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Abstract: The spatial topological relations are the foundation of robot operation planning under
unstructured and cluttered scenes. Defining complex relations and dealing with incomplete point
clouds from the surface of objects are the most difficult challenge in the spatial topological relation
analysis. In this paper, we presented the classification of spatial topological relations by dividing
the intersection space into six parts. In order to improve accuracy and reduce computing time,
convex hulls are utilized to represent the boundary of objects and the spatial topological relations can
be determined by the category of points in point clouds. We verified our method on the datasets.
The result demonstrated that we have great improvement comparing with the previous method.

Keywords: spatial topological relation; convex hull; 6-intersection model

1. Introduction

To perform tasks autonomously under unstructured and cluttered scenes, a robot with artificial
intelligence should have the ability to effectively perceive the complex spatial information and plan
policy to complete tasks [1–3]. Planning a reasonable operation sequence by analyzing the spatial
information may avoid fragile objects slipping or crushing [4–7]. For example, if we take out a dish
from a pile of dishes with spoons on it, the spoons need to be removed beforehand (Figure 1a); if we
want to put a lemon into a bowl, we should take out the cans first, as shown in Figure 1b; if we
stack the blocks into a tower, we should make the base beforehand, as shown in Figure 1c. These are
great challenges for the robot if the sequence of operations is unreasonable. However, most of the
current robot tasks are limited to the operation of isolated objects on a plane [8], based on the template
matching [9] or feature extraction methods [10]. In the scenes mentioned above, the operating space of
robots is limited. The spatial relations between objects is complex, including physical contact, overlap,
and occlusion [11]. Unsafe operations may cause the fragile objects falling on the ground, broken into
pieces or other unexpected damages [12]. Therefore, it is necessary to analyze the spatial relations
between cluttered objects and make an appropriate decision for the autonomous and safe operation of
robotic manipulations [13].
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Figure 1. Multi-step operations for in cluttered scenes. (a) Move the plate with spoons on it; (b) Put a
lemon into a full bowl; (c) Stack blocks like a tower.

Spatial topological relations are one of the important theories describing the relations between
objects [14]. Spatial topological relations describe the adjacency and association relations about
spatial points, lines, and surfaces [15]. A correct understanding of the spatial topological relations
between objects is essential for the successful execution of robot actions [16]. The behavior decision of
robots depends on the current state of the spatial topological relations [17]. On one hand, the spatial
topological relations need to be accurately analyzed so that the robot performs the next operation
correctly. On the other hand, taking work efficiency into consideration, the decision-making process
cannot take too much time. Thus, the analysis of the spatial topological relation requires high accuracy
and short computing time. Recently, a lot of works have come out to analyze the spatial topological
relations in different ways [18–21], but it still has two challenges because of the cluttered scene: (1) the
robot can only get partial point cloud on the surface of the object by vision sensors due to the occlusion;
(2) the relations between objects are complex and difficult to be categorized; (3) the small deviation of
the vision sensor may cause misclassification.

In this paper, we improved the classification method of spatial topological relation by dividing
the cluttered space. Based on the distribution of point clouds in different spaces, the spatial topological
relations can be defined, including cross, within, partial within, contain, partial contain, touch,
and disjoint. The spatial topological relation can reasonably describe the relation between any two
point clouds in the space. Meanwhile, the contour of partial point clouds was described by convex
hulls, and the directed distance was utilized to determine the spatial relations of points. The main
contributions in this work:

1. We simplified the widely used model of spatial topological relations and proposed the definition
of particular formalism, which improved the accuracy of the spatial topological relation analysis
in the cluttered scene.

2. We proposed the method that determines the spatial topological relation by the approximate
expression of the object boundary and the spatial relations of points on cluttered objects.
Deviation factor is employed to improve the robustness of the algorithm.

2. Related Works

In the past decades, researchers have done a lot of work about the spatial topological relations
analysis [22–24]. The earliest research is used in geographic information systems (GIS). The focus of
many research studies is on the formalism of spatial topological relations. The 9-intersection model
(9IM) proposed by Egenhofer is one of the most widely used methods to represent spatial topological
relations [25]. It is based on the point set topology theory to qualitatively describe the topological
relations between targets. The 9IM defines the relations between objects as cross, touch, overlap, equal,
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within, contains, disjoint, and intersects by the information of the interior, boundary, and exterior of two
objects. Based on the 9IM, Clementini [26] expanded the dimensions of relations, called dimensionally
extended 9-intersection model (DE-9IM). Although the 9IM or DE-9IM can represent the spatial
topological relations between objects, it requires the complete point, line, and surface information of
the objects. However, the depth image obtained by robot vision often only contains part of the surface
of the objects. Without the complete point clouds, the 9-intersection model cannot accurately represent
the relations of objects.

Many research studies focus on the feature extraction of cluttered scenes. Nathan Silberman [27]
proposed integer program formulation to infer the physical support relations by combining various
methods, including geometric structure from depth, object attributes, and data-driven priors. Under the
assumption of the Manhattan world, this method can infer simple support relations between objects
in a complex indoor scene with cluttered and stacked objects. It ignores the overlapping situation,
which might cause misclassification. On this basis, Panda [28] proposes the mapping inferring
and linear programming method to expand the support relations between different entities in the
scene, and inferred the relation types, such as “support from below”, “support from the side”,
or “containment”. The support relations are expressed in a structure of tree, called support tree,
and the support sequence of objects is obtained by performing on a traversal of reverse hierarchical
sequence. This expression is reasonable for scene understanding and provides research foundation
for robot operation planning. Kartmann [29] infers physically reasonable support relations between
objects without any prior knowledge about the physical properties (mass distribution and friction
coefficient). By the virtual force analysis, the uncertainty of the support relations is taken into account
in the prediction. Jia [30] uses RGB-D data as input, performed a three-dimensional box on the surface
of the object, extracted the bounding box representation features, and designed an energy function to
determine the quality of the segmentation and the stability of the scene based on the support relations.
This method represents and classifies objects for 3D scene understanding.

Some research utilized learning methods, such as support vector machines (SVMs) or artificial
neural networks (ANNs), to infer the spatial topological relations. Rosman [31] used SVMs for the first
time to describe the topology of two-dimensional spatial relations of objects, but their research is only
applicable to simple objects without occlusion. Mojtahedzadeh [32] described a fast method to extract
the support relations between pairs of objects in contact with each other by using the static balance
principle. In addition to SVMs, they also use artificial neural networks (ANNs) and random forests
to approximate the probability distribution of the relations between objects. However, this method
only considers entities with convex polyhedral shapes (box, cylinder, and barrel), which limits its
practical application. Zhuo [33] introduces an approach to infer support relations from a single image
by Markov random field (MRF), integer linear programming, and SVMs framework.

To summarize, the 9IM or DE-9IM requires the complete surfaces, so it is not suitable for cluttered
scenes. The methods based on geometric features pay attention to the nearby points, lines, and surface
features of the object, but they ignore the overall features of objects. The methods based on learning
methods use the generalization ability of ANNs or SVMs to infer the spatial relations between objects
through the annotation of a large amount of data, but it ignores the physical features of object. Therefore,
how to adjust the 9IM for cluttered scenes and propose the methods to solve it is the key to improving
accuracy and adaptability of the spatial topological relation analysis.

3. Methods

Our model of spatial topological relations is based on the space division, including interior,
boundary, and exterior, so that the spatial topological relations of any two three-dimensional objects
can be described in detail by the intersection of point sets.
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3.1. Definitions of Spatial Topological Relations

Let A be a point cloud obtained from depth camera. A ⊂ R3. The convex hull of point cloud A is
the smallest convex set that contains all the points of A. We present a formal definition of the boundary,
interior, and exterior of A as follow:

Definition 1. The boundary of a point cloudA, denoted by ∂A, is the convex hull of A.

Definition 2. The interior of a point cloud A, denoted by A◦ , is the interior of ∂A. There is no intersection
between A◦ and ∂A, so A◦ ∩ ∂A = ∅.

Definition 3. The exterior of a point cloud A, denoted by A−, is the exterior of ∂A. A− does not contain any
point of A, so A∩A− = ∅. The three-dimensional space is completely divided into three parts A◦, ∂A, and A−,
i.e., A◦ ∪ ∂A∪A− = R3.

Definition 4. The closure of a point cloud A is combining the boundary and the interior of the point cloud,
denoted by A+, i.e., A+ = A◦ ∪ ∂A.

Based on the definition of A◦, ∂A, A−, and A+, we have the following proposition:

Proposition 1. A ⊂ A+.

Proof. Based on Definition 3, A◦ ∪ ∂A∪A− = R3 and A∩A− = ∅. Due to Definition 4, A+ = A◦ ∪ ∂A,
so we have A+

∪A− = R3. Since A ⊂ R3, we have A ⊂ A+
∪A−. Together with A∩A− = ∅, it follows

that A ⊂ A+. �

The spatial topological relations between two point clouds, namely A and B, can be described as
the relation between the A and B◦, ∂B or B◦ and the relation between B and A◦, ∂A or A◦. There are:

(1) the parts of A located at the interior of ∂B, denoted by A∩ B◦;
(2) the parts of A located on ∂B (A∩ ∂B);
(3) the parts of A located at the exterior of ∂B (A∩ B−);
(4) the parts of B located at the interior of ∂A (A◦ ∩ B);
(5) the parts of B located on ∂A (∂A∩ B);
(6) the parts of B located at the exterior of ∂A (A− ∩ B).

Therefore, the spatial topological relation from A to B can be represented as a matrix R(A, B):

R(A, B) =
(

A∩ B◦ A∩ ∂B A∩ B−

A◦ ∩ B ∂A∩ B A− ∩ B

)
, (1)

which is called the 6-intersection model (6IM). The 6IM considers the intersection between point and
boundary, ignoring the intersections between areas. So, the 6IM can be used in the scenes where
only the point clouds on the surface of objects are available. Based on the 6IM, we define all the
spatial topological relations from A to B, as shown in Figure 2. The yellow model is point cloud A and
the green one is point cloud B. Taking into account all the circumstances, we have defined 7 spatial
topological relations, i.e., cross, within, partial within, contain, partial contain, touch and disjoint.
We give the definition of each spatial topological relation as follow.
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Figure 2. The spatial topological relations between two point clouds. The yellow area and the green
area mean the region of point cloud A and B, respectively. The light yellow and light green areas
represent the region of the convex hull of A and B, respectively. (a,b) are different spatial topological
relations. (a) Cross; (b) Within; (c) Partial within; (d) Contain; (e) Partial contain; (f) Touch; (g) Disjoint.

Definition 4. If A∩ B◦ and A◦ ∩ B are non-empty, then A crosses with B (Figure 2a).

If A ∩ B◦ = ¬∅, then we have A+
∩ B◦ = ¬∅ because of Proposition 1, which means that the

closure of A has common part with the interior of B. Similarly, A◦ ∩ B = ¬∅ means that the closure of
B has common part with the interior of A. So, the closures of A and B have the common parts with the
opposite interiors. In addition, if A∩ B◦ = ¬∅, then we have A+

∩ B+ = ¬∅, which means the two
point clouds have common closures. We define that A crosses with B if they have common closures
and these closures intersect with the opposite interiors.

Definition 5. If A∩ B◦ is non-empty, A∩ B− is empty and A◦ ∩ B is empty, then A is within B (Figure 2b).

If A ∩ B◦ = ¬∅, we have A+
∩ B◦ = ¬∅. It illustrates that the closure of point cloud A

intersects with the interior of point cloud B. Based on Definition 3, if A ∩ B− = ∅, then we have
A∩ (B◦ ∪ ∂B) = ¬∅, which means that all the points of A are located in the boundary of B. A◦ ∩B = ∅
means that none of B’s points coincide with A’s interior. So, we define that A is within B by three
conditions: (1) The closure of point cloud A intersects with the interior of point cloud B; (2) A and B
have common interior, and all the points in A are located in the boundary of B; (3) None of B’s points
coincides with A’s interior.

Definition 6. If A∩B◦ and A∩B− are non-empty, and A◦ ∩B is empty, then A is partial within B (Figure 2c).

Similar with Definition 5, we give the definition of partial within by minor modifications.
A∩ B− = ¬∅ means that some points from A are located outside of the boundary of B. So, we define
that A is partial within B by three conditions: (1) The closure of point cloud A intersects with the
interior of point cloud B; (2) A and B have common interior, and not all the points in A are located in
the boundary of B; (3) None of B’s points coincide with A’s interior.
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Definition 7. If A∩ B◦ is empty, A◦ ∩ B is non-empty and A− ∩ B is empty, then A contains B (Figure 2d).

Contain is the reverse definition of within, and we define it by swapping the roles of A and B in
Definition 5.

Definition 8. If A∩ B◦ is empty, A◦ ∩ B is non-empty and A− ∩ B is non-empty, then A partial contains B
(Figure 2e).

Similar with Definition 7, partial contain is the reverse definition of partial within.

Definition 9. If A∩B◦ and A◦ ∩B are empty, A∩ ∂B and ∂A∩B are non-empty, then A touches B (Figure 2f).

A∩ B◦ and A◦ ∩ B are empty, which means that there is no intersection common area from the
interiors of A and B. A∩ ∂B and ∂A∩ B are non-empty, which means that the intersection between
the boundaries of A and B is not empty. So, we define A touches B if the intersection between the
boundaries of A and B is not empty and neither of the points of A or B is located in the opposite interior.

Definition 10. If A∩ B◦ and A◦ ∩ B are empty, and at least one of A∩ ∂B and ∂A∩ B is empty, then A is
disjoint from B (Figure 2g).

Different from Definition 9, at least one of A ∩ ∂B and ∂A ∩ B is empty. So, if the intersection
between the boundaries of A and B is not empty and the relation from A and B is not touch, we define
it as disjoint.

We realize that the relations do not exist in some cases. To eliminate non-existent relations,
we have the following proposition.

Proposition 2. If A∩ B◦ = ∅ and A∩ ∂B = ∅ , then A∩ B− = ¬∅.

Proof. Due to Definition 3 and A∩R3 = ¬∅, we have A∩ (B◦ ∪ ∂B∪ B−) = ¬∅, and then (A∩ B◦)∪
(A∩ ∂B)∪ (A∩ B−) = ¬∅. Because of A∩ B◦ = ∅ and A∩ ∂B = ∅, so A∩ B− = ¬∅. �

The formal definition of the spatial topological relations is given by six different specifications
with the values empty (∅), non-empty (¬∅) or arbitrary (∗), shown in Table 1. Each relation expects
disjoint is corresponded to a rule, and three situations are included in relation disjoint. Based on
Proposition 2, we can distinguish non-existent relations, which are shown in Table 2. The relations are
complete if summarizing them from Tables 1 and 2.

Table 1. The definition of the spatial topological relations between two point clouds.

Relation(A→ B) A∩B◦ A∩∂B A∩B− A◦∩B ∂A∩B A−∩B

cross ¬∅ * * ¬∅ * *
within ¬∅ * ∅ ∅ * *

partial within ¬∅ * ¬∅ ∅ * *
contain ∅ * * ¬∅ * ∅

partial contain ∅ * * ¬∅ * ¬∅
touch ∅ ¬∅ * ∅ ¬∅ *

disjoint
∅ ¬∅ * ∅ ∅ ¬∅
∅ ∅ ¬∅ ∅ ¬∅ *
∅ ∅ ¬∅ ∅ ∅ ¬∅
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Table 2. Non-existent relations.

A∩B◦ A∩∂B A∩B− A◦∩B ∂A∩B A−∩B

∅ ¬∅ * ∅ ∅ ∅
∅ ∅ ∅ ∅ ¬∅ *
∅ ∅ ∅ ∅ ∅ ∅

3.2. Classification Criteria of Spatial Topological Relations

In order to infer the spatial topological relations by the 6IM, all the points in the point clouds of
one object should be determined the relative position relations with the convex hull of another object.
If a point locates in the convex hull of a point cloud, it must locate in the axis aligned-bounding box
(AABB) of the point cloud.

Proposition 3. Given a point cloud A , let Box(B) an ∂B be the axis aligned-bounding box and the convex hull
of point cloud B . If A∩ Box(B) = ∅ , then A∩ ∂B = ∅.

Proof. The convex hull is the minimum convex bound of point cloud, and the axis aligned bounding
box is convex bound either. So, we have ∂B ⊆ Box(B). By A∩ Box(B) = ∅, we have A∩ ∂B = ∅. �

It is easy and fast to evaluate whether a point is in AABB, in other words, whether the point is
within the range of AABB at the three directions of coordinate axis, so we can speed up the classification
of points. If a point is not in AABB, then the point is also not within the range of the convex hull.
If a point is in AABB, the next step is to determine whether the point is in the convex hull. AABB is
employed to represent the boundary of objects [16]. However, it is inappropriate for the spatial
topological relation analysis. The reason is that AABB is an inexact approximation for the boundary of
objects. The convex hull is the exact approximation for the boundary of objects and performs better
than AABB.

Take a cube convex hull for an example, as shown in Figure 3. Let ai (i = 1, . . . , 5) be the points
of point cloud A, and the points b j ( j = 1, . . . , 8) are the vertices of the convex hull of point cloud B.
Every three points bk1, bk2, bk3 (k = 1, . . . , 12) from b j constitute a triangular surface of the convex hull

and
→
n k is an outer normal vector to the surface. So, as to determine the spatial topological relation

between a point and convex hull, the next step is to iterate over the faces of the convex hull and to
determine if the point is on the negative or positive side of the faces. The classical method from
computation geometry is employed to determine if a point is inside a convex hull [34]. ai is inside the
convex hull if

→
n k·(ai − bk1) < 0 for all k, outside the convex hull if

→
n k·(ai − bk1) > 0 for some of k, or on

the boundary of the convex hull if
→
n k·(ai − bk1) ≤ 0 for all k with equality occurring at least once.

Figure 3. Some of points in A and the convex hull of B. The hollow dots represent points in A and the
green cube represents the convex hull of B. Every three vertexes compose a triangular face of convex
hull and it has an outer normal vertor

→
n k, and k is the face number.
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Based on the distance formula, we define the directed distance from a point ai to a plane bk1bk2bk3,
that is:

di, k =

→
n k·(ai − bk1)∣∣∣∣→n k

∣∣∣∣ , (2)

where
→
n k is an outer normal vector of the plane, and

∣∣∣∣→n k

∣∣∣∣ > 0.
∣∣∣di, k

∣∣∣ means the distance from point ai to
plane bk1bk2bk3. By the definition of directed distance, the classical method is equal to:

∀k ∈ K, di, k < 0 , ai is interior point

∀k ∈ K, di, k ≤ 0 and ∃k ∈ K, di, k = 0 , ai is boundary point

∃k ∈ K, di, k > 0 , ai is exterior point

, (3)

where K is the set of the face number. In the example of cube convex hull, K = {k : k = 1, . . . , 12}.
All the points of point cloud A can be classified by formula (3), as shown in Figure 4a. a1 is an interior
point because of d1, k < 0 for all k. a2 is a boundary point on account of d2, k ≤ 0 for all the k, d2, 5 = 0
and d2, 6 = 0. a3 is an exterior point by the reason of d3, 3 > 0 and d3, 4 > 0.

Figure 4. The classification method of point ai. (a) Classical method; (b) Our method with the deviation
factor δ. The directed distance di, k is presented by the arrow from the face k of convex hull to the point

ai. If di, k and
→
n k are in the same direction, then di, k > 0, otherwise di, k < 0.

However, the position of ai obtained from the vision sensor may exist small deviation. In Figure 4a,
a4 and a5 are supposed to be boundary point with small deviation. By formula (3), a4 is determined
as an interior point in view of d4, k < 0 for all the k, but

∣∣∣d4, 3
∣∣∣ and

∣∣∣d4, 4
∣∣∣ are quite small. Similarly,

a5 is misclassified as an exterior point due to d5, 3 > 0 and d5, 4 > 0, even if
∣∣∣d5, 3

∣∣∣ and
∣∣∣d5, 4

∣∣∣ are small.
The reason of these misclassifications is that the determined condition of the boundary point in formula
(3) is too strict and nearly unreachable under cluttered scenes. A small deviation of directed distance
may cause misclassification, i.e., determining a boundary point to be an interior point or exterior point.

Based on the above descriptions, we relax the determined condition of boundary point by
employing deviation factor to improve the robustness of our algorithm. By extending the upper and
lower bounds of determine condition from di, k = 0 to

∣∣∣di, k
∣∣∣ ≤ δ, we have:

∀k ∈ K, di, k < −δ , ai is interior point

∀k ∈ K, di, k ≤ δ and ∃k ∈ K,
∣∣∣di, k

∣∣∣ ≤ δ , ai is boundary point

∃k ∈ K, di, k > δ , ai is exterior point

, (4)

where δ is the deviation factor. Generally, δ is a small positive value, and the larger it takes, the more
boundary points will be determined. So, the value of δ is usually equal to the deviation of point clouds.
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By formula (3), points an from point cloud A are classified, as shown in Figure 4b. The classifications of
a1, a2, and a3 are the same as the classical method. Unlike the classical method, a4 and a5 are determined
as boundary points as they are supposed to be by our method.

If the point ai is an interior point for the convex hull of B, then A∩ B◦ = ¬∅. If the point p is a
boundary point, then A∩ ∂B = ¬∅. Otherwise, if the point p is an exterior point, then A∩ B− = ¬∅.
We traverse the points in point cloud A unless A∩ B◦, A∩ ∂B, and A∩ B− are all non-empty. We stop
the loop of point cloud A when A ∩ B◦, A ∩ ∂B, and A ∩ B− are all non-empty, because the rest of
calculation will not change the results. By this way, the spatial topological relations can be decided by
the 6IM. The whole approach is described in Algorithm 1.

Algorithm 1. Spatial Topological Relation Analysis Algorithm.

Input: 3D point cloud of each object
Output: The spatial topological relations between the objects
Initialize: Create convex hull and AABB of each object from point cloud
begin
for each object A do
for each object B do
for each point ai in object A do
if ai is not in Box(B)
then A∩ B◦ = ∅, A∩ ∂B = ∅ and A∩ B− = ¬∅ continue
Compute the relative position of p by formula (4)

Check A∩ B◦, A∩ ∂B and A∩ B− for loop termination
end
end
end
for each object A do
for each object B do
if A∩ B◦ = ¬∅ and A◦ ∩ B = ¬∅ then R(A→ B) = cross
else if A◦ ∩ B = ∅
if A∩ B− = ∅ then R(A→ B) = within
else R(A→ B) = partial within
else if A∩ B◦ = ∅
if A− ∩ B = ∅ then R(A→ B) = contain
else R(A→ B) = partial contain
else if A∩ B◦ = ∅, A∩ ∂B = ¬∅, A◦ ∩ B = ∅ and ∂A∩ B = ¬∅

then R(A→ B) = touch
else R(A→ B) = disjoint

end
end
end

4. Experimental Results

To verify the accuracy and the rapidity of our spatial topological relation analysis method
described in Section 3, we have done a series of experiments on the point clouds generated from the
International Institute of information Technology (IIIT) RGBD dataset and the Yale-CMU-Berkeley
(YCB) benchmarks.

4.1. Pretreatment

4.1.1. IIIT RGBD Dataset

The IIIT RGBD dataset contains seven scenes with different types of physical interactions between
objects, such as supporting from below, supporting from the side and inclusion [35]. Due to the
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occlusion by each other, all the RGBD images are part of the point clouds representing the surface of
objects. Each RGBD image is segmented by semantic annotation. We reconstructed point clouds of
objects from RGBD images by the point cloud registration method [36]. Additionally, the convex hull
of each point cloud was obtained by the Quickhull method [37].

4.1.2. YCB Benchmarks

The YCB benchmarks are designed for robot manipulation. The model set contains different kinds
of objects, such as food, tools, and kitchen items [38]. Each object has the corresponding 3D model
reconstructed from the merged point clouds with high precision. We chose several objects, made 7
scenes, and removed outliers by Point Cloud Library (PCL).

4.2. Results

The reconstruction point clouds of the IIIT RGBD dataset are shown in Figure 5a. The point cloud
of ground has little effect on the result so only the point cloud near the objects is reserved. Then, we use
filter to remove outlier points of point clouds. Due to the semantic annotation, all the objects can be
reconstructed respectively. In this way, all the objects are separated from each other. We display all
objects, including the ground, in Figure 5a. Scene 1 and scene 2 are similar. One box lays on the ground,
with a box leaning on it and another box putting upright on it. In scene 3, one box lays on the ground
and two books putting on it. Because the images are taken near the corner of the walls, photos cannot
be taken in some perspective and the images are insufficient for complete 3D reconstruction. As a
result, the point clouds of box and books are incomplete. In scene 4, a box lays on the ground, and a
hollow jar is placed on it. In the hollow jar, a rod-like object inserts inside it. Due to the insufficient
RGBD images in the IIIT RGBD dataset, only a small part of objects can be reconstructed. The 3D
reconstruction of scene 4 shows that the rod-like object seems to levitate in the air. A large area of
point cloud missing may cause failure. In scene 5, a solid box leans on a hollow box, and there is a
bar placed in the hollow box. Different from scene 4, we have plenty of RGBD images taken from
multiple perspectives of scene 5. So, the point clouds of objects in scene 5 are relatively complete,
compared with scene 4. Scene 6 is quite cluster, with five objects crowded in the limited space. A box
is placed horizontally on the ground, and three boxes lean on it and one box is placed vertically on it.
Scene 7 is similar to scene 6, and there are four objects in this scene. One box is placed horizontally on
the ground, and two boxes lean on it. Besides, a box is placed isolated on the ground. Although scene
6 and scene 7 are cluster and objects cover each other, due to sufficient images from all perspectives,
we can reconstruct most of the point clouds from the surface of objects.

Because all the RGBD images are taken by the depth camera, so only the surface of point clouds is
captured. Although the point cloud of each object can be obtained separately, the 3D reconstruction
is fragmentary and only contains surface point clouds. The convex hull of point clouds is shown in
Figure 5b. Due to the incomplete point clouds, the convex hulls are the subsets of the actual convex
hulls of point clouds.

Despite these obstacles above-mentioned existing, our method can still analyze the spatial location
of points. By the method in Section 3.2, the boundary points and interior points of each point cloud
were classified, as shown in Figure 5c. The boundary points and interior points between different
objects are drawn in different colors. By the definitions in Section 3.1, we can decide the spatial
topological relations between objects, as shown in Figure 5d. The red line represents touch, and the
direction of arrows represents the direction of relation as A → B. The green line represents partial
contain. The relation disjoint is so common that we ignore its visualization. In scene 1 and 2, the results
show that the box laying on the ground touches ground and all the other boxes. In scene 3, the two
books touch each other and touch the box at the same time. In scene 4, the box touches the hollow
jar and the ground simultaneously. However, due to the lack of point cloud, only a small part of the
hollow jar can be reconstructed. As a result, the point cloud of the rod-like object is far away from the
hollow jar, and the spatial topological relation between them, which is supposed to be partial within,
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have been misjudged as disjoint. In scene 5, the hollow box touches the ground and partial contains
the blue bar. The solid box touches the ground, but the relation between the hollow box and the solid
box is misjudged as disjoint, which should be touch. The reason is that the point cloud is so sparse at
the contacting surface that few points of the solid box are located in the convex hull the hollow box.
Despite the scenes are quite clustered and messy, our method performed well in scene 6 and 7. All the
relations obtained by our method are identical to the ground truth. In scene 6, the lying box touches all
the other boxes. In scene 7, the isolated box is disjoint with the other boxes.

Figure 5. Visualized results of our spatial topological relation analysis on the IIIT RGBD dataset: (a) The
original images of cluttered scenes 1 to 7; (b) 3D models of convex hull; (c) Boundary points and interior
points; (d) Spatial topological relations between objects.

We have compared our method with the feature extraction method, learning method, and AABB
method on the accuracy and the computing time. The accuracy means the number of the relations
which are correctly classified divided by the number of all the relations in one scene. The criterion for
determining whether the classification of spatial topological relations is correct is to compare them
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with the ground truth from the dataset. In the feature extraction method [35], the definition of spatial
topological relations is different from ours, so we combine “support from below” and “support from
the side” to touch. If the relation is “containment”, we determine it is correct no matter whether the
ground truth is partial contain or contain. By the learning method [31], we got contact point networks
of point cloud by SVMs and classified relations by k-means method. The AABB method is using AABB,
instead of convex hull, to represent the boundary of objects, and the other is same as our method.
The computing time is the time of the analysis of all the relations in one scene. The results are shown in
Table 3. In every scene, our method performed obviously better than the feature extraction method [35]
on the accuracy and the computing time. There are 55 relations in 7 different scenes. Our method
has correctly analyzed 53 relations and cost 131.8 s in total. As a comparison, the feature extraction
method, the learning method, and the AABB method have correctly analyzed 41, 40, and 36 relations,
with costing 1478.2, 231.1, and 17.7 s, respectively. The average accuracy of our method on the IIIT
RGBD dataset is 96.4%, which is 21.9% higher than 74.5% accuracy of the feature extraction method,
23.7% higher than 72.7% accuracy of the feature extraction method, and 30.9% higher than 65.5%
accuracy of the AABB method. In addition, the average time of our method is 2.4 s, which is faster
than 26.9 s by the feature extraction method and 4.2 s by the learning method. Although our method is
slower than the AABB method, the accuracy of our method is much higher.

Table 3. Accuracy (%) and time (s) on the IIIT RGBD Dataset.

Scene
Our Method Feature Extraction Learning Method AABB Method

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

1 100 10.2 66.7 41.8 83.3 25.7 50.0 1.4
2 100 15.8 83.3 197.9 83.3 44.3 66.7 3.0
3 100 27.5 66.7 116.0 100 33.8 83.3 2.1
4 83.3 3.1 83.3 12.8 83.3 7.9 66.7 0.9
5 83.3 3.5 66.7 30.1 66.7 13.9 66.7 1.4
6 100 55.3 86.7 775.6 60.0 77.1 60.0 4.9
7 100 16.4 60.0 304.0 60.0 28.4 70.0 4.0

Different from the IIIT RGBD dataset, the YCB benchmarks provide dense and high-resolution
point clouds of objects. All the 3D point clouds are reconstructed by precise stitching, as shown in
Figure 6a. The image of scene 8 shows that there are a strawberry and a lemon in the bowl placed on
the table, and a master chef can is far from them. In scene 9, a mustard bottle, a sugar box, and a tomato
soup can are placed on the table, and there is a lemon on the tomato soup can. Scene 10 is clustered.
In scene 10, a tuna fish can and a gelatin box are very close, but they are not touching with each other,
and a banana is placed on the tuna fish can. Besides, a chips can and a potted meat can are living away
from other objects. In scene 11, a mug, a bowl, and a tomato soup can are placed closely on the table,
and the bowl contains an orange. In scene 12, there is a plate on the table, with a bear and potted meat
can on it, and a tomato soup can is isolated. Scene 13 is a typical case in the kitchen. A stack of plates
is placed on the table, and a bowl is placed on the top of them. In scene 14, two bananas are placed
mostly parallel on the table, with a plum and a lemon aside. All the point clouds of objects in each
scene are dense, with few noise points in them. This is beneficial to the spatial topological relation
analysis. Another advantage is that the YCB benchmarks contain a variety of relations and this is
suitable for the verification of our method.
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Figure 6. Visualized results of our spatial topological relation analysis on the YCB benchmarks: (a) The
original images of cluttered scenes 8 to 14; (b) 3D models of convex hull; (c) Boundary points and
interior points; (d) Spatial topological relations between objects.

The convex hull of point clouds is shown in Figure 6b. Due to the density and the number of
points of the point clouds in the YCB benchmarks are much larger than these in the IIIT RGBD dataset,
the completion of convex hulls in the YCB benchmarks are better. The boundary points and interior
points of each point cloud are classified, as shown in Figure 6c. We found that the number of boundary
points and interior points are much larger than the IIIT RGBD dataset. The reason is that the spatial
topological relations are plentiful in the YCB benchmarks. The spatial topological relations between
objects are shown in Figure 6d. The red line represents touch, and the direction of arrows represents
the direction of relation as A→ B. The cyan, green, blue, magenta, and yellow line represents cross,
within, partial within, contain, and partial contain, respectively. In scene 8, our result shows that the
strawberry is within the bowl and the lemon is partial within the bowl, which is consistent with the
ground truth. In scene 9, the mustard bottle, tomato soup can, and sugar box touches the table, and the
lemon touches the tomato soup can. Scene 10 is a special case. Most of relations, except the relation
between the banana and the gelatin box, are classified correctly. The misclassification is mainly caused
by the common sense of human beings. The banana is not a container, so the relation generally cannot
be considered as contain. However, based on the definition of 6IM, the relation is determined as partial
contain. In scene 11, the orange is partial within the bowl, and other objects touch the table. Scene 12 is
similar to scene 11 where the potted meat can and the bear are partial within the plate, which touches
the table together with the tomato soup can. In scene 13, the plate at the bottom of stack touches the
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table and other objects are partial within the object below from top to bottom. In scene 14, the relation
between two bananas is complex so it is determined as cross. Because of the same reason as scene
10, the relation between the plum and the banana, which is supposed to be touch, is misidentified as
partial within.

We have also compared our method with the feature extraction method on the accuracy and the
computing time, as shown in Table 4. Same as the results on the IIIT RGBD dataset, our method is
significantly better than the other methods in terms of accuracy and calculation time. There are 75
relationships in 7 different scenes. Our method has correctly analyzed 71 relationships and took 131.7 s
in total. As a comparison, the feature extraction method, the learning method, and the AABB method
have correctly analyzed 64, 59, and 57 relationships, which took a total of 3002.4, 175.6, and 10.9 s.
The number of relations and the points of each objects in YCB benchmarks are larger than these
in the IIIT RGBD dataset, so our method and the feature extraction method took much more time
on the calculation of spatial topological relations. The average accuracy of our method on the IIIT
RGBD dataset is 94.7%, which is 9.3% higher than the 85.3% accuracy of the feature extraction method,
16.0% higher than the 78.7% accuracy of the AABB method, and 18.7% higher than the 76.0% accuracy
of the AABB method. In addition, the average time of our method is 1.8 s, which is significantly faster
than 40.0 s of the feature extraction method and 23.4 s of the learning method. Although the AABB
method is really fast, the accuracy of it is the worst among these methods.

Table 4. Accuracy (%) and time (s) on the YCB benchmarks.

Scene
Our Method Feature Extraction Learning Method AABB Method

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

8 100.0 14.6 90.0 365.3 80.0 12.0 80.0 1.6
9 100.0 13.0 100.0 176.0 90.0 12.8 90.0 1.2

10 93.3 19.4 93.3 341.8 86.7 22.3 80.0 2.0
11 100.0 20.1 90.0 523.2 70.0 24.1 50.0 1.2
12 90.0 14.2 70.0 305.2 80.0 16.5 80.0 1.0
13 100.0 42.6 70.0 1033.9 70.0 78.1 70.0 3.2
14 80.0 7.8 80.0 257.0 70.0 9.8 80.0 0.7

5. Discussion

The results confirmed that our method had advantages over the other methods on the accuracy.
The reason is that our method effectively classifies the relations between objects and use the overall
features of the point cloud to analyze the spatial topological relations. Currently, the spatial topological
relations are mainly defined by the intersections of points, lines, and regions. However, in the cluttered
scenes, the point clouds of objects are incomplete and the shapes of them are unpredictable. Meanwhile,
only the point clouds on the surface of objects can be perceived by vision sensors. Without obvious
region features, the current spatial topological relation methods cannot work well. Our method used
convex hull to represent the boundary of objects. Since convex hulls contain the boundary feathers
of point clouds, our method improved the accuracy and saves computing time for the interaction
analysis between point clouds. In addition, we proposed the deviation factor to improve the robustness
of our method. Although our method based on convex hulls has done a certain degree of region
interpolation, however, it is not suitable for the scenes with point clouds severely missing. The methods
based on object stability inferring may be helpful for further improvement on the accuracy in these
extreme scenes.

6. Conclusions

In summary, we have identified 6IM to describe the spatial topological relations in cluttered scenes
and its classification by calculating the relations between points and convex hulls. Different from
others, our method takes the convex hulls as the approximate expression of the boundary of objects.
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Due to the reasonable definition and calculation process, our method is suitable for the cluttered scenes
with partial, hollow, and complex point clouds. The rapidity and the accuracy of our method are
verified on the IIIT dataset and the YCB benchmarks, on which we have improvement in every scene
comparing with other methods.

In the future, we will improve the accuracy of the spatial topological relation analysis in the
scenes with point clouds severely missing by stability inferring. Based on the spatial topological
relation analysis, we will design the robot grasping strategy to realize automatic object sorting in
cluttered scenes.
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