. Our study focuses on an innovative combi-
nation of alterations in the lipid profile of cancer patients and 1H-NMR-based lipidomics
research, which provides new insight for the development of diagnostic and prognostic
biomarkers for HBV-related HCC with BCLC stage 0-A.

However, several limitations to this pilot study need to be considered. For example,
this study lacks a large number of external verification samples to further verify the
generalizability of the diagnostic panel. Despite the relatively limited sample size, the
study certainly adds to our understanding of the use of serum lipoprotein biomarkers in
the diagnosis of HCC. Further large prospective studies with external validation should
be undertaken to determine whether this lipidomic panel may improve surveillance and
management strategies in patients with HCC.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11111143/s1. Figure S1: Stacked view of the 1H-NMR spectra of lipoprotein subfractions.
HCC patient (blue), benign liver disease patient (green) and normal control (red). Figure S2: The PCA
and PLS-DA score plot in the training set. HCC patient (red), benign liver disease patient (green)
and normal control (yellow). Figure S3: PCA and PLS-DA score plot of serum AFP-negative patients.
HCC patient (red), benign liver disease patient (green) and normal control (yellow). Figure S4:
The correlation of serum AFP and selected lipoprotein particles was analyzed using Spearman
rank correlation analysis. Figure S5: The correlation of selected lipoprotein particles and clinical
features was analyzed using Spearman rank correlation analysis. Figure S6: ROC curve analysis
following binary logistic regression in distinguishing HCC patients from non-HCC patients. The
diagnostic performance of the lipidomic biomarker panel in discriminating (a) HCC from non-HCC
patients and (b) AFP (-) HCC from AFP (-) non-HCC patients. Figure S7: Comparison of DEPs
associated with lipid metabolism between cancerous and paracancerous tissue samples. In eight
patients, 11 differential proteins showed significant differences. The Mann–Whitney U test was
performed to determine whether the differences were statistically significant. N: paracancerous HCC
tissues, T: cancerous HCC tissues. Figure S8: Relative expression levels of 11 differentially expressed
proteins between cancerous and paracancerous HCC tissues. The data are expressed as medians
with interquartile ranges and were analyzed by the Mann–Whitney U test (* p < 0.05, ** p < 0.001,
*** p < 0.0001). N: paracancerous HCC tissues, T: cancerous HCC tissues. Figure S9: Results of KEGG
pathway enrichment analysis. The enriched pathways of upregulated (red) and downregulated
(blue) DEPs associated with lipid metabolism. Figure S10: The prognostic value of DEPs for HCC
patients. The overall survival curves (a) and disease-free survival curves (b) for HCC patients with
high (red) and low expression levels of (blue) MBOAT7, GDP2, and ACADS were plotted using
the GEPIA database (http://gepia2.cancer-pku.cn/ accessed on 23 August 2021) at the threshold
p-value of < 0.05. Table S1: NMR lipoproteins & subfractions. Table S2: Clinical characteristics of
the HCC group and normal control group. Table S3: Clinical characteristics of the AFP-negative
HCC group and AFP-negative LD group. Table S4: List of calculated parameters in the training set
from multivariable and univariable statistical analysis. Table S5: List of calculated parameters of
AFP-negative patients from multivariable and univariable statistical analysis. Table S6: The absolute
numbers of each lipoprotein subfraction. Table S7: Correlation between selected variables and clinical
features of HCC patients. Table S8: Test performance characteristics for the signature panel. Table S9:
Differentially expressed proteins between cancerous tissues and paracancerous tissues.
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