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Abstract

Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food
industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput
sequencing techniques it has become feasible to sequence many different strains of one species and to determine its ‘‘pan-
genome’’. We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics
analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome.
Each genome was shown to contain around 2800–3100 protein-coding genes, and comparative analysis identified over
4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the
conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase,
hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei
core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids,
transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters,
CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene
cassettes were identified, with each strain harbouring between 25–53 cassettes, reflecting the high adaptability of L.
paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an
analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not
always related to niche adaptation. The results of this genome content comparison was used, together with high-
throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to link the
distribution pattern of a specific phenotype to the presence/absence of specific sets of genes.
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Introduction

Lactic acid bacteria (LAB) are Gram-positive bacteria that

produce lactic acid as their major fermentation end product, and

are often involved in food and feed fermentations [1,2]. The most

diverse genus of LAB is Lactobacillus, which encompasses species

found mainly in dairy products (e.g., Lactobacillus delbrueckii ssp.

bulgaricus and L. helveticus), species commonly found in human and

animal gastrointestinal tracts (e.g., Lactobacillus acidophilus and

Lactobacillus gasseri), and species with remarkable adaptability to

diverse habitats (e.g., Lactobacillus plantarum, L. pentosus, L. brevis and

L. paracasei) [3].

Lactobacillus paracasei is a member of the normal human and

animal gut microbiota and is used extensively in the food industry

in starter cultures for dairy products and also as bacteria with

probiotic features [4,5]. The nomenclature of Lactobacillus casei and

paracasei has been a matter of extensive debate [6,7,8]. The

majority of the strains designated as either L. casei or L. paracasei

subsp. paracasei in literature are members of the same species which

should normally be named Lactobacillus paracasei subsp. paracasei

following the current valid nomenclature [9,10]. In this paper we

will use both L.casei and L.paracasei since many publications refer to

both species names.

Several L. casei/paracasei strains used in dairy products were

previously clinically studied and their beneficial effects assessed
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[11,12,13,14,15,16,17]. Strains of this species have also been

isolated from a variety of fermented artisanal products such as

fermented milk, cheese, sourdough bread starter, and fermented

vegetables, as well as from plants. Robust genotyping methods

have been developed for strain tracking, collection management

and population biology research. For this study we used a highly

diverse collection of L. casei/paracasei strains isolated from different

ecological niches such as fermented milk or cereal products,

human and animal gut or plants. Previously, the genetic diversity

and strain evolution has been assessed for 52 strains of L. casei/

paracasei from this collection using multilocus sequence typing

(MLST) based on sequence variations in 7 housekeeping genes,

and revealed 31 different sequence types, with one dominating

sequence type (ST1) present in many dairy strains [13]. A similar

study has been done for 40 L. casei strains from a different

collection where 36 sequence types were identified [18,19]. The

relatively high number of sequence types can be due to a

combination of factors, including a high rate of nucleotide

substitution, which generates novel alleles, and frequent homol-

ogous recombination, leading to novel combinations of alleles at

individual genes. The latter phenomenon was demonstrated in L.

casei [13] as nucleotides are approximately four times more likely

to change by homologous recombination than by mutation, which

is comparable with the situation in E. coli.

Comparative genome hybridization has been used to analyse

genomic diversity in several species of lactic acid bacteria,

including L. casei [19]. While this method provides a useful first

insight into diversity in whole genome content of multiple strains,

there are severe limitations since (i) CGH analysis is limited to

genes that are present in the reference genomes used for design of

arrays, and (ii) genes which show poor hybridization to the array

will be missed [20]. With the development of low-cost, high-

throughput sequencing techniques it has become feasible to

sequence full genomes of many different strains of one species to

determine genomic diversity and the species ‘‘pan-genome’’

[21,22,23]. Some examples are Streptococcus agalactiae [23], Strepto-

coccus pneumoniae [24], Enterococcus faecium [25], Escherichia coli [26],

and Salmonella enterica [27], but to date this approach has only very

recently been reported for a single LAB species, i.e. Oenococcus oeni

[28].

Complete genome sequences of five L. casei/paracasei strains are

publicly available [29,30,31,32,33], as well as draft genomes of two

additional strains; plasmids were identified in four of these

genomes (Table S1). The genomes are all about 2.9–3.0 Mb in

size, with a GC content of 46.2–46.6%, and they are predicted to

encode 2800–3100 proteins. Better knowledge of the variability

and specificities of this industrially important species could

contribute to the understanding of its capacity to adapt to

different environments, and its particularities in the interaction

with the host. To this end, we obtained draft genome sequences of

34 selected strains.

Specific focus was placed on differences in encoded extracellular

components of lactobacilli which are putatively involved in host–

cell interactions and potentially affecting host health. These

components comprise a variety of cell envelope-bound or secreted

proteins and polysaccharides (EPS). Lactobacillus rhamnosus GG has

LPxTG-anchored pilin proteins (encoded by spaBCA and spaDEF

genes) and a pilin-specific sortase [34], and it has been

demonstrated that these pili can play a role in mucus binding

[35]. Lactobacillus paracasei and Lactobacillus rhamnosus strains

produce the cell-surface associated cell-wall hydrolases Msp2/

p40 and Msp1/p75 [36,37], which display anti-apoptotic and cell-

protective effects on human epithelial cells [34,38,39]. They have

been shown to bind to mucin, collagen and cultured epithelial cells

[38]. So-called ‘‘collagen-binding’’ proteins are large extracellular

peptidoglycan-bound proteins with CnaB domains which may be

involved in adhesion to other cells and host tissues [40]. Cell-

surface complex proteins encoded by cscABCD genes are found in

many gram-positive bacteria, and have been proposed to be

involved in plant polysaccharide degradation [41]. The CscB and

CscC proteins have a C-terminal WxL domain which has been

shown to be involved in cell-wall binding in Enterococcus faecalis

[42]. Extracellular cell-envelope-bound subtilisin-like serine pro-

teinases of lactic acid bacteria, also called lactocepins or subtilases

[43], are important for bacterial growth on proteinaceous

substrates, like milk caseins in dairy fermentations [44,45].

Recently, the Lactobacillus paracasei lactocepin PrtP was also shown

to selectively degrade secreted, cell-associated, and tissue-distrib-

uted IP-10 and other pro-inflammatory chemokines, resulting in

significantly reduced inflammation [46]. Extracellular polysaccha-

rides may also play a role in adhesion and/or biofilm formation

[47,48].

The availability of these genome content data allows the

definition of gene sets that are common to all L. paracasei strains.

On the other hand it opens the possibility to correlate gene

variation among different strains to the presence (or absence) of

phenotypic traits, allowing further in-depth mechanistic insight

and the development of genetic biomarkers for detection of

interesting phenotypic traits. In this study, we performed growth

experiments of all strains on a large number of carbohydrates, and

used the novel gene-trait matching tool Phenolink [49], which is

based on Random Forest algorithms, to find correlations between

genotypes and phenotypes. This tool has recently been used

successfully for gene-trait matching of multiple strains of Lactoba-

cillus plantarum [49] and Lactococcus lactis [50].

Materials and Methods

Strain selection and DNA isolation
A complete list of the selected L. paracasei strains and their origin

can be found in Table 1. These strains were selected based on our

previous MLST analysis of multiple strains and AFLP genotyping

analysis (data not shown) to represent the most genetically diverse

set of known L. paracasei strains [13]. Strains with a CNCM code

have been deposited in the CNCM public library (Institute

Pasteur, Paris, France). For DNA preparation, 2 ml of overnight

culture was pelleted, washed and resuspended in TES buffer (N-

[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid). Cell ly-

sis was performed with lysozyme (360 mg/ml) and mutanolysin

(140 U /ml) during 2 h at 37uC, then 300 ml water was added and

80 ml of 20% SDS solution. The DNA extraction was done using

phenol/chloroform (36). The DNA was precipitated with

isopropanol and washed with 70% ethanol. RNAse treatment

was performed using 100 mg/ml RNAse (Sigma) during 1 hour at

37uC.

Genome sequencing and annotation
Draft genome sequences of 34 L. paracasei strains were obtained

(GATC Biotech, Germany) using 454 GS FLX sequencing at

different sequence qualities and coverage ranging from 6–32x (see

complete sequencing statistics in Table S2). In addition, genome

sequences of three publicly available L. casei strains were used for

comparison, i.e. ATCC 334 [31], BL23 [32] and Zhang [33]

(Table S1).

We selected 10 genomes with the highest coverage and/or

assembly for a complete de novo RAST pipeline annotation [51].

The remaining genome sequences were subjected to multiple

open-reading frame (ORF) calling tools, i.e. Genemark [52],

Lactobacillus paracasei Comparative Genomics
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Table 1. Overview of Lactobacillus paracasei strains and properties.

CRISPR system EPS biosynthesis cluster

strain code
other strain
codes source

year of
isolation

(ML)ST
type

Lcas1
CRISPR
type Lcas1 Lcas2 EPS-1 EPS-2 EPS-3A

EPS-
3B# EPS-4

sequenced strains

Lpp7 commercial dairy
product

1982 Y 9

Lpp14 artisanal dairy
product

1989 Y Y 15

Lpp17 D640 artisanal dairy
product

1987 14 3 Y Y Y 4

Lpp22 D645 commercial dairy
product

1987 16 0 Y 4

CNCM I–4648 D647 artisanal dairy
product

1988 21 0 7

Lpp37 D657,
ATCC27092

commercial dairy
product

1994 1 1 Y Y Y 13

Lpp41 D661 commercial dairy
product

1995 17 0 Y 7

Lpp43 D662 commercial dairy
product

1995 9 5 Y Y 13

Lpp74 artisanal dairy
product

2000 Y Y 7

Lpp120 D695 artisanal dairy
product

2003 29 0 Y Y 15

Lpp122 D697 artisanal dairy
product

2003 18 0 Y 10

Lpp123 D693 artisanal dairy
product

2003 28 7 Y Y 7

CNCM I–4649 artisanal dairy
product

2003 ? Y Y Y 6

Lpp125 D698 artisanal dairy
product

2003 6 0 Y Y 12

Lpp126 D699 artisanal dairy
product

2003 30 9 Y Y Y 9

Lpp226 artisanal dairy
product

2009 Y Y 14

Lpp219 human faeces 2008 13 Y Y Y 3

Lpp221 human faeces 2008 ? Y Y Y 12

Lpp223 human faeces 2008 1/2 Y Y Y 12

Lpp225 animal faeces 2009 10 Y Y Y 5 Y

Lpp227 human clinical
isolate

2008 12 Y Y Y 12

Lpp228 human saliva 2008 Y Y 14

Lpp229 ATCC4009 clinical isolate ? Y Y 8

Lpp230 ATCC11582 human saliva ? Y Y 7

Lpp46 D664, DSM2649 plant 1996 11 4 Y Y Y 17

Lpp48 fermented cereal
product

1996 23 ? Y Y Y 4

Lpp49 D667 plant (cereals) 1996 24 0 Y Y 14

Lpp70 fermented cereal
product

1999 Y 14

Lpp71 D679 fermented cereal
product

1999 19 0 8

CNCM I–4270 D685 fermented cereal
product

2000 26 0 Y Y 10

CNCM I 2877 D686 plant (cereals) 2000 27 6 Y Y 9

Lactobacillus paracasei Comparative Genomics
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Glimmer [53], ZCurve [54] and Prodigal [52,53,54,55]. From

these tools a majority vote system was used to decide presence or

absence of a coding sequence. In all cases, only limited overlap

(max 100 bp) was allowed between different predicted coding

sequences. In case of a larger overlap, the smaller of the two ORFs

was discarded. Further annotation of these genomes was

performed through orthology analysis (see below). In case of genes

being found exclusively within the set of non-annotated strains,

manual annotation of the gene function was performed using

BLASTP and InterproScan to come to a function prediction,

when necessary.

Genome mapping to reference genomes was performed using

the protein coding sequences (CDS) of the genomes and

comparing them using Inparanoid [56]. Contigs were organised

in their most likely order on the basis of the mean start/stop

coordinate of the Inparanoid hit on the reference genomes.

Pseudo-assemblies for all genomes were created based on the

circular reference genomes of L. casei ATCC 334 [31], BL23 [32]

and Zhang [33].

The 10 draft L. paracasei genomes with our detailed annotation

have been deposited at DDBJ/EMBL/GenBank as Whole

Genome Shotgun Bioprojects PRJNA178446-PRJNA178455.

The other 24 draft L. paracasei genomes were only deposited as

contig nucleotide sequences in Whole Genome Shotgun Biopro-

jects PRJNA178422–PRJNA178445. All sequences can be found

under umbrella BioProject PRJNA183193.

Comparative genomics/orthology prediction
All protein sequences of the 37 L. paracasei genomes were

subjected to an orthology prediction using OrthoMCL [57], with

default settings. The protein sequences of 183 OGs with exactly

one member in each L. paracasei genome were aligned using

MUSCLE [58]. These alignments were concatenated after which

a maximum-likelihood tree was constructed using PHYML [59].

The output from OrthoMCL was parsed, using ad hoc Python

scripts, into a single gene presence/absence matrix. This

presence/absence matrix was fed into Genesis [60] to perform a

hierarchical clustering on the data. Annotation was manually

improved, using different sources (public strains, previously

annotated genomes and RAST) and using tools such as NCBI

BLASTP (http://blast.ncbi.nlm.nih.gov/) and Interproscan

(http://www.ebi.ac.uk/Tools/pfa/iprscan/), and added to the

matrix on the basis of individual genes present in the orthologous

group. The CRISPRs Finder tool (http://crispr.u-psud.fr/Server/

) was used to search for CRISPR direct repeats and spacers in the

34 sequenced L. paracasei strains. Identified CRISPRs were

compared with a separate PCR analysis of CRISPR and MLST

types (Supporting Information S1: CRISPR analysis and Fig-
ure S1).

Plasmid prediction
Contigs that represent plasmids were predicted based on one or

preferably more of the following criteria: (1) they do not map to

the reference chromosomes, (2) they encode typical plasmid

functions, (3) they map to published plasmids, (4) they appear to be

circular.

Growth characteristics
Growth was measured on the sugars galactose, cellobiose,

dulcitol, mannitol, sorbose, mannose, saccharose, sorbitol, treha-

lose, maltose, myoinositol, ribose, xylose, lactose, glucose, galac-

tosamine, Ca-gluconate, melezitose, and melibiose. Each strain

was pre-cultured in de Man, Rogosa and Sharpe (MRS) medium

supplemented with 1% galactose (to avoid catabolic repression) for

18 h at 37uC; 1% of this pre-culture was used to inoculate 300 mL

MRS medium (without glucose) supplemented with the different

carbohydrates tested. Cultures were grown for 24h at 37uC in 96-

well plates and the OD was measured every 20 minutes after

10 sec shaking. We considered that the strain grows on the tested

sugar when OD reaches more than 0.8. The blank is represented

by MRS without bacteria.

Gene trait matching (GTM) and visualization of the GTM
data

GTM was performed with Phenolink, a random forest (RF)-

based phenotype/genotype matching algorithm [49] http://

bamics2.cmbi.ru.nl/websoftware/phenolink/). Phenolink works

on the basis of Random Forest classification but with some minor

adjustments to make it more suitable for GTM (see Methods). The

gene presence/absence matrix and the experimental growth data

were used as an input for Phenolink, together with a consensus

annotation file of the ortholog groups. Typically, sugar growth

data was divided into two classes (growth or no growth). Phenolink

automatically performs GTM analyses for all the phenotypes and

summarizes these data in a single HTML file that can easily be

converted into a MSExcel spreadsheet. These output files use a

Table 1. Cont.

CRISPR system EPS biosynthesis cluster

strain code
other strain
codes source

year of
isolation

(ML)ST
type

Lcas1
CRISPR
type Lcas1 Lcas2 EPS-1 EPS-2 EPS-3A

EPS-
3B# EPS-4

Lpp189 plant (cereals) 2005 Y Y 14

Lpl7 plant (cereals) ? 11 Y Y Y 16

Lpl14 plant (cereals) 1996 11 Y Y Y 16

reference strains

ATCC334 D671 cheese ? 25 0 Y Y Y 13

BL23 D692 unknown ? 1 1 Y Y Y 13

Zhang fermented mare’s
milk

? 1 Y Y Y 16

Y = present ; # = number of OGs; ? = unknown.
doi:10.1371/journal.pone.0068731.t001

Lactobacillus paracasei Comparative Genomics
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colour scheme to indicate for each measured phenotype which

OGs were important in the GTM (importance .0.005) and if the

OG was found under (,25%, red) or overrepresented (.75%,

green) among the phenotypic class. In addition to these overview

pages, HTML-based result pages per phenotypic test were

constructed that allow direct analyses of the distribution of the

most important OGs among the tested strains.

Results

Genome sequencing and comparison
The draft genome sequences were determined of 34 L. paracasei

strains isolated from various environments (dairy = 16 strains,

plant = 10, human/animal = 8) (Table 1). The statistics of

sequencing and assembly are summarized in Table S2. The

sequencing coverage ranged from 6–32x, the numbers of

assembled contigs from 71–1355, and the genome sizes from

2.7–3.1 Mb.

All sequenced and annotated genomes, as well as genomes of

three published reference strains, were subjected to an orthology

prediction using OrthoMCL. The results from this prediction were

converted into a gene presence/absence matrix (per strain), and

used to analyse the pan-genome, the core genome and the variome

(also called dispensable or divergent genome) of L. paracasei.

The L. paracasei pan-genome. The microbial pan-genome

is defined as the full complement of genes in a species, and is

typically applied to bacteria and archaea, which can have large

variations in gene content among closely related strains [21,23]. It

is the total set of all the genes found in all the strains of a species. A

first estimate of the L. paracasei pan-genome was calculated using

only the 10 RAST-annotated and 3 reference genomes, which

have manually curated ORF calling and annotation. We identified

a total of about 4200 OGs present in at least two L paracasei

genomes, of which ,230 OGs are presumably plasmid-encoded,

the ‘‘plasmid pan-genome’’ (see below). Figure 1 shows the

predicted pan-genome size as a function of the number of genomes

sequenced. It appears that the pan-genome size is levelling off (at

about 4300–4500 genes), as every extra genome adds less new

genes. This upper limit may be an overestimate, since some of the

draft genomes added have lower coverage, hence poorer ORF

prediction and usually overprediction of ORFs due to gene

fragments.

The L. paracasei core genome. The core genome is defined

as the orthologous genes (OGs) that are conserved in all strains of a

species. Figure 1 shows that the number of OGs in the core

genome decreases as more genome sequences are added, and

levels at about 1800 OGs; this may be an underestimate as more

core OGs will be missed in low-coverage sequenced genomes. The

protein-coding sequences of 183 highly conserved OGs were used

to construct a phylogenetic tree (Figure 2A), which represents the

evolutionary relatedness of the strains. This is essentially MLST

using 183 full-length proteins of the core genome, and the tree is

highly similar to an MLST tree generated for these strains from

seven housekeeping genes (fusA, ileS, leuS, lepA, pyrG, recA, recG) used

previously [13] (data not shown). However, based on MLST using

only these 7 genes, several strains could not be discriminated and

were classified as the same sequence type, e.g. Lpp226, Lpp189

and Lpp228 (ST2). As we expect to observe more polymorphisms

in 183 genes as compared to 7 genes, all strains that were identical

based on 7 genes could be discriminated (but are closely related in

Figure 1. Pan-genome prediction. The number of pan-genome OGs (blue) and core genome OGs (red) is shown as a function of genomes added
to the pan-genome. OGs present in only one annotated genome were not included if they appeared to represent gene fragments or overpredicted
small genes.
doi:10.1371/journal.pone.0068731.g001
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the tree) based on the 183 genes. Hence, there are as many

sequence types as strains.

There appears to be some correlation between the phylogenetic

relatedness and origin of isolation (i.e. dairy, mammal, plant, etc)

of these strains, but much less than we anticipated. Even though

some of the dairy isolates cluster together phylogenetically, these

strains originate from many different countries around the world

(data not shown).

As expected, the core genome includes genes for replication,

transcription, translation, central and cell wall metabolism,

biosynthesis of most amino acids and metabolism of nucleotides,

fatty acids and phospholipids. At least 270 OGs of the core

genome are annotated as hypothetical proteins, hence they are

totally conserved proteins of as yet unknown function. The core

genome also contains at least 15 sugar utilization gene clusters,

and a variety of cell-surface components, as discussed in detail

below. All L. paracasei strains contain an 8-gene cluster which is

very similar to the bkd operon of Enterococcus faecalis [61] involved in

the conversion of the branched-chain a-keto acids (BCKA) into

branched-chain fatty acids (Figure 3).

The L. paracasei variome. The gene presence/absence

matrix was also used for display in Genesis [60], in order to

construct bar plots of presence/absence of the different OGs

(Figure 4), and to construct a genome-relatedness or ‘‘pan-

genome’’ tree based on total genome content which may correlate

better with niche adaptation (Figure 2B). Although this pan-

genome tree based on the total OG presence/absence matrix is

different from the phylogenetic tree (Figure 2A), there are many

strains that cluster together based both on evolutionary (sequence

similarity) relatedness and on niche adaptation.

The pan-genome tree suggests that the strains can be

distinguished in 3 main groups A, B, and C. Group A contains

mainly strains of dairy origin, while groups B and C contain strains

of varying origin. The bar code plot in Figure 4 shows the pan-

genome OGs assembled according to their order in the three

circular reference genomes, starting with the entire chromosome,

and ending with known and putative plasmids. This pan-genome

assembly clearly shows that there are highly constant regions in the

37 genomes, but also highly variable regions which may relate to

niche adaptation.

Below we describe the functions encoded in the major variable

regions, and their distribution in the L. paracasei strains studied.

Plasmids and the plasmid pan-genome
Many unique functions of lactic acid bacteria have been shown

to be encoded on mobile elements such as plasmids and

transposons. These functions can include EPS biosynthesis,

bacteriocin biosynthesis, proteolysis and flavor formation, sugar

metabolism (e.g. lactose), heavy metal resistance, etc.

[62,63,64,65].

Contigs representing plasmids were predicted based on several

criteria (see Methods), and the main putative plasmids are listed in

Table S3. This plasmid pan-genome contains about 230 different

OGs, and the main encoded functions are listed in Table S4.

These functions are very similar to those found on plasmids of

other LAB, such as Lactococcus lactis [66] which is known for its

versatility of functions encoded on plasmids that contribute to the

production of flavour compounds and to lactose utilization in dairy

fermentations. However, the functions encoded on L. paracasei

plasmids are more limited, and do not appear to include flavour

formation, lactose utilization or bacteriocin production. As with

most plasmids of LAB, the fraction of hypothetical proteins of

unknown function encoded on L. paracasei plasmids is rather high

compared to those on L. paracasei chromosomes. The plasmids can

be classified into different groups based on sequence similarity to

each other. Several strains contain plasmids larger than 20 kb, as

do the reference genomes. Smaller contigs may represent

fragments of larger plasmids. No contigs representing plasmids

Figure 2. Genetic relatedness of strains. (A) phylogenetic tree based on sequence similarity of 183 orthologous genes present in all strains; (B)
pan-genome tree based on total genome content. Red = dairy strains; green = plant origin strains; black = human/animal origin strains; blue
= unknown origin.
doi:10.1371/journal.pone.0068731.g002
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are apparent in strains Lpp37, Lpp230, CNCM I4649, and in the

plasmid-free reference genome of strain BL23.

Horizontal gene transfer
A large highly variable region (,180 OGs) resembles an

inserted plasmid, transposon or integrative conjugative element

(ICE) [67,68] in the pangenome assembly, based on plasmid/

transposon-encoded functions, flanking a prophage region with an

integrase gene (Figure 4; OG region 780–960); the main encoded

functions of this transposon region are listed in Table S4. This

insert region has a much larger variety of functions than the

plasmids, in particular a set of transport functions. In some strains

this insert region is clearly contiguous with chromosomal genes,

and in other strains this region appears on a separate contig(s),

putatively a plasmid/transposon, or both; this differs per strain, as

does the OG content of this insert. Only strains Lpp230 and

Zhang lack this entire insert/plasmid region, including the

flanking prophage region. The large majority of genes in this

insert region have best Blast hits with 90–100% sequence identity

to very related bacteria, i.e. L. casei/paracasei, L. rhamnosus, L. zeae,

and a GC content very similar to the L. paracasei genome. Many

genes are similar to those on the published L. paracasei plasmids

(Table S1) and/or the 64-kb plasmid pLC1 of L. rhamnosus Lc705

[34]. One exception is a 7-gene cluster, present only in the highly

related plant-derived L. paracasei strains Lpl7 and Lpl14, that has

97–99% identity to an orthologous cluster in Oenococcus oeni, a

plant-associated lactic acid bacterium, suggesting that this gene

cluster has been acquired recently by the ancestor of Lpl7 and

Lpl14. However, it has not been acquired from O. oeni, as this gene

cluster only occurs in 2 of the 14 sequenced genomes of O. oeni and

Figure 3. Genetic potential of L. paracasei to produce short branched-chain fatty acids. from branched-chain a-keto acids (BCKA). (a)
Organization of the bkd operon in the L. casei strains and genetic context in other lactobacilli. The functions encoded by bkd genes (yellow) are: Ptb,
Phosphate butyryl-transferase; Buk, Butyrate kinase; BkdD, Dihydrolipoamide dehydrogenase; BkdA, 2-oxoisovalerate dehydrogenase a subunit; BkdB,
2-oxoisovalerate dehydrogenase b subunit; BkdC, Lipoamide acyltransferase component of BKDH complex; PanE, Ketopantoate reductase PanE/
ApbA. The locus tags of the respective 8 bkd genes in the reference genomes are: LSEI_1441–1148 in L casei ATCC 334, LCABL_16640–16710 in L.
casei BL23 and LCAZH_ 1429–1436 in L. casei Zhang. The black arrow and the stem-loop indicate a potential promoter and an r-independent
terminator, respectively. The genetic environment around the bkd operon of L. casei is conserved among other lactobacilli: orthologous genes are
shown by the same colour. PyrAB, Carbamoylphosphate synthase large subunit; PyrD, Dihydroorotate dehydrogenase PyrF; Orotidine-59-phosphate
decarboxylase; PyrE, Orotate phosphoribosyltransferase; FbpA, Fibronectin-binding protein, hypothetical protein LSEI_1438 (b) Branched-chain
amino acids (BAA) catabolism to fatty acids adapted after [61]. BAA are converted into BCKA via a BAA-amino transferase. The branched-chain a-keto
acid dehydrogenase (BKDH) complex is composed of BkdA, BkdB, BkdC and BkdD.
doi:10.1371/journal.pone.0068731.g003
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has a GC content of 55%, which is much higher than the GC

contents of L. paracasei (46%) and O. oeni (38%), and hence it

presumably has been acquired by both L. paracasei and O. oeni from

an as yet unknown donor.

Two strains (Lpp226, Lpp41) contain an 11-gene insert which is

99–100% identical to a fragment in L. plantarum genomes. Since all

sequenced L. plantarum genomes and related L. pentosus genomes

contain this fragment, but only two L. paracasei strains, it is

plausible that L. paracasei has acquired this fragment recently

through HGT. The encoded functions include a cobalt/nickel (or

cobalamin) ABC transporter and the larABCE genes for lactate

racemization [69]. The latter gene locus is responsible for

racemization of L-lactate to D-lactate which can be used in cell

wall biosynthesis, replacing the terminal D-Ala by D-lactate, and

thereby conferring vancomycin resistance to the cell.

More examples of HGT are given below in specific sections.

Sugar islands and metabolism
The L. paracasei genomes are found to contain numerous sugar

utilization cassettes (Figure 5) [20], many of which are clustered

on two very large sugar islands A and B (Figure 4; OG regions

390–640 and 3740–3970, respectively). Sugar island A has about

250 different OGs in the L. casei pan-genome, and contains at least

17 PTS-based cassettes, annotated as mannose (56, i.e.5 different

cassettes), fructose/mannitol (56), beta-glucosides, galactosamine,

galactitol/sorbitol, sorbose [70], cellobiose and xylose PTS, in

addition to a galactosides permease and a ribose ABC transporter.

Sugar island B of the L. casei pan-genome has about 230

different OGs, containing at least 20 PTS-based cassettes,

annotated as mannose (46), galactitol (66), alpha-glucosides

(26), cellobiose (26), glucose, fructose, glucitol/sorbitol, ascorbate,

and hyaluronate, and additional ABC transporters for ribose and

glycerol-3-phosphate.

The distribution of these sugar utilization cassettes is extremely

variable throughout the L. paracasei genomes, and particularly

within the sugar islands A and B. There are a total of 74 sugar

utilization cassettes (of which 63 PTS systems), and individual

strains contain between 25–53 of these cassettes (Figure 5).While

some strains contain the majority of the cassettes within sugar

islands A and B, other strains lack most of the sugar cassettes

(mainly Group A strains in Figure 2), and some strains lack nearly

the complete sugar islands A and/or B (e.g. strains Lpp22, Lpp41,

Lpp70, Lpp120) (see Figures 4 and 5). Only 15 of these sugar

cassettes are present in all genomes (i.e. belong to the core

genome), and they are all located outside the large sugar islands A

and B. The differences in overall genome size from 2.7–3.1 Mb

are largely due to these differences in presence/absence of sugar

islands A and B.

Complete cassettes for utilization of lactose (PTS; 4 genes),

maltose (ABC transport; 9 genes), myo-inositol (permease; 11

genes) and hyaluronate-oligosaccharide (PTS; 16 genes) are

present in only 20 strains, 21 strains, 19 strains and 28 strains,

respectively (Figure 5). The lactose PTS cassette appears to be

either on the chromosome or on a plasmid (as in strain ATCC

334). In some cases, one sugar cassette appears to replace another,

e.g. at one chromosomal location there is either a mannose PTS

cassette (22 strains), or a galactitol/sorbitol PTS cassette (8 strains),

or neither (8 strains). It is interesting that some specific sugar ABC

transport or PTS cassettes are present in only a few strains.

Surprisingly, none of these rare occurrences of sugar cassettes

appear to correlate with origin of strain isolation.

Figure 4. Bar plot of OG presence/absence for the L. paracasei strains ordered according to the reference genomes. This figure shows
all pan-genome OGs found to be present (white bar) or absent (black bar) on the genomes. The box at the bottom contains OGs on contigs which are
presumed plasmids. The pan-genome tree is shown at the top. The scale at the left represents pseudoassembly location relative to the reference
genomes. A description of highly variable regions is shown at the right. The GC content is presented in the middle (wavy line), ranging from 30–60%
(left to right).
doi:10.1371/journal.pone.0068731.g004
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Figure 5. Summary of sugar utilization cassettes. Each row represents the presence (green) or absence (red) of a sugar utilization cassette in
the strains listed at the top; D = dairy origin, P = plant origin, M = mammalian origin, U = unknown origin. The putative sugar(s) utilized, the type of
transport system, and the number of genes in each cassette are listed in the last three rows. Group A, group B and group C strains refers to Figure 2B.
Chromosomal location: A = cassette in sugar island A; B = cassette in sugar island B.
doi:10.1371/journal.pone.0068731.g005

Table 2. Main surface-associated and secreted proteins in 37 L. (para)casei strains.

protein/complex/cluster genes
strains
present

strains
absent notes reference

Pili gene cluster [34,35]

pilus proteins, pilus-specific
sortase

spaBCA-srtC1 36 1 absent in strain Lpp125

pilus proteins, pilus-specific
sortase

srtC2-spaDEF 37 0

Csc cell-surface complex
CscABCDa

[41,42]

Csc cluster 1 cscCDBBA 37 0

Csc cluster 2 cscBADC 36 1 absent in strain Lpp219

Csc cluster 3 cscBDBC 37 0

Csc cluster 4 cscADC 14 23

Csc cluster 5 cacBAAC 33 4 absent in strains Lpp17, Lpp46,
Lpp230, Zhang

Collagen/fibronection
adhesion proteins

[40]

collagen-binding protein CnbA cnbA 37 0 ,2700 AA; 11 CnaB domains;
LPSTE anchorb

collagen-binding protein CnbB cnbB 12 25 ,750 AA; 3–4 CnaB domains;
MPQTG anchor

collagen-binding protein CnbC cnbC 7 30 ,900 AA; 4–5 CnaB domains;
LPQTG anchor; only plasmid-encoded?

fibronectin-binding protein FbpA fnpA 37 0 ,576 AA; FbpA and DUF814
domains

Cell-wall hydrolases [34,36,38,39,103]

Msp2/p40 msp2 37 0

Msp1/p75 D-glutamyl-L-lysyl
endopeptidase

msp1 37 0

Cell-envelope proteinases subtilase family serine proteinases [43,44,45,46]

proteinase PrtP (and its
maturase PrtM)

prtP-prtM 37 0 ,1900 AA; LPKTA anchor

proteinase PrtR1, inactive
variant

prtR1c 37 0 ,1800 AA; LPQMA anchor

proteinase PrtR2 prtR2c 37 0 ,2230 AA; LPPMG anchor

proteinase PrtR3 prtR3 2 35 ,1500 AA; MPQAG anchor; only in
strains Lpp120, Lpp122;
plasmid-encoded

Glycoprotein gene cluster 11 genes, also encodes 3
glycosyltransferases

[47,48]

Ser/Ala-rich glycoprotein 10 27 ,2700 AA; LPQTG anchor

extracellular protein,
unknown function

10 27 ,580 AA; 2 Ig-like and 1 SCP
domains

extracellular protein,
unknown function

10 27 ,900 AA; 2 Ig-like domains

Wss secretion gene cluster 2 35 6 genes, WXG100 secretion system;
only in strains Lpp17 and Lpp230

[32,47,48,77,78,
79,80,81,82,83]

Extracellular proteins gene
cluster

4 genes, only in strains Lpp46, Zhang

3 extracellular proteins,
unknown function

2 35 no LPxTG-type peptidoglycan anchors

aThe csc gene cluster can encode different combinations of A, B, C and D subunits [41].
bRefers to LPXTG-type peptidoglycan anchors [104].
cPrtR1 and PrtR2 are encoded on adjacent genes.
doi:10.1371/journal.pone.0068731.t002

Lactobacillus paracasei Comparative Genomics

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e68731



Phages
There are about 10 regions with genes encoding typical

prophage proteins, containing a total of about 370 OGs, the

‘‘phage pan-genome’’. The positions of these regions are indicated

in Figure 4 relative to the reference genomes, but in fact some

prophages may be inserted at alternative positions, as this cannot

be deduced accurately from draft genome sequences. The GC

content of most phage regions is considerably lower (38–42%) than

the core chromosome (46%) (Figure 4).

CRISPRs
We searched our 34 sequenced genomes for cas genes and

CRISPR loci [71,72,73]. The Lcas1 locus has 4 cas genes and is

present in reference strains BL23 and Zhang but not in ATCC

334; these cas genes were found in 16 other strains (Table 1). The

Lcas2 locus has 8 cas genes in reference strain ATCC 334, and

these were found in only 3 other strains (Lpp74, Lpp122, Lpp221).

Only strain Lpp221 isolated from human faeces has both the

Lcas1 and Las2 loci, whereas 16 strains appear to have neither

CRISPR loci (Table 1). The Lcas1 locus was found in nearly all

Group C strains, in half of Group B strains, and in none of the

Group A dairy strains (see Figure 2B). The Lcas2 locus is found

in only a few unrelated strains, and has probably been acquired

more recently by HGT than the Lcas1 locus, as only the Lcas2 is

flanked by IS elements and has a GC content of 56–58%

(chromosome GC% is 46.5).

All of the Lcas1 CRISPR loci direct repeats and spacers

sequences found in the sequenced genomes were in complete

agreement with the PCR sequences obtained for those strains

(Table 1 and Supporting Information S1: CRISPR analysis). In

many cases, only fragments of the CRISPR loci sequences were

found in the assembled genomic contigs, as the numerous direct

repeat sequences of 36 nt often prevent proper assembly.

Nevertheless, 224 distinct Lcas1 spacers and 25 distinct Lcas2

spacers were identified from PCR and genome sequence analysis

together (Table S5). For the Lcas1 locus, 13 different CRISPR

types differing by the number and identity of CRISPR spacers are

distinguished (Table 1). These results show that the CRISPR loci

contribute to the genomic variation among L. casei/paracasei

strains.

Surface-associated and secreted proteins
All extracellular proteins encoded in the reference genomes of L.

casei ATCC 334 and BL23 have previously been predicted and

classified in the LAB Secretome Database [74]. The major

surface-associated and secreted proteins identified in the 37 L.

paracasei genomes are described below and summarized in

Table 2.

All L. paracasei strains (except strain Lpp125) have a 7-gene

cluster with the pilin-specific spaBCA genes, and all have the

spaDEF genes; this suggests that all L. paracasei strains have the

potential to synthesize pili which may play a role in mucus

binding, adhesion or biofilm formation. A very recent study

suggests that upstream insertion of an IS element, as in L.

rhamnosus, may be required to activate these genes [3]. Similarly,

both cell-wall hydrolases Msp2/p40 and Msp1/p75 appear to be

encoded in all L. paracasei strains analysed in our present study.

Several putative collagen-binding proteins are encoded in the L.

paracasei genomes. A large collagen-binding protein (,2700 AA) is

present in all sequenced L. paracasei strains, while a smaller

collagen-binding protein (,750 AA) is not found in the three

reference genomes, but is encoded in 12 other L. paracasei strains

on a putative plasmid that can also be inserted in the chromosome

(see above and Table 2). Four sequence variants of the latter

protein occur, and strains Lpp122 and Lpp41 actually encode two

and three different variants, respectively. A third putative collagen-

binding protein (,900 AA) is encoded on plasmid plca36 of L. casei

Zhang, and also occurs in 6 other strains on putative plasmids,

generally as a pseudogene. A single fibronectin-binding protein is

encoded in all genomes. The L. paracasei genomes have 5 csc gene

clusters, of which some are not present in all genomes (Table 2).

All L. paracasei genomes of our present study were found to

encode the same three cell-envelope-bound serine proteinases, i.e.

the PrtP ortholog (,1900 AA) and two proteins encoded on

adjacent genes representing the serine proteinase PrtR2

(,2230 AA) and an inactive variant PrtR1 (,1800 AA); all these

subtilases have an LPxTG-type peptidoglycan anchor. Several of

the PrtR orthologs appear to be pseudogenes, as has been

observed for L. casei ATCC 334 [19]. Moreover, the dairy strains

Lpp120 and Lpp122 have an extra intact and putatively active

PrtR homolog (,1530 AA), probably encoded on a plasmid (or

the large plasmid insert), which has a best BLAST hit (99% amino

acid identity) to an ortholog from Lactobacillus zeae, a strain isolated

from raw bovine milk [75].

An 11-gene cassette, present in 10 L. paracasei strains but not in

the reference genomes, encodes a very large serine/alanine-rich

LPxTG-anchored surface protein, in addition to two other

extracellular proteins and three glycosyltransferases. These family

1 glycosyltransferases are known to play a role in O-linked

glycosylation of serine-rich cell-surface proteins in streptococci

[76], and hence may be involved in glycosylating serine residues of

the large Ser/Ala-rich surface protein. The ten L. paracasei strains

containing this gene cassette are closely related both phylogenet-

ically and in genome content (only in a subset of Group C

genomes) (Figure 2). As this gene cassette has a GC content of

about 46%, it was probably acquired by a common ancestor of

these 10 strains through HGT a long time ago. This gene cassette

with a Ser/Ala-rich surface-anchored protein is also found in L.

rhamnosus strains. A 4-gene cassette encoding 3 extracellular

proteins with signal peptides is present in L. casei Zhang

(LCAZH_0540-0543) and only in the very closely related L.

paracasei strain Lpp46. These extracellular proteins of unknown

function do not have LPxTG-type peptidoglycan anchors, and are

not homologous to any proteins in the NCBI database. As this

locus has a GC content of 39.4% this cassette was probably

acquired through HGT by the direct ancestor of these 2 related

strains.

Two strains (Lpp17 and Lpp230) are found to contain a 6-gene

WXG100 secretion system (Wss), flanked by a transposase, which

has previously been called the Type VII secretion system

[77,78,79,80,81,82,83]. This gene cluster has highest similarity

to clusters in E. faecalis (25–52% amino acid sequence identity) and

Bacillus cereus (25–53%). A putative substrate or chaperone of this

Wss system, also encoded in the same gene cluster in these two L.

paracasei strains, is a 97-residue protein with a characteristic WxG

motif, no signal peptide, and highest similarity to proteins of

Clostridium acetobutylicum, Lactococcus lactis ssp. cremoris SK11 and

MG1363, streptococci and enterococci. The function of these

secreted proteins is not known. In streptococci and enterococci

members of this protein family are known as virulence factors, but

it has been argued that a better description would be ‘‘niche-

adaptation factors’’ [84]. The same WXG100 family protein is

also encoded in two other L. paracasei strains (Lpp77, Lpp123)

which do not appear to have the Wss system.
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Extracellular polysaccharides (EPS)
EPS biosynthesis gene clusters can be either chromosomally or

plasmid-encoded. In the L. paracasei genomes four regions appear

to represent EPS biosynthesis gene clusters (Table 1).

The EPS-1 region is a cassette of 7 EPS biosynthesis genes

which is present in ATCC 334 (LSEI_0231–0240), BL23 and 13

other strains. Two of the genes encode rhamnosyltransferases,

suggesting that rhamnose is a component of the synthesized EPS.

The EPS-2 region is a cassette of 18 EPS biosynthesis genes

present in strain Zhang (LCAZH_1934 -1955) and 13 other

strains, but essentially absent in the other strains. The 37 L.

paracasei strains studied here have either region EPS-1 (15 strains)

or EPS-2 (14 strains or neither (8 strains); none of the strains has

both EPS clusters (Table 1). The EPS-1 region is mainly found in

Group B genomes, whereas the EPS-2 region is mainly found in

Group C genomes; no correlation with sequence-based phylogeny

(Figure 2A) or niche is evident (Table 1).

The EPS-3 region of ,45 OGs (Figure 4; OG region 2950–

3000) is very variable in composition, and appears to consist of 3–4

different variants of gene cassettes, each totalling about 10–20

genes. All but 8 strains (see column EPS3A in Table 1) have the

rmlDBCA operon for conversion of D-glucose-1-phosphate into

dTDP-L-rhamnose, suggesting that rhamnose is an important

constituent of EPS in most L. paracasei strains. The EPS-4 region of

8 genes is only present in one strain (Lpp225), and possibly

represents a teichoic acid biosynthesis gene cluster. This region is

not included in the chromosomal pan-genome pseudo-assembly,

as its location is unknown and could even be plasmid-located as it

is on a contig with a transposase, a restriction-modification system,

and toxin-antitoxin systems. Its GC content is 40% and its origin

through HGT is not clear as the individual genes of EPS-4 region

have best BLAST hits to various gram-positive bacteria; some

encoded proteins are even 100% identical to those of phylogenet-

ically related species L. rhamnosus, L. buchneri and L. zeae.

Taken together, it appears that strains of dairy origin in general

have the least EPS biosynthesis genes, and strains isolated from

plants or humans the most (Table 1). A few strains have very few

genes for EPS biosynthesis, e.g. CNCM I-4648, Lpp71 and

Lpp122; the latter 2 genomes are highly related (Figure 2).

Transporters
Some ABC transporter cassettes are found to be quite variable

in the 37 L. paracasei genomes, and this could be related to

phylogenetic distance, niche adaptation and/or growth require-

ments:

– A taurine ABC transporter (9 gene cassette), is present in strain

Zhang and 11 other strains; these strains basically all belong to

Group C (see Figure 2B) and are therefore related in genome

content and presumably have a common ancestor which

acquired this cassette for taurine uptake. However, the strains

originate from many different niches.

– One glycine betaine ABC transporter (5 gene cassette), is

present only in strain Zhang and 2 other strains (Lpp46,

Lpp126). There are several other highly conserved glycine

betaine ABC transporters encoded in all genomes.

– A ferric ion ABC transporter (5 gene cassette), directly linked to

a two-component regulatory system, is present in 13 strains at

the same chromosomal location, but not in the three reference

genomes. There does not appear to be any relationship

between these strains, as they come from both plant, dairy and

human environments. This ferric ion ABC transporter is not

found in any other LAB, and its closest homologs (48–84%

identity) are in a gene cluster of Enterococcus italicus and some

streptococci.

– A cobalt/nickel ECF transporter (4-gene cassette), is present

only in the unrelated strains Lpp226 and Lpp41. This

transporter is on a larger fragment that is 99–100% identical

to L. plantarum (see above).

– A specific peptide ABC transporter (4 gene cassette) is present

only in strain BL23 and 5 other strains, mainly from Group B

genomes. Some of the strains cluster together, i.e. Lpp189/

Lpp228 and Lpp37/Lpp223/BL23 (Figure 2B). These

encoded proteins have 94–100% identity to L. rhamnosus. The

significance is not clear, as there are also several oligopeptide

ABC transporters and antimicrobial peptide transporters in all

genomes.

Very few of these variable ABC transporters appear to be

correlated with niche adaptation, contrary to what may be

expected.

Gene trait matching (GTM)
Sugar metabolism. Among the growth profiles on different

carbon sources, several results were obtained that demonstrated

the power of the GTM method (details of GTM results can be

found in Table S6). In growth studies on lactose, saccharose

( = sucrose), galactitol, mannitol, cellobiose, ribose, sorbitol and

sorbose we observed matches with genes clearly involved in sugar

metabolism (Table 3, Figure 6). In some cases, these genes were

even specifically annotated as involved in the breakdown or uptake

of the specific sugar. A good example is a 4-gene lactose PTS

cassette which is absolutely required for growth on lactose.

Apparently none of the many other PTS systems can utilize

lactose. The contig information indicates that this lactose gene

cluster is generally on the chromosome, but in some strains could

be on a plasmid.

Only 2 strains grow on galactitol, which correlates with the

presence of a 6-gene galactitol PTS cassette in sugar island A,

corresponding to genes LCAZH_0323–0328 of L. casei strain

Zhang. This is remarkable, since sugar island B contains 6

cassettes annotated as galactitol PTS and hence it would appear

that either this annotation is incorrect or the cassettes are all

inactive under the conditions tested, possibly due to strict

regulation.

Growth on mannitol does not correlate with the 5 cassettes

annotated as fructose/mannitol PTS in sugar island B, but does

correlate with a 4-gene putative galactosamine PTS cassette, and

also with a putative phosphonate ABC transporter. Lack of growth

on the sugars cellobiose, ribose, sorbitol and sorbose correlates

with the absence of large parts of the sugar islands A and/or B,

and in general the lacking parts include cassettes annotated to be

specific for those sugars (see Figure 5 and Table 3; details in

Table S6).

No specific genes were found to be significantly correlated with

growth on gluconate, melezitose, galactosamine, maltose or

mannose, even though some sugar utilization cassettes are

annotated as being specific for galactosamine, maltose and

mannose. For mannose this is perhaps not surprising, since at

least 12 cassettes are annotated as mannose PTS, and hence there

is a great redundancy of mannose utilization cassettes. The only

two strains that do not grow on mannose lack the majority of these

putative mannose PTS systems, but not all.

These results validate the use of Phenolink for matching gene

presence and absence to phenotypic properties, and clearly

provides many leads for improving annotation of genes.
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Origin of isolation. We also performed a GTM analysis

using the origin of each strain as input to Phenolink. The Random

Forrest algorithm was able to classify the 16 strains of dairy and 10

strains of plant origin very well, but not the 8 strains of human/

animal origin (data not shown). The latter are mostly fecal strains

of which the origin is rather dubious as they can originate from

ingested food. However, no specific genes or gene clusters were

found to correlate with strain origin of isolation.

Discussion

Our study is one of the first reports of a large number of draft

genome sequences of Lactobacillus strains of the same species (L.

paracasei) originating from different niches, including dairy, plant

and human isolates. Comparative genomics has allowed the

identification of many new genes and gene clusters compared to

previously published (reference) L. paracasei genomes.

The size of the core genome is found to be roughly proportional

to the total size of a single reference genome of each LAB species,

i.e. for S. thermophilus (core genes 1271/total genes1900; n = 47)

[85], L. lactis (1268/2300; n = 39) [66], O. oeni (1591/1691; n = 10)

[28], L. plantarum (2049/2956; n = 42) [86], L. sakei (1449/1879;

n = 18), L. reuteri (1463/2170; n = 57) [87], L. salivarius (1668/2184

; n = 33 strains) [88] and L. casei (1941/2678; n = 21) [19].

A very interesting component of the core L. paracasei genome is

an 8-gene cassette which encodes biosynthesis of short branched-

chain fatty acids. Four genes of this cluster (bkdABCD) encode the

branched-chain a-keto acid dehydrogenase (BKDH) complex that

converts the BCKA into the corresponding branched-chain acyl-

coenzyme A’s by an oxidative decarboxylation. These molecules

are then transformed into free fatty acids (e.g.isobutyrate,

isovalerate) by two successive reactions catalyzed by the phospho-

butyrylase (Ptb) and the butyrate kinase (Buk). Ptb exhibits a broad

substrate specificity [61] leading to various C2 to C8 acylpho-

sphate derivatives. These branched-chain short fatty acids are

known to have a beneficial role on the preservation of the integrity

of the colonic epithelium and that are associated with many

biological properties in the healthy or diseased gut [89,90]. These

include the maintenance of epithelial integrity, inhibition of

inflammation and modulation of energy metabolism [91]and

prevention of oxidative damage to colon cells [92]. In L. paracasei

this pathway may allow the generation of ATP from amino acid

metabolism under anaerobic conditions. Hence it can give these

microbes a ‘‘fitness advantage’’ in protein-rich anaerobic environ-

ments. Among all sequenced Lactobacillus strains to date, L.

paracasei is the only species containing the bkd genes allowing the

production of branched-chain fatty acids from BCKA. The

genomic context around the bkd operon is conserved (Figure 3a)

in other lactobacilli, which strongly suggests that the bkd operon

had been horizontally acquired in L. paracasei. However, this

presumably happened a very long time ago, since all L. paracasei

strains carry this operon, and since the 49–50% GC content of this

operon is only slightly higher than the L. paracasei genome average

of 46.5%, and much higher than the 40% GC content of the E.

faecalis operon.

Our present study now also provides a first insight in the core

and pan-genome of a Lactobacillus species, and its variome or

flexible gene pool. The core genome estimated from the full

genome sequences of 37 L. paracasei strains is about 1800 OGs (or

gene families), slightly lower than the estimate by CGH [19]. The

fact that this core genome contains about 270 gene families of

unknown function indicates that there is still much to be learned

Figure 6. Example of the GTM output. The first column lists the sugar tested, and the second and third columns indicate the number of strains
that grow (positive) or do not grow (negative) on that sugar. Relevant OGs and their annotation are listed in columns four and five. All coloured cells
indicate OGs important for the classification of the specified phenotype (at top). Green cells indicate presence of the OG (.75%), red indicates
absence of the OG (.75%). OGs that are important for the classification of the phenotype but are not present or absent in a large fraction of the
strains are coloured black.
doi:10.1371/journal.pone.0068731.g006
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about the functions of highly conserved and possibly essential

genes in L. paracasei, and this probably also applies to large

genomes of other LAB such as L. plantarum, L. pentosus and L. brevis.

The flexible gene pool is estimated to be at least 2400 OGs, and it

appears to level off as more genomes are added (Figure 1). The

gene families of the L. paracasei variome can be roughly broken

down into phages (370 OGs; 15%), plasmids (230 OGs; 10%),

transposon/conjugative element (180 OGs; 7%), sugar utilization

cassettes (320 OGs; 13%), hypothetical proteins (880 OGs; 37%)

and other known functions (420 OGs; 18%); the latter group

contains e.g. cell-surface proteins, transporters, CRISPR-associat-

ed proteins (Cas), EPS biosynthesis proteins, transposases of IS

elements, etc. The number of hypothetical protein families of

unknown function is actually more than 1200 OGs (50% of the

variome), as the categories phages, plasmids and transposon also

contain numerous hypothetical proteins.

The presence and size of plasmids is rather difficult to determine

from draft genomes, as plasmids generally contain many IS

elements and hence the assembled contigs rarely represent

complete plasmids. Nevertheless, we applied several criteria to

identify putative plasmids, and conclude that the variome appears

to contain many different plasmids, some larger than 20 kb

(Tables S3 and S4), and an integrative conjugative element

which could consist of plasmid fragments inserted into the

chromosome. Lactococcus lactis is also known to harbour a large

variety of plasmids, with functions related to transport, heavy

metal resistance, proteolysis, lactose utilization and EPS biosyn-

thesis [66]. Much less is known about plasmids in lactobacilli, and

Table 3. Overview of significant gene-trait matching results corresponding to growth/no growth of 34 strains in the presence of
different sugars.

sugar
strains
growth

strains no
growth regions, OG functions

lactose 21 13 4-gene cassette, includes:

. lactose PTS transport system

.6-phospho-beta-galactosidase

. beta-glucoside bgl operon antiterminator

saccharose ( = sucrose) 17 17 . sucrose-6-phosphate hydrolase

galactitol ( = dulcitol) 2 32 6-gene cassette, includes:

. galactitol PTS

. tagatose-6-phosphate kinase

. sorbitol-6-phosphate 2-dehydrogenase

4-gene cassette, includes:

. L-proline/glycine-betaine ABC transporter

mannitol 31 3 4-gene cassette, includes:

. galactosamine PTS

. galactosamine-6-phosphate isomerase

. N-acetylglucosamine-6-phosphate deacetylase

. glycosyl hydrolase, family 35 (beta galactosidase 3?)

7-gene cassette, includes:

. phosphonate/sulfonate ABC transporters

cellobiose 29 5 large parts of sugar islands A and B, includes:

. alpha-glucosides PTS

. maltose-69-phosphate glucosidase

ribose 26 8 parts of sugar islands A and B, includes:

. part of ribose utilization operon

. alpha-glucosides PTS

. maltose-69-phosphate glucosidase

sorbitol ( = glucitol) 19 15 large parts of sugar islands A and B, includes:

. galactitol PTS

. galactosamine PTS

. ascorbate PTS

. cellobiose PTS

. fructose/mannitol PTS

sorbose 21 13 large parts of sugar island A, includes:

. sorbose PTS

. many other sugar PTS

doi:10.1371/journal.pone.0068731.t003
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few are described in the NCBI database (http://www.ncbi.nlm.

nih.gov/genome/?term = lactobacillus%20plasmid). L. paracasei

strains are known to contain larger plasmids (Table S1) and we

found fragments similar to these plasmids in many genomes of this

study (Table S3). L. rhamnosus Lc705 has a 64-kb plasmid which

resembles the conjugative element in our L. paracasei genomes.

It has been shown in several other lactic acid bacteria, e.g. L.

plantarum [20,86], L. casei [19], Oenococcus oeni [28] and Lactococcus

lactis [66], that genes for sugar uptake and metabolism can be very

variable between strains. These genes are generally organized in

gene cassettes or modules, encoding a transporter (1–4 subunits), a

regulator, and enzymes for sugar breakdown [20], with each

cassette (semi)-specific for a certain sugar. The presence or absence

of entire cassettes can be highly variable, and is presumed to reflect

adaptation to growth on particular sugar substrates in different

niches. Often many sugar metabolism cassettes are clustered

together on the chromosome, in so-called lifestyle or sugar islands

[66,86,93]. Deviating base compositions of these genomic islands

and cassettes suggest they may have been acquired through

horizontal gene transfer (HGT) [94].

In the L. paracasei pan-genome we identified 74 sugar utilization

cassettes, including 63 PTS-based cassettes, of which many are

localized in two large genomic islands (Figure 5). The number of

sugar cassettes varies enormously between L. paracasei strains, as

25–53 total cassettes were found per strain, of which 18–44 PTS

systems. Most strains contain 35 or more PTS systems, which is

considerably higher than reported for other LAB such as L.

pentosus, L. johnsonii, L. acidophilus, L. salivarius and L. plantarum with

16, 16, 20, 23 and 25 PTS [93,95,96,97,98]. However, the latter

numbers refer to single genomes of each species, and it is quite

likely that higher numbers of PTS systems may be found upon

sequencing of more strains of each LAB species. Nevertheless,

several important conclusions about sugar utilization can be drawn

from our L. paracasei pan-genome analysis. First, L. paracasei

appears to be highly adapted to growth on a large variety of

carbohydrates. Second, there are at least 15 sugar cassettes which

occur in all strains investigated and hence belong to the core

genome of L. paracasei. Third, there are large differences between

the types and number of sugar utilization cassettes, and most of the

variable cassettes are organized in two large genomic islands, or

‘‘sugar life-style’’ islands. Fourth, a subgroup of strains of mainly

dairy origin (Group A in Figure 2B), has significantly lower

numbers of PTS cassettes, i.e. 18–30 (Figure 5), as also observed

in the CGH study of L. casei strains [19], possibly reflecting the fact

that in the rich dairy niches there is no longer the necessity to

maintain uptake systems for a large variety of different carbohy-

drates. Several reports have shown that adaptation to the dairy

niche can be associated with a major deletion and inactivation of

genes which are no longer required for the rich dairy environment.

Examples are Streptococcus thermophilus, L. delbrueckii ssp. bulgaricus

and L. helveticus, organisms used in yogurt and cheese manufacture

which have suffered massive gene decay leading to loss of functions

in carbohydrate metabolism, amino acid and cofactor biosynthesis

[99,100,101,102]. This large inter-strain diversity of sugar

utilization cassettes presumably applies to most other LAB, and

has been substantiated for L. plantarum by CGH and genome

sequencing [20,86], and for O. oeni by genome sequencing [28].

The evolution, relatedness and niche adaptation of L. paracasei

strains appears to be a complex story. The phylogenetic tree based

on sequence similarity of core genes (Figure 2A) is not the same as

the phylogenomic tree based on total genome contents

(Figure 2B), albeit that there are sets of strains that cluster

closely together in both trees, suggesting that these are closely

related in evolution, e.g. Lpl7/Lpl14, Lpp48/Lpp225, Lpp7/

Lpp71/Lpp122, Lpp46/Zhang, Lpp74/Lpp27, Lpp223/BL23,

etc. However, in many cases these closely related strains have been

isolated from completely different niches (Table 1), which casts

some doubt on the validity of niche/isolation source of some of

these strains. A similar observation was made in a strain diversity

study of L. plantarum, where the human isolates (generally from

faeces) were mostly scattered throughout the phylogenomic tree,

suggesting that they originated from the food eaten by the

individuals [86].

In the phylogenomic tree (Figure 2B), three major groups A-B-

C can be distinguished which show clear differences in genome

content relating to e.g. CRISPRs, sugar utilization cassettes, EPS

biosynthesis genes, but again only group A is mainly of dairy

origin, and groups B and C are of mixed origin. This indicates that

the relationships between niche adaptation and phylogenetic

clusters is not simple, suggesting ecological flexibility/diversity

within these groups. A common loss of genes is evident in the dairy

strains of group A, but acquisition of genes and gene clusters by

HGT is also evident in some branches or sub-branches. There are

examples of early acquisition of gene clusters, which are present in

a larger set of strains and have a GC content reasonably close to

that of the L. paracasei chromosome, and such genes are often also

present in related species such as L. rhamnosus and L. zeae. But there

are also examples of recent acquisition of gene clusters present in

only a few related strains, where the GC content deviates much

more, suggesting recent HGT.

We hypothesized that the ability to utilize carbon sources as a

growth substrate is likely to be an important fitness driver in the

different niches that are inhabited by L. paracasei. We therefore

refined our niche-adaptation analysis by trying to establish

correlations between sugar utilization gene (cassette) presence/

absence and isolation source. Strains were divided in three

different groups: strains from plant origin, mammalian origin and

dairy origin. Our strain set contained a total of 16 strains that were

isolated from dairy substrates. It is perhaps important to note that

five of these strains originated from commercial dairy products,

and the inoculating strain may have been from a completely

different origin, e.g. human gut. Eleven strains originate from

artisanal dairy products from countries where the fermented milk

products are homemade and are produced by re-inoculating with

the same strains. These are relatively ‘‘open’’ ecosystems and

hence they may be subject to entry of strains from non-dairy

origin. Our results clearly demonstrate that 7 of these dairy strains

cluster together (in Group A) and contain a reduced number of

sugar cassettes (33 average, see Figure 5) and a reduced genome

size (2.8 Mb average). The ‘‘dairy niche’’ is characterized by a

very limited spectrum of carbohydrates, where lactose is the

predominant sugar. Hence, ‘‘genome reduction’’ by eliminating

sugar cassettes for plant-derived sugars might be an effective

strategy to optimize fitness. No clear genomic signatures could be

identified for plant and mammal-derived isolates. This may be

explained by at least two reasons. Firstly, the plant-derived isolates

do not originate from a single homogenous niche but rather from

an array of niches that may differ largely in sugar content and

physico-chemical conditions, making it unlikely that a single

optimized genomotype exists. Mammalian isolates mostly origi-

nated from the gut which is an open ecosystem that is continuously

exposed to food-derived transiting microbes that may originate

from dairy or plant-based products, which interferes with the

identification of mammal-niche genomotypes [86].

The gene-trait matching (GTM) experiments have clearly

demonstrated that genes or gene clusters (cassettes) can be

identified which correlate with growth or non-growth on specific

sugars. In several cases the present annotation of genes in cassettes
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(e.g. PTS) did not agree with the observed phenotype (Tables 3
and S6), suggesting that the annotation may be wrong, too specific

or too broad. The GTM results obtained for growth on sugars has

provided a proof-of-principle for the Phenolink gene-trait match-

ing protocol, and provide clear leads for validation of the gene-

trait relations. However, the causality of correlations between the

identified genes and the observed sugar utilization phenotypes has

not been proven yet. Additional experiments such as knocking out

target genes, or over-expressing the genes in strains that lack the

phenotype, will increase the understanding of the type of relation

between the target gene and phenotype. This observation

increases the likelihood that GTM will also identify valid leads

for mechanistic understanding in other, more complex pheno-

types, also in cases where the link between the phenotype and the

matching genes is less clear. In addition these genes can be used

for the large-scale screening of culture collections for the presence

of strains with the desired phenotype, thereby increasing the value

and diversity of the strains in the culture collection.

There is also a clear advantage of genome sequencing as a basis

for gene-trait matching (GTM) in comparison to comparative

genome hybridization (CGH) data. Since the microarray platform

used for CGH is often based on the genome sequence of a single

strain, one would only find presence/absence patterns of the OGs

for which a representative is present in the strain used for the array

design. In case of L. paracasei, if the ATCC 334 reference strain was

used for the microarray design, one would miss information on a

large number of pan-genome genes, which could have a big effect

on the GTM results.

Finally, our pan-genome analysis of L. paracasei strains has also

provided a first insight in the variability of many cell-surface

proteins and exopolysaccharides (Tables 1 and 2). Some of these

extracellular proteins are found to be fully conserved, belonging to

the core genome, whereas other extracellular proteins and

exopolysaccharides are highly variable, occurring in only a limited

number of strains. In general, strains of dairy origin have the least

EPS biosynthesis genes, and strains isolated from plants or humans

the most. The finding that several factors that have been

associated with host-microbe interactions such as pili, the cell-

envelope proteinase PrtP or proteins Msp2/p40 and Msp1/p75

have been found in all analysed L. paracasei strains suggests that

those factors are not exclusively responsible for the specific

interaction of one strain with host cells. These factors belonging to

the core genome of the L. paracasei species are probably part of the

complex machinery involved in the cross talk between bacterial

strains and human or animal gut.

Supporting Information

Figure S1 Comparison of MLST and CRISPR typing of
strains. Neighbor-joining tree based on seven MLST gene

sequences (fusA, ileS, leuS, lepA, pyrG, recA, recG) used previously [13].

Sequence type (ST) and CRISPR type (CT) are given for each

strain. CT numbers 21 and 0 designate strains with no PCR

amplification and strains with no CRISPR locus, respectively. Red

dots indicate strains which were selected for genome sequencing.

(PPTX)

Table S1 Reference L. (para)casei strains and genomes.

(DOCX)

Table S2 Statistics of L. paracasei genome sequencing.

(XLSX)

Table S3 Examples of putative Lactobacillus paracasei
plasmids (or their fragments).

(DOCX)

Table S4 Encoded functions on (putative) plasmids and
on the putative inserted plasmid/transposon region.

(DOCX)

Table S5 CRISPR loci variants. A/ Lcas1 sequences of
the direct repeats and spacers, B/ Lcas2 sequences of
the direct repeats and spacers.

(XLSX)

Table S6 Overview of significant gene-trait matching
results corresponding to growth of strains in the
presence of different sugars.

(XLSX)

Supporting Information S1 CRISPR analysis.

(DOCX)

Author Contributions

Conceived and designed the experiments: TS JHV MW CC SB RS.

Performed the experiments: JP SB CC MW. Analyzed the data: SB CC JB

MW JP RS. Contributed reagents/materials/analysis tools: SB JB MW.

Wrote the paper: RS TS JHV.

References

1. Salminen S, von Wright A, Ouwehand AC (2004) Lactic Acid Bacteria:

Microbiological and Functional Aspects. New York: Marcel Dekker, Inc.

2. Holzapfel WH, Wood BJB (1998) The genera of lactic acid bacteria London

Blackie Academic & Professional.

3. Douillard FP, Ribbera A, Jarvinen HM, Kant R, Pietila TE, et al. (2013)

Comparative Genomic and Functional Analysis of Lactobacillus casei and

Lactobacillus rhamnosus Strains Marketed as Probiotics. Applied and

Environmental Microbiology 79: 1923–1933.

4. de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv

Biochem Eng Biotechnol 111: 1–66.

5. Marchand J, Vandenplas Y (2000) Micro-organisms administered in the benefit

of the host: myths and facts. Eur J Gastroenterol Hepatol 12: 1077–1088.

6. Dellaglio F, Felis GE, Torriani S (2002) The status of the species Lactobacillus

casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei

Collins et al. 1989. Request for an opinion. Int J Syst Evol Microbiol 52: 285–

287.

7. Dicks LM, Du Plessis EM, Dellaglio F, Lauer E (1996) Reclassification of

Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus

ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the

neotype of L. casei subsp. casei, and rejection of the name Lactobacillus

paracasei. Int J Syst Bacteriol 46: 337–340.

8. Klein G (2006) International Committee on Systematics of Prokaryotes;

Subcommittee on the Taxonomy of Bifidobacterium, Lactobacillus and related

organisms: Minutes of the meetings, 1 and 2 April 2005, Stuttgart-Hohenheim,

Germany. Int Journal of Systematic and Evolutionary Microbiology 56: 2501–

2503.

9. Bacteria JCotICoSo (2008) The type strain of Lactobacillus casei is ATCC 393,

ATCC 334 cannot serve as the type because it represents a different taxon, the

name Lactobacillus paracasei and its subspecies names are not rejected and the

revival of the name ‘Lactobacillus zeae’ contravenes Rules 51b (1) and (2) of the

International Code of Nomenclature of Bacteria. Opinion 82. International

Journal of Systematic and Evolutionary Microbiology 58: 1764–1765.

10. Klein G (2009) International Committee on Systematics of Prokaryotes;

Subcommittee on the Taxonomy of Bifidobacterium, Lactobacillus and related

organisms. International Journal of Systematic and Evolutionary Microbiology

59: 3181–3183.

11. Boge T, Remigy M, Vaudaine S, Tanguy J, Bourdet-Sicard R, et al. (2009) A

probiotic fermented dairy drink improves antibody response to influenza

vaccination in the elderly in two randomised controlled trials. Vaccine 27:

5677–5684.

12. De Preter V, Raemen H, Cloetens L, Houben E, Rutgeerts P, et al. (2008)

Effect of dietary intervention with different pre- and probiotics on intestinal

bacterial enzyme activities. Eur J Clin Nutr 62: 225–231.

13. Diancourt L, Passet V, Chervaux C, Garault P, Smokvina T, et al. (2007)

Multilocus sequence typing of Lactobacillus casei reveals a clonal population

structure with low levels of homologous recombination. Appl Environ

Microbiol 73: 6601–6611.

Lactobacillus paracasei Comparative Genomics

PLOS ONE | www.plosone.org 16 July 2013 | Volume 8 | Issue 7 | e68731



14. Guillemard E, Tanguy J, Flavigny A, de la Motte S, Schrezenmeir J (2010)

Effects of consumption of a fermented dairy product containing the probiotic
Lactobacillus casei DN-114 001 on common respiratory and gastrointestinal

infections in shift workers in a randomized controlled trial. J Am Coll Nutr 29:
455–468.

15. Guillemard E, Tondu F, Lacoin F, Schrezenmeir J (2010) Consumption of a
fermented dairy product containing the probiotic Lactobacillus casei DN-

114001 reduces the duration of respiratory infections in the elderly in a
randomised controlled trial. Br J Nutr 103: 58–68.

16. Merenstein DJ, Hu H, Robison E, Levine AM, Greenblatt R, et al. (2010)

Relationship between complementary/alternative treatment use and illicit drug

use among a cohort of women with, or at risk for, HIV infection. J Altern
Complement Med 16: 989–993.

17. Sur D, Manna B, Niyogi SK, Ramamurthy T, Palit A, et al. (2011) Role of

probiotic in preventing acute diarrhoea in children: a community-based,

randomized, double-blind placebo-controlled field trial in an urban slum.
Epidemiol Infect 139: 919–926.

18. Cai H, Rodriguez BT, Zhang W, Broadbent JR, Steele JL (2007) Genotypic

and phenotypic characterization of Lactobacillus casei strains isolated from
different ecological niches suggests frequent recombination and niche

specificity. Microbiology 153: 2655–2665.

19. Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL (2009) Genome

sequence and comparative genome analysis of Lactobacillus casei: insights into
their niche-associated evolution. Genome Biol Evol 1: 239–257.

20. Siezen RJ, van Hylckama Vlieg JE (2011) Genomic diversity and versatility of
Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact 10

Suppl 1: S3.

21. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The
microbial pan-genome. Curr Opin Genet Dev 15: 589–594.

22. Mira A, Martin-Cuadrado AB, D’Auria G, Rodriguez-Valera F (2010) The
bacterial pan-genome:a new paradigm in microbiology. Int Microbiol 13: 45–

57.

23. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. (2005)

Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:
implications for the microbial "pan-genome". Proc Natl Acad Sci U S A 102:

13950–13955.

24. Muzzi A, Donati C (2011) Population genetics and evolution of the pan-
genome of Streptococcus pneumoniae. Int J Med Microbiol 301: 619–622.

25. Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, et al. (2012) Comparative
genomics of enterococci: variation in Enterococcus faecalis, clade structure in

E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus.
MBio 3: e00318-00311.

26. Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61
sequenced Escherichia coli genomes. Microb Ecol 60: 708–720.

27. Jacobsen A, Hendriksen RS, Aaresturp FM, Ussery DW, Friis C (2011) The

Salmonella enterica pan-genome. Microb Ecol 62: 487–504.

28. Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ (2012) Compar-

ative analysis of the Oenococcus oeni pan genome reveals genetic diversity in
industrially-relevant pathways. BMC Genomics 13: 373.

29. Ai L, Chen C, Zhou F, Wang L, Zhang H, et al. (2011) Complete genome

sequence of the probiotic strain Lactobacillus casei BD-II. J Bacteriol 193:

3160–3161.

30. Chen C, Ai L, Zhou F, Wang L, Zhang H, et al. (2011) Complete genome
sequence of the probiotic bacterium Lactobacillus casei LC2W. J Bacteriol 193:

3419–3420.

31. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, et al. (2006)

Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A
103: 15611–15616.

32. Maze A, Boel G, Zuniga M, Bourand A, Loux V, et al. (2010) Complete

genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol

192: 2647–2648.

33. Zhang W, Yu D, Sun Z, Wu R, Chen X, et al. (2010) Complete genome
sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from

traditional homemade koumiss in Inner Mongolia, China. J Bacteriol 192:
5268–5269.

34. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, et al.
(2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals

pili containing a human- mucus binding protein. Proc Natl Acad Sci U S A
106: 17193–17198.

35. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, et al.
(2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus

GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 76: 2049–
2057.

36. Claes IJ, Schoofs G, Regulski K, Courtin P, Chapot-Chartier MP, et al. (2012)
Genetic and biochemical characterization of the cell wall hydrolase activity of

the major secreted protein of Lactobacillus rhamnosus GG. PLoS One 7:
e31588.

37. Lebeer S, Claes I, Tytgat HL, Verhoeven TL, Marien E, et al. (2012)

Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion

and immunomodulatory interactions with intestinal epithelial cells. Appl
Environ Microbiol 78: 185–193.

38. Bauerl C, Perez-Martinez G, Yan F, Polk DB, Monedero V (2010) Functional

analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J Mol

Microbiol Biotechnol 19: 231–241.

39. Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced

apoptosis in intestinal epithelial cells. J Biol Chem 277: 50959–50965.

40. Symersky J, Patti JM, Carson M, House-Pompeo K, Teale M, et al. (1997)

Structure of the collagen-binding domain from a Staphylococcus aureus

adhesin. Nat Struct Biol 4: 833–838.

41. Siezen R, Boekhorst J, Muscariello L, Molenaar D, Renckens B, et al. (2006)
Lactobacillus plantarum gene clusters encoding putative cell-surface protein

complexes for carbohydrate utilization are conserved in specific gram-positive

bacteria. BMC Genomics 7: 126.

42. Brinster S, Furlan S, Serror P (2007) C-terminal WxL domain mediates cell

wall binding in Enterococcus faecalis and other gram-positive bacteria.
J Bacteriol 189: 1244–1253.

43. Siezen RJ, Renckens B, Boekhorst J (2007) Evolution of prokaryotic subtilases:

genome-wide analysis reveals novel subfamilies with different catalytic residues.

Proteins 67: 681–694.

44. Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010) The proteolytic

system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics

11: 36.

45. Pritchard GG, Coolbear T (1993) The physiology and biochemistry of the

proteolytic system in lactic acid bacteria. FEMS Microbiol Rev 12: 179–206.

46. von Schillde MA, Hormannsperger G, Weiher M, Alpert CA, Hahne H, et al.

(2012) Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by

selectively degrading proinflammatory chemokines. Cell Host Microbe 11:

387–396.

47. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:

623–633.

48. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular

polysaccharides involved in biofilm formation. Molecules 14: 2535–2554.

49. Bayjanov JR, Molenaar D, Tzeneva V, Siezen RJ, van Hijum SA (2012)

PhenoLink – a web-tool for linking phenotype to ,omics data for bacteria:

application to gene-trait matching for Lactobacillus plantarum strains. BMC

Genomics 13: 170.

50. Bayjanov JR, Starrenburg MJ, van der Sijde MR, Siezen RJ, van Hijum SA

(2013) Genotype-phenotype matching analysis of 38 Lactococcus lactis strains

using random forest methods. BMC Microbiol 13: 68.

51. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST

Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.

52. Borodovsky M, Mills R, Besemer J, Lomsadze A (2003) Prokaryotic gene

prediction using GeneMark and GeneMark.hmm. Curr Protoc Bioinformatics

Chapter 4: Unit4 5.

53. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved

microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636–

4641.

54. Guo FB, Ou HY, Zhang CT (2003) ZCURVE: a new system for recognizing

protein-coding genes in bacterial and archaeal genomes. Nucleic Acids Res 31:
1780–1789.

55. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, et al. (2010)

Prodigal: prokaryotic gene recognition and translation initiation site identifi-

cation. BMC Bioinformatics 11: 119.

56. Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of

orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314:

1041–1052.

57. Fischer S, Brunk BP, Chen F, Gao X, Harb OS, et al. (2011) Using OrthoMCL

to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new
ortholog groups. Curr Protoc Bioinformatics Chapter 6: Unit 6 12 11–19.

58. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res 32: 1792–1797.

59. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

60. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of

microarray data. Bioinformatics 18: 207–208.

61. Ward DE, Ross RP, van der Weijden CC, Snoep JL, Claiborne A (1999)

Catabolism of branched-chain alpha-keto acids in Enterococcus faecalis: the

bkd gene cluster, enzymes, and metabolic route. J Bacteriol 181: 5433–5442.

62. Davidson BE, Kordias N, Dobos M, Hillier AJ (1996) Genomic organization of

lactic acid bacteria. Antonie Van Leeuwenhoek 70: 161–183.

63. Gasson MJ (1990) In vivo genetic systems in lactic acid bacteria. FEMS

Microbiol Rev 7: 43–60.

64. McKay LL (1983) Functional properties of plasmids in lactic streptococci.

Antonie Van Leeuwenhoek 49: 259–274.

65. Schroeter J, Klaenhammer T (2009) Genomics of lactic acid bacteria. FEMS

Microbiol Lett 292: 1–6.

66. Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, et al.
(2011) Genome-scale diversity and niche adaptation analysis of Lactococcus

lactis by comparative genome hybridization using multi-strain arrays. Microb

Biotechnol 4: 383–402.

67. Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and

conjugative elements. Res Microbiol 155: 376–386.

68. Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic

mobile genetic elements enabling dynamic lateral gene flow. Nat Rev

Microbiol 8: 552–563.

69. Goffin P, Deghorain M, Mainardi JL, Tytgat I, Champomier-Verges MC, et
al. (2005) Lactate racemization as a rescue pathway for supplying D-lactate to

Lactobacillus paracasei Comparative Genomics

PLOS ONE | www.plosone.org 17 July 2013 | Volume 8 | Issue 7 | e68731



the cell wall biosynthesis machinery in Lactobacillus plantarum. J Bacteriol

187: 6750–6761.

70. Yebra MJ, Veyrat A, Santos MA, Perez-Martinez G (2000) Genetics of L-

sorbose transport and metabolism in Lactobacillus casei. J Bacteriol 182: 155–

163.

71. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria

and archaea. Science 327: 167–170.

72. Horvath P, Coute-Monvoisin AC, Romero DA, Boyaval P, Fremaux C, et al.

(2009) Comparative analysis of CRISPR loci in lactic acid bacteria genomes.

Int J Food Microbiol 131: 62–70.

73. Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, et al.

(2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus

thermophilus. J Bacteriol 190: 1401–1412.

74. Zhou M, Theunissen D, Wels M, Siezen RJ (2010) LAB-Secretome: a genome-

scale comparative analysis of the predicted extracellular and surface-associated

proteins of Lactic Acid Bacteria. BMC Genomics 11: 651.

75. Kim DW, Choi SH, Kang A, Nam SH, Kim DS, et al. (2011) Draft genome

sequence of Lactobacillus zeae KCTC 3804. J Bacteriol 193: 5023.

76. Takamatsu D, Bensing BA, Sullam PM (2005) Two additional components of

the accessory sec system mediating export of the Streptococcus gordonii

platelet-binding protein GspB. J Bacteriol 187: 3878–3883.

77. Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, et al. (2009) Systematic

genetic nomenclature for type VII secretion systems. PLoS Pathog 5:

e1000507.

78. Bitter W, Houben EN, Luirink J, Appelmelk BJ (2009) Type VII secretion in

mycobacteria: classification in line with cell envelope structure. Trends

Microbiol 17: 337–338.

79. Desvaux M, Hebraud M, Talon R, Henderson IR (2009) Outer membrane

translocation: numerical protein secretion nomenclature in question in

mycobacteria. Trends Microbiol 17: 338–340.

80. Desvaux M, Hebraud M, Talon R, Henderson IR (2009) Secretion and

subcellular localizations of bacterial proteins: a semantic awareness issue.

Trends Microbiol 17: 139–145.

81. Pallen MJ (2002) The ESAT-6/WXG100 superfamily – and a new Gram-

positive secretion system? Trends Microbiol 10: 209–212.

82. Simeone R, Bottai D, Brosch R (2009) ESX/type VII secretion systems and

their role in host-pathogen interaction. Curr Opin Microbiol 12: 4–10.

83. Sutcliffe IC (2011) New insights into the distribution of WXG100 protein

secretion systems. Antonie Van Leeuwenhoek 99: 127–131.

84. Hill C (2012) Virulence or niche factors; what’s in a name? J Bacteriol.

85. Rasmussen TB, Danielsen M, Valina O, Garrigues C, Johansen E, et al. (2008)

Streptococcus thermophilus core genome: comparative genome hybridization

study of 47 strains. Appl Environ Microbiol 74: 4703–4710.

86. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, et al. (2010)

Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated

from various environmental niches. Environ Microbiol 12: 758–773.

87. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, et al. (2011) The

evolution of host specialization in the vertebrate gut symbiont Lactobacillus

reuteri. PLoS Genet 7: e1001314.

88. Raftis EJ, Salvetti E, Torriani S, Felis GE, O’Toole PW (2011) Genomic

diversity of Lactobacillus salivarius. Appl Environ Microbiol 77: 954–965.
89. Kles KA, Chang EB (2006) Short-chain fatty acids impact on intestinal

adaptation, inflammation, carcinoma, and failure. Gastroenterology 130: S100-

105.
90. Wollowski I, Rechkemmer G, Pool-Zobel BL (2001) Protective role of

probiotics and prebiotics in colon cancer. Am J Clin Nutr 73: 451S–455S.
91. Segain JP, Raingeard de la Bletiere D, Bourreille A, Leray V, Gervois N, et al.

(2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition:

implications for Crohn’s disease. Gut 47: 397–403.
92. Abrahamse SL, Pool-Zobel BL, Rechkemmer G (1999) Potential of short chain

fatty acids to modulate the induction of DNA damage and changes in the
intracellular calcium concentration by oxidative stress in isolated rat distal

colon cells. Carcinogenesis 20: 629–634.
93. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, et

al. (2003) Complete genome sequence of Lactobacillus plantarum WCFS1.

Proc Natl Acad Sci U S A 100: 1990–1995.
94. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, et al. (2005)

Exploring Lactobacillus plantarum genome diversity by using microarrays.
J Bacteriol 187: 6119–6127.

95. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, et al.

(2005) Complete genome sequence of the probiotic lactic acid bacterium
Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102: 3906–3912.

96. Anukam KC, Macklaim JM, Gloor GB, Reid G, Boekhorst J, et al. (2013)
Genome Sequence of Lactobacillus pentosus KCA1: Vaginal Isolate from a

Healthy Premenopausal Woman. PLoS One 8: e59239.
97. Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, et al. (2006)

Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad

Sci U S A 103: 6718–6723.
98. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, et al. (2004) The

genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii
NCC 533. Proc Natl Acad Sci U S A 101: 2512–2517.

99. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, et al. (2004)

Complete sequence and comparative genome analysis of the dairy bacterium
Streptococcus thermophilus. Nat Biotechnol 22: 1554–1558.

100. Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K, et al. (2008)
Genome sequence of Lactobacillus helveticus, an organism distinguished by

selective gene loss and insertion sequence element expansion. J Bacteriol 190:
727–735.

101. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, et al. (2005) New insights

in the molecular biology and physiology of Streptococcus thermophilus
revealed by comparative genomics. FEMS Microbiol Rev 29: 435–463.

102. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, et al. (2006) The
complete genome sequence of Lactobacillus bulgaricus reveals extensive and

ongoing reductive evolution. Proc Natl Acad Sci U S A 103: 9274–9279.

103. Lebeer S, Claes IJJ, Balog CIA, Schoofs G, Verhoeven TLA, et al. (2012) The
major secreted protein Msp1/p75 is O-glycosylated in Lactobacillus rhamnosus

GG. Microbial Cell Factories 11.
104. Ton-That H, Marraffini LA, Schneewind O (2004) Protein sorting to the cell

wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694: 269–278.

Lactobacillus paracasei Comparative Genomics

PLOS ONE | www.plosone.org 18 July 2013 | Volume 8 | Issue 7 | e68731


