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Purpose: This study proposes a cascaded network model for generating high-resolution
doses (i.e., a 1 mm grid) from low-resolution doses (i.e., ≥3 mm grids) with reduced
computation time.

Methods: Using the anisotropic analytical algorithm with three grid sizes (1, 3, and 5 mm)
and the Acuros XB algorithm with two grid sizes (1 and 3 mm), dose distributions were
calculated for volumetric modulated arc therapy plans for 73 prostate cancer patients. Our
cascaded network model consisted of a hierarchically densely connected U-net (HD U-
net) and a residual dense network (RDN), which were trained separately following a two-
dimensional slice-by-slice procedure. The first network (HD U-net) predicted the
downsampled high-resolution dose (generated through bicubic downsampling of the
baseline high-resolution dose) using the low-resolution dose; subsequently, the second
network (RDN) predicted the high-resolution dose from the output of the first network.
Further, the predicted high-resolution dose was converted to its absolute value. We
quantified the network performance using the spatial/dosimetric parameters (dice
similarity coefficient, mean dose, maximum dose, minimum dose, homogeneity index,
conformity index, and V95%, V70%, V50%, and V30%) for the low-resolution and predicted
high-resolution doses relative to the baseline high-resolution dose. Gamma analysis
(between the baseline dose and the low-resolution dose/predicted high-resolution
dose) was performed with a 2%/2 mm criterion and 10% threshold.

Results: The average computation time to predict a high-resolution axial dose plane was
<0.02 s. The dice similarity coefficient values for the predicted doses were closer to 1
when compared to those for the low-resolution doses. Most of the dosimetric parameters
for the predicted doses agreed more closely with those for the baseline than for the low-
resolution doses. In most of the parameters, no significant differences (p-value of >0.05)
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between the baseline and predicted doses were observed. The gamma passing rates for
the predicted high-resolution does were higher than those for the low-resolution doses.

Conclusion: The proposed model accurately predicted high-resolution doses for the
same dose calculation algorithm. Our model uses only dose data as the input without
additional data, which provides advantages of convenience to user over other dose super-
resolution methods.
Keywords: deep learning, cascaded networks, dose super-resolution, dose grid size, prostate volumetric
modulated arc therapy
INTRODUCTION

Volumetric modulated arc therapy (VMAT) delivers radiation
doses, with variable dose rate, continuously via the dynamic
movement of gantry/multileaf collimator (MLC) leaves, and is
capable of delivering highly conformal prescription doses to the
target while minimizing to the exposure for organs at risks
(OARs) (1–4).The advantages of VMAT are that it has fewer
monitor unit requirements and a shorter delivery time compared
to intensity modulated radiation therapy (IMRT). Consequently,
VMAT is the preferred technique in many clinics (5). Precise
dose calculation is paramount to ensure accurate dose delivery
using VMAT (6). In general, the dose calculation is performed
using various algorithms, including collapsed cone convolution
(CCC) (7), the anisotropic analytical algorithm (AAA) (8, 9),
Acuros XB (AXB) (10, 11), and X-ray voxel Monte Calro (12), in
commercial treatment planning systems (TPSs). Among these
algorithms, the AAA and the AXB algorithm are widely utilized
through the Eclipse TPS (Varian Medical Systems, Palo Alto,
CA, USA).

Several previous studies have reported that dose grid size is
related to the accuracy of dose calculations using the AAA and
the AXB algorithms in VMAT/IMRT plans. (13-19) With film/
Monte Carlo evaluations, Gagne et al. (13) showed that AAA
dose calculations with a 5 mm grid caused >2% dosimetric error
than those with finer grids (≤ 2.5 mm) in a simple RapidArc (a
form of VMAT used by Varian Medical Systems) plan. Ong et al.
(14) reported that dose differences relating to grid size (2.5 vs.
1 mm) for the AAA calculation were up to 20% and 5% for small
MLC fields and a RapidArc plan, respectively. Kan et al. (15)
demonstrated that using the AXB algorithm with a 1 mm grid
improved dose accuracies (within 3%) as opposed to a 2.5 mm
grid using verification of point doses in anthropomorphic
phantom for a stereotactic IMRT plan. They recommended the
use of a 1 mm grid in a stereotactic plan using a computed
tomography (CT) image with 1.25 mm slice spacing. Akino et al.
(16) showed that superficial doses (for a breast IMRT plan)
calculated using the AAA with a 1 mm grid are closer to
measured doses (by film) than those using a 2.5 mm grid.
They demonstrated that, compared with a 2.5 mm grid, the
use of a 1 mm grid improved dose underestimation from 19.1%
to 12.0%. Through gamma evaluation of the IMRT plan for head
and neck patients, Srivastava et al. (17) found that doses based on
the AAA with a 1 mm grid showed closest agreement with the
2

measured doses (by film) compared to AAA dose calculations for
several grid sizes (2, 3, 4, and 5 mm). Their findings indicated
that use of a 1 mm grid is essential for treating head and neck
patients via the IMRT plan because of small OARs involved, for
example, optic nerve and cochlea. Chow et al. (18, 19) showed
there were variations of dose volume parameters and
radiobiological parameters on planning target volume (PTV),
rectal wall, and rectum according to changes of grid sizes (from 1
to 5 mm with 1 mm intervals) using AAA calculation in prostate
VMAT plan.

As reported in aforementioned studies, a 1 mm grid facilitates
precise dose calculation by reducing the volume averaging effect
(20, 21), which becomes more pronounced when using larger
grid sizes (>1 mm). Specially, larger grid sizes can lead to
noticeable errors in highly modulated plans (14), stereotactic
plans (15), surface/superficial regions (16), and small OAR
structures (17). Furthermore, errors for radiobiological
parameters (tumor control probability and normal tissue
complication probability) can occur on several regions (PTV,
rectum wall, and rectum) in prostate VMAT (18, 19). These
errors may cause a clinically significant problem in above
mentioned cases. Therefore, a 1 mm grid is the most suitable
for performing accurate dose calculations.

Despite the dosimetric advantage associated with using a
1 mm grid, many clinics typically use 2–5 mm grids because of
relatively long computation time for a 1 mm grid. We reported
the computation times for the AAA and the AXB algorithm
according to grid sizes in prostate VMAT plans (AAA with a
1 mm grid: 2,211 ± 155 s, AAA with a 3 mm grid: 245 ± 27 s,
AAA with a 5 mm grid: 130 ± 10 s, AXB with a 1 mm grid:
4061 ± 922 s, AXB with a 2 mm grid: 671 ± 91 s, AXB with a
3 mm grid: 262 ± 26 s) in a previous study (22).

Recent advances in artificial intelligence technology such as
machine learning (linear regression, regression tree, support
vector machine, deep neural network, and etc.) have helped
solve complex problems in radiotherapy (23), such as auto-
segmentation (24, 25), dose prediction (26–28), synthetic CT
image generation (29, 30), and prediction of treatment planning
evaluation parameters (31) as well as support for time-
consuming work like patient-specific quality assurance (32,
33). In general, these artificial intelligence models need a
relatively long computation time to training. However, once
they are learned, the computation time to solve a problem is
very short. Because of this advantage, several groups have
November 2020 | Volume 10 | Article 593381
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recently proposed a dose super-resolution method with reduced
computation time using deep learning (34, 35). Dong and Xing
(34) presented Deep DoseNet, which transformed the AAA-
calculated dose with a 5 mm grid to that generated by AXB
algorithm with a 1.25 mm grid. In their proposed network,
downsampled CT and dose slices were used simultaneously as
the inputs. The authors used beam dose distributions derived
from artificially generated plans according to iso-center location,
field size, and gantry angle rather than clinical plans.
Alternatively, Sumida et al. (35) suggested a U-net based
model, which used the AAA-calculated dose with a 5 mm grid
and a CT image as the inputs, to predict the AXB-calculated dose
with a 2 mm grid for applying prostate VMAT. Although these
previously proposed deep learning networks predicted the high-
resolution dose accurately, several caveats should be noted,
including the use of simplified datasets based on beam dose
distribution rather than clinical data (34) or the prediction of
doses for a 2 mm grid only (35); a simplified dataset could lead to
ideal results without clinical relevance, and doses calculated with
a 2 mm grid are less accurate than those with a 1 mm grid.

To overcome these limitations, we propose a cascaded
network model capable of generating high-resolution doses
(with a 1 mm grid) from low-resolution doses (with ≥3 mm
grids) with reduced computation time in prostate VMAT. This
paper describes the details of network construction/data
preparation (acquisition, preprocessing, data selection, and
augmentation)/network training and quantifies the network
performance by calculating the spatial/dosimetric parameters
for the low-resolution and predicted high-resolution doses
relative to the baseline high-resolution dose with a 1 mm grid.
MATERIALS AND METHODS

Network Construction
Our cascaded network model consisted of (a) a hierarchically
densely connected U-net (HD U-net) (27), which utilizes both
local and global information with efficient feature propagation/
reuse, and (b) a residual dense network (RDN) (36), which is
capable of using hierarchical features from the input data to their
full extent, as shown in Figure 1. Each network was trained
separately in a two-dimensional (2D) slice-by-slice procedure.
The first network (HD U-net) predicted the downsampled high-
resolution dose (generated through bicubic downsampling of the
baseline high-resolution dose with a 1 mm grid) using the low-
resolution dose with a large grid (≥3 mm). Then, the second
network (RDN) predicted the high-resolution dose with a 1 mm
grid using the output from the first network as its input. Finally,
the predicted high-resolution dose was converted to its absolute
value. Figure 2 illustrates the schematic workflow for generating
super-resolution doses using our network model. Our proposed
networks predicted the high-resolution dose with a single super-
resolution scale in the same dose calculation algorithm. We
generated three models according to calculation algorithms
and grid sizes: (a) AAA 5 model (predictions from AAA-
calculated dose with a 5 mm grid to that with a 1 mm grid),
Frontiers in Oncology | www.frontiersin.org
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(b) AAA 3 model (from AAA-calculated dose with a 3 mm grid
to that with a 1 mm grid), and (c) AXB 3 model (from AXB-
calculated dose with a 3 mm grid to that with a 1 mm grid).

Hierarchically Densely Connected U-Net (HD U-Net)
The HD U-net predicts the downsampled high-resolution dose
(derived from the baseline dose with a 1 mm grid) using the low-
resolution dose as the input. Therefore, the network was trained
using low-resolution (input) and downsampled high-resolution
dose (label) datasets. Figure 1A describes the modified HD U-net
structure used in this study; a grow rate (defined as the number of
added new feature maps via each convolution operation) and an
activation function were modified to 24 and a leaky rectified linear
unit (ReLU), respectively. Ingeneral, the originalHDU-net (24)has
a similar structure to the original U-net (37) except for two
operations: (a) dense convolution and (b) dense downsampling.
In the modified HD U-net used herein, the dense convolution
included a 3×3 convolution (stride 1 and 24 filters) with a leaky
ReLU and a concatenation with the previous feature map. The
dense downsampling consisted of a 3×3 convolution (stride 2 and
24 filters) with a leaky ReLU, a 2×2 max pooling (stride 2), and a
concatenationwith the convolved andmax-pooled featuremaps. In
the left side of the HD U-net, the dense convolution and
downsampling operations were repeated 4 times at a ratio of 2:1.
In the right side, the dense downsampling was replaced with a 2×2
transposed convolution with 64 filters for upsampling. Each
upsampled feature map was concatenated with the corresponding
feature map from the left side (known as skip connection). At the
last layer, a 3×3 convolution (stride 1 and filter 1) without an
activation function was used to map 161 features to 1 feature.

Residual Dense Network (RDN) for Super-Resolution
Weused theRDNstructure for image super-resolutionproposedby
Zhang et al. (36). TheRDNusedherein predicts the high-resolution
dosewith a 1mmgrid fromthe output of theHDU-net.Toperform
this prediction, we trained the RDN using the downsampled high-
resolution dose (input) and the high-resolution dose (label). As
shown in Figure 1B, the RDN consisted of a shallow feature
extraction operation, residual dense blocks (RDBs), dense feature
fusion, global residual learning, and an efficient sub-pixel
convolution neural network (ESPCN) (38). The shallow feature
extraction was performed first, using two 3×3 convolution layers
(stride 1 and 64 filters) without an activation function. The RDB
included densely connected layers (with each layer connected to
other all layers in a feed-forward fashion), local feature fusion (a
concatenation of feature maps from each layer, followed by 1×1
convolution) and local residual learning. The dense feature fusion
was processed by a concatenation of feature maps from four RDBs,
followed by 1×1 convolution (stride 1 and 32 filters). The global
residual learning was performed via skip connection between the
output of the first convolved layer and the output of the last layer
(before upsampling). The ESPCN, which performed upsampling
via rearrangement of the pixels of feature maps, was applied to the
upsampling layer. At the last layer, a 3×3 convolution (stride 1 and
filter 1) without activation function was used to map 32 features to
1 feature.
November 2020 | Volume 10 | Article 593381
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Data Preparation
Data preparation consisted of acquisition, preprocessing
(normalization and cropping), data selection, and augmentation
steps. For the data acquisition, 73 patients who received prostate
VMAT (prescription: 78Gy/39 fractions for 20 patients and 70Gy/
28 fractions for 53 patients), were selected. For each patient, dose
distributions were computed according to calculation algorithms
and grid sizes under the same treatment plan; the high-resolution
doses (with a 1mm grid for both the AAA and the AXB algorithm)
and low-resolutiondoses (with 3 and 5mmgrids for theAAAand a
3 mm grid for the AXB algorithm) were acquired. Subsequently,
downsampled high-resolution doses were generated by bicubic
interpolation of the high-resolution doses to a matrix size of the
low-resolution doses. The datasets were split uniformly at random
into training (80%) and test groups (20%). In preprocessing, the
Frontiers in Oncology | www.frontiersin.org 4
doses for test/training datasets were normalized according to the
prescription dose to correct for bias deriving from different
prescription doses (78 or 70 Gy). Then, cropping was used to
remove unnecessary regions such as those outside of the body
structure. In the data selection step, only axial dose planes having a
pixeldosewith>10%of theprescription (empirically selected value)
were selected. This data selection process was not applied to the test
dataset used to quantify the network performance. Finally, the
training dataset was augmented using flip and rotations (from −15
to 15° with 5° intervals).

Data Acquisition
The Institutional Review Board (IRB) of our institute approved
the data collection (Seoul National Bundang Hospital Protocol
B-2004/608-112). Computed tomography images were acquired
A

B

FIGURE 1 | Structures of the two deep learning networks used in this study, which were connected in a cascaded manner: (A) modified hierarchically densely
connected U-net (HD U-net); (B) residual dense network (RDN) for super-resolution based on sub-pixel convolution. The HD U-net used a low-resolution dose as an
input, with the output of the HD U-net used subsequently as an input of the RDN. The numbers above the colored boxes indicate the number of feature maps. The
anisotropic analytical algorithm (AAA) 3, AAA 5, and AXB 3 models indicate network models for ×3 super-resolution scale (predictions from 3 mm to 1 mm grid) in
AAA and ×5 super-resolution scale (from 5 mm to 1 mm grid) in the AAA, and ×3 super-resolution scale in the AXB algorithm, respectively.
November 2020 | Volume 10 | Article 593381
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for 73 prostate cancer patients using a CT scanner (Brilliance CT
Big Bore, Philips, Eindhoven, Netherlands). The pixel spacing of
the acquired CT images was 1.17×1.17 mm2. These CT images
were exported to Eclipse TPS (version 13.7.16, Varian Medical
System, Palo Alto, CA, USA). Then, contours for PTV and OARs
(rectum, bladder, and left/right femoral heads) were delineated
by a radiation oncologist. Subsequently, prostate VMAT plans
were generated with prescription doses of 78 Gy in 39 fractions
(53 patients) or 70 Gy in 28 fractions (20 patients). The details of
the plan information, including dose volume constraint, were
described in our previous study (22). For each patient, the dose
distributions were computed using the AAA and the AXB
algorithm according to grid sizes under the same plans. In
total, the high-resolution doses (with a 1 mm grid for the both
the AAA and the AXB algorithm) and low-resolution doses (with
3 and 5 mm grids for the AAA and a 3 mm grid for the AXB
algorithm) were obtained. To match the coordinates between the
high-resolution doses and low-resolution doses, we rigidly
registered (translation in left–right, superior–inferior, and
anterior–posterior directions) the high-resolution doses to the
coordinates of the low-resolution doses using Image Position and
Orientation information on DICOM headers. Then, we
downsampled the high-resolution doses to the matrix size of
the low-resolution doses using bicubic interpolation. Finally, the
Frontiers in Oncology | www.frontiersin.org 5
dose datasets were split uniformly at random into training (80%)
and test groups (20%). The distribution of the datasets can be
seen in the Supplementary Data.

Preprocessing
The preprocessing step comprised normalization and cropping.
First, the datasets were normalized according to the prescription
dose to correct for bias derived from the two different
prescriptions (i.e., 78 or 70 Gy). Cropping was used to remove
irrelevant regions such as those outside of the body structure,
and was performed to fit the following matrix sizes: (a) 96×128
for a 3 mm grid, (b) 64×80 for a 5 mm grid, (c) 288×384 for a
1 mm grid, and (d) 320×400 for a 1 mm grid. The 96×128 and
64×80 sizes indicated the matrix dimensions for axial dose planes
using 3 and 5 mm grids, respectively. The other sizes represented
the matrix dimensions of axial dose planes in the high-resolution
doses. The 96×128 and 288×384 dose planes were paired
together for training of the AAA 3/AXB 3 models (defined in
Materials and Methods. A.). For training of the AAA 5 model,
64×80 dose planes were paired with 320×400 dose planes.

Data Selection and Augmentation
We selected only axial dose planes having a pixel dose >10% of the
prescription (empirically selected value). This is because, for each
FIGURE 2 | Schematic overview of the proposed dose super-resolution workflow for network training and testing. Training data were preprocessed with
normalization/cropping and augmented using flip/rotations. Two networks (hierarchically densely connected U-net, HD U-net; residual dense network, RDN) are
trained separately (solid black arrows), and then connected in a cascaded manner in testing (dashed red arrows). The first network (HD U-net) predicts the
downsampled high-resolution dose plane using the low-resolution dose plane. The second network (RDN) predicts the high-resolution dose using output from the
first network as its input. Finally, the predicted high-resolution dose was converted to its absolute value.
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patient, most dose planes did not include a sharp dose gradient
region near a PTV structure even though the effect of grid size on
dose accuracy would be relevant to this region (16, 39). This data
selection process was not applied to the test dataset used to
quantify the network performance. We augmented the training
dataset using flip and rotations from −15 to 15° with 5° intervals.

Network Training and Assessment
Our proposed cascaded networks (HD U-net and RDN) were
trained separately using training dataset. The test dataset produced
no effects, such as network hyperparameter tuning, during the
training process. The HD U-net (first network) was trained with
the low-resolution doses (input) and downsampled high-resolution
doses (label) for the same dose calculation algorithm. After the
downsampled high-resolution dose (input) and the corresponding
high-resolution dose planes (label) were converted to percentages,
the RDN (second network) was trained using these data regardless
of the dose calculation algorithm. We trained three models
(defined in Materials and Methods. A.), and the trained models
were evaluated using the test dataset. The training-evaluation cycle
was repeated 5 times using a five-fold cross validation technique.
We averaged the outcome from these five repetitions.

The performance assessment focused on the quantification of the
spatial/dosimetric parameters and gamma analysis (40) for the low-
resolution and predicted high-resolution doses relative to the baseline
high-resolution doses. For the spatial assessment, the differences in
the dose distributions were created by subtracting the baseline from
the low-resolution doses/predicted high-resolution doses, respectively.
In addition, the dice similarity coefficient (DSC) values (between the
baseline dose and the low-resolution dose/predicted high-resolution
dose) were plotted as curves ranging from 0% to 100% isodose
volume. For the assessment of dosimetric parameters, first, we
calculated dose volume histograms (DVHs) for the PTV and OARs
in the baseline, low-resolution doses, and predicted high-resolution
dose. The dosimetric parameters, including mean dose, maximum
dose, minimum dose, homogeneity index (HI), conformity index
(CI), and percentage volume receiving n% of the prescription doses
(such as V95% for PTV, V70% for rectum/bladder, V50% for rectum/
bladder, and V30% for rectum/bladder), were then analyzed. Three-
dimensional global gamma analysis (between the baseline dose and
the low-resolution dose/predicted high-resolution dose) was
performed with a 2%/2 mm criterion and 10% threshold in PTV,
rectum, and bladder. Moreover, statistical analyses were performed
for the dosimetric parameters/gamma passing rate using either the
paired t-test or Wilcoxon singed rank test after a normality check
using the Shapiro-Wilk test.

Details of Training
We trained the cascaded networks (HD U-net and RDN,
respectively) separately. To train the HD U-net (the first
network in the cascaded networks), the low-resolution dose
planes (input) and the corresponding downsampled high-
resolution dose planes (label) for the same dose calculation
algorithm were used. We defined the loss function as the mean
square error between the predicted dose (network output) and
the label dose planes. At the start of the training process,
Frontiers in Oncology | www.frontiersin.org 6
trainable parameters for the network were initialized by the
Glorot uniform initializer (41). The network parameters were
optimized by minimizing the loss function using the Adam
optimizer (42) with a default setting (b1 = 0.9, b2 = 0.999, ϵ =
1.0e-8). This optimization was performed with a learning rate of
10-4 over 100 epochs using mini-batch learning (size = 20). Prior
to the training the RDN (second network), the downsampled
high-resolution dose (input) and the corresponding high-
resolution dose planes (label) were converted to percentages.
Then, the RDN was trained using these data, regardless of the
dose calculation algorithm. The initialization and optimization
of the network parameters were performed following the same
procedure as for the HD U-net. The implementations were
conducted on a desktop computer (NDVIA Geforce GTX 1050
Ti 4GB) using a framework of TensorFlow 2.0.0 (43). This
training was applied to the AAA 3, AAA 5, and AXB 3 models.

Spatial Assessment
Dose distribution differences were generated by subtracting the
baseline high-resolution doses from the low-resolution doses
(which were linearly interpolated to a matrix size consistent with
the baseline) and the predicted high-resolution doses, respectively.
In addition, to quantify the accuracy, the DSCs for the isodose
volume between the baseline and low-resolution doses/predicted
doses were calculated according to the following equation:

DSC =
2 A ∩ Bj j
Aj j + Bj j

where A and B denote the binary volumes by threshold (≥ arbitrary
isodose) for the baseline and other doses, respectively. We plotted
the DSC curves ranging from 0 to 100% isodose volumes.

Dosimetric Assessment
To quantify the dosimetric accuracy, dose volume histograms for
the PTV and OARs (rectum, bladder, left/right femoral heads)
were calculated for the baseline high-resolution, predicted high-
resolution, and low-resolution doses.

For the PTV, dosimetric parameters, such as the mean dose,
maximum dose, minimum dose, and the V95% (the ratio of the
percentage of volume irradiated by 95% or more of the prescription
dose to the PTV), were calculated. Furthermore, the HI (describing
the uniformity of the dose distribution within the target) and CI (the
ratio of the reference isodose volume to the PTV) were calculated
via the following equations:

Homogeneity index (HI) =
D2 − D98

D50

where D2, D98, and D50 denote the doses covering 2%, 98%, and
50% of the PTV, respectively, and

Conformity index (CI) =
VRI

TV

where VRI denotes the reference isodose volume (set at 95%) for the
body, and TV represents the physical volume of the PTV.
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For the rectum/bladder, mean, maximum, andminimum doses
as well as Vn%, which is the ratio of the volume irradiated by n% or
more of the prescription dose to the OAR volume (set at n = 70,
50, and 30), were evaluated. For left/right femoral heads, mean,
maximum, and minimum doses were analyzed.

Gamma Analysis
Three-dimensional gamma evaluation was performed to
quantitatively compared the baseline high-resolution dose and
low-resolution dose/predicted high-resolution dose in the PTV,
rectum, bladder. The gamma passing rate was acquired under a
dose difference/distance-to-agreement acceptance criterion (2%/
2 mm) for global normalization. A low dose threshold was set to
10% of maximum dose (typically used value in clinic).

Statistical Analysis
Statistical analyses were performed to evaluate the statistical
significance between the baseline high-resolution doses and the
low-resolution/predicted high-resolution doses for the dosimetric
parameters. In addition, gamma passing rate for low-resolution
dose was statistically compared with that for predicted high-
resolution dose. The paired t-test or the Wilcoxon signed-rank
testwas performedusing SPSS Statistics 21 (IBMSPSS,Chicago, IL)
after a normality check using the Shapiro-Wilk test. The statistical
significance was decided as p-value of <0.05.
RESULTS

This section describes the results for the PTV, bladder, and rectum;
the results for otherOARs are described in the SupplementaryData.
Frontiers in Oncology | www.frontiersin.org 7
Computation Time and Training Loss
The mean computation times to predict the high-resolution dose
for an axial 2D dose plane were 0.017 s and 0.011 s for the AAA
3/AXB 3 models (from 3 to 1 mm grid) and the AAA 5 model
(from 5 to 1 mm grid), respectively.

Figure 3 shows the average training and test loss curves
across the five cross-validation folds for each network in three
models (AAA 3, AAA 5, and AXB 3). In all networks, the
training loss decreased rapidly within 20 epochs, and then
slowly after that. A similar trend was observed in the test loss
curves; overfitting was not observed in these loss curves.

Spatial Assessment
Figure 4 shows the dose distribution differences between the
baseline high-resolution dose (1 mm grid) and the low-
resolution/predicted high-resolution doses in the same axial
level for the AAA and AXB doses. For the AAA dose (Figure
4A), the low-resolution dose with a 5 mm grid indicated major
errors near the PTV region. Similar errors were observed in the
low-resolution dose with a 3 mm grid. The predicted high-
resolution dose showed these errors were reduced in both the
AAA 3 and AAA 5 models. The predicted dose from the AAA 3
model demonstrated the closest agreement with the baseline.
Similar results were observed for the AXB dose (Figure 4B).

Figure 5 displays the mean DSC plots comparing the percent
isodose volume between the baseline dose and the low-
resolution/predicted high-resolution doses in the AAA and
AXB doses. For the AAA dose (Figure 5A), the DSC values for
the predicted doses from each model were closer to 1 (ideal
value) than those for each low-resolution dose. For the in
predicted dose from the AAA 5 model in particular, the DSC
A B

D E

C

FIGURE 3 | Average training/test loss curves across the five cross-validation folds in (A) hierarchically densely connected U-net (HD U-net) for the anisotropic
analytical algorithm (AAA) 3 model, (B) HD U-net for the AAA 5 model, (C) HD U-net for the AXB 3 model, (D) residual dense net (RDN) for the AAA 3/AXB 3
models, and (E) RDN for the AAA 5 model.
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values ranging from 80 to 100% isodose volume were
dramatically improved. For the AXB dose (Figure 5B), the
predicted dose indicated higher DSC values compared to the
low-resolution dose.

Dosimetric Evaluation
Figures 6 and 7 show the average dose volume histograms of PTV/
OARs for the baseline high-resolution/predicted high-resolution/
low-resolution doses in the AAA and AXB doses, respectively. For
the AAA dose, the DVHs for the PTV were visually similar to each
other, with the exception of the low-resolution dose with a 5 mm
grid (Figure 6A). For the bladder (Figure 6B), a similar trend was
Frontiers in Oncology | www.frontiersin.org 8
observed. In the rectum, as well as the other OARs (left/right
femoral heads), differences between the DVHs were not observed.
For the AXB dose, the DVH of the PTV for the predicted dose
agreed closely with the baseline compared to the low-resolution
dose (Figure 7A). A similar result was observed for the rectum
(Figure 7C). In the bladder and the other OARs (left/right femoral
heads), there were no differences between the DVH curves.

Tables 1 and 2 show comparisons of the mean dosimetric
parameters between the baseline high-resolution and low-
resolution doses/predicted high-resolution doses in the AAA
and AXB doses, respectively. For the AAA dose (Table 1), the
mean dose, maximum dose, V95%, and CI for the PTV in the low-
A

B

FIGURE 4 | Visual comparison for the low-resolution and predicted high-resolution doses relative to the baseline high-resolution dose at the same axial level in
(A) the anisotropic analytical algorithm (AAA)-calculated dose and (B) the AXB-calculated dose. dose distribution differences were created by subtracting the baseline
from the low-resolution/predicted high-resolution doses, respectively. During this process, the low-resolution dose was linearly interpolated to a matrix size equivalent
to the baseline. Upper and lower color scale bars in each figure indicate the range of the doses and dose distribution differences, respectively.
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resolution doses were underestimated compared to those from
the baseline dose. The minimum dose and HI were
overestimated. The differences in the dosimetric parameters
between the baseline high-resolution dose and the low-
resolution dose with a 3 mm grid were 0.3 Gy (mean dose), 2.3
Gy (max. dose), −0.2 Gy (min. dose), −1.0% (V95%), −0.01 (HI),
and −0.04 (CI), respectively. The corresponding parameter
differences for a 5 mm grid were 0.7 Gy (mean dose), 3.5 Gy
(max. dose), −0.6 Gy (min. dose), −5.2% (V95%), −0.03 (HI), and
−0.11 (CI), respectively. By contrast, the corresponding
differences for the predicted high-resolution doses for the AAA
3 and AAA 5 models were reduced. These results illustrate that
Frontiers in Oncology | www.frontiersin.org 9
the predicted doses showed a closer agreement with the baseline
dose compared to the low-resolution doses. For both the bladder
and rectum, the majority of the parameters from the predicted
doses demonstrated closer agreement with the baseline doses
compared to the low-resolution doses, with similar results
observed in the other OARs (left/right femoral heads).

Among the dosimetric parameters for the AXB dose
(Table 2), the minimum dose for the PTV from the low-
resolution dose for a 3 mm grid was the most overestimated
value compared to the corresponding value from the baseline
dose; the difference for the minimum dose between the baseline
and low-resolution dose was −4.7 Gy. In the predicted dose, the
A B

FIGURE 5 | Mean dice similarity coefficient across the five cross-validation folds between the predicted high-resolution and low-resolution doses relative to the
baseline high-resolution dose (using a 1 mm grid) in (A) the anisotropic analytical algorithm (AAA) dose and (B) the Acuros XB (AXB) dose.
A

B C

FIGURE 6 | Average dose volume histograms across the five cross-validation folds for the baseline high-resolution anisotropic analytical algorithm (AAA) dose (with a
1 mm grid), the predicted high-resolution AAA dose, and the low-resolution AAA dose (with 3 or 5 mm grids) in (A) the planning target volume (PTV), (B) the bladder,
and (C) the rectum. The AAA 3 and AAA 5 models indicate network models for the ×3 super-resolution scale (prediction from a 3 mm to a 1 mm grid) and the ×5
super-resolution scale (from a 5 mm to a 1 mm grid), respectively, for the AAA dose.
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difference was reduced to −1.2 Gy. Moreover, the remaining
dosimetric parameters for the PTV in the predicted dose were
observed more closely to those in the baseline dose compared to
the low-resolution dose. For both the bladder and the rectum, the
Frontiers in Oncology | www.frontiersin.org 10
parameters from the predicted doses were more similar to those
from the baseline than low-resolution doses, with the exception
of the maximum dose. Similar results were obtained in the left/
right femoral heads.
A

B C

FIGURE 7 | Average dose volume histograms across the five cross-validation folds for the baseline high-resolution Acuros XB (AXB) dose (with a 1 mm grid), the
predicted high-resolution AXB dose, and the low-resolution AXB dose (with a 3 grid) in (A) the planning target volume (PTV), (B) the bladder, and (C) the rectum. The
AXB 3 model indicates network models for the ×3 super-resolution scale (prediction from a 3 mm to a 1 mm grid) for the AXB dose.
TABLE 1 | Comparisons of the mean dosimetric parameters (across the five cross-validation folds) between the baseline high-resolution anisotropic analytical algorithm
(AAA) dose (with a 1 mm grid) and the low-resolution AAA dose (with 3 or 5 mm grids)/predicted high-resolution AAA dose in the planning target volume (PTV), bladder,
and rectum.

ROI Parameters AAA

Baseline(1 mm grid) 3 mm grid Prediction AAA 3 model 5 mm grid Prediction AAA 5 model

PTV Mean dose (Gy) 73.3 (4.0) 73.0 (4.1) 73.3 (4.0) 72.6 (4.1) 73.3 (4.0)
Max. dose (Gy) 79.7 (3.0) 77.4 (3.7) 79.3 (3.4) 76.2 (4.1) 78.6 (3.8)
Min. dose (Gy) 61.4 (5.0) 61.6 (5.3) 61.5 (4.9) 62.0 (5.1) 62.9 (3.9)
V95% (%) 98.9 (0.6) 97.9 (0.9) 99.0 (0.6) 93.7 (3.0) 98.9 (0.6)
CI 1.08 (0.03) 1.04 (0.02) 1.08 (0.03) 0.97 (0.04) 1.07 (0.03)
HI 0.09 (0.01) 0.10 (0.01) 0.09 (0.01) 0.12 (0.02) 0.09 (0.01)

Bladder Mean dose (Gy) 17.1 (11.0) 17.2 (11.1) 17.1 (11.0) 17.4 (11.1) 17.1 (11.0)
Max. dose (Gy) 78.7 (3.2) 76.7 (3.8) 78.1 (3.4) 75.4 (4.2) 77.1 (3.6)
Min. dose (Gy) 1.1 (1.0) 1.1 (1.0) 1.0 (1.0) 1.2 (1.3) 1.1 (1.1)
V70% (%) 12.9 (11.6) 12.9 (11.5) 12.9 (11.5) 13.0 (11.5) 13.1 (11.6)
V50% (%) 19.4 (15.9) 19.7 (16.0) 19.4 (15.9) 20.0 (16.2) 19.6 (16.0)
V30% (%) 27.6 (19.6) 28.0 (19.7) 27.6 (19.6) 28.6 (20.0) 27.8 (19.6)

Rectum Mean dose (Gy) 28.8 (8.5) 28.7 (8.5) 28.8 (8.5) 28.6 (8.4) 28.7 (8.5)
Max. dose (Gy) 76.5 (3.5) 75.2 (3.7) 76.0 (3.6) 73.9 (3.9) 75.0 (3.8)
Min. dose (Gy) 1.0 (0.7) 1.1 (0.7) 1.0 (0.6) 1.2 (0.7) 1.1 (0.7)
V70% (%) 15.4 (7.6) 15.3 (7.5) 15.4 (7.6) 15.3 (7.5) 15.3 (7.6)
V50% (%) 32.7 (15.1) 32.4 (15.0) 32.7 (15.2) 32.2 (14.6) 32.6 (15.0)
V30% (%) 61.6 (16.0) 61.4 (16.0) 61.5 (16.0) 61.2 (16.0) 61.3 (16.0)
N
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The Vn% indicates the percentage of the volume irradiated by n% of the prescription dose. Values expressed in bold are not statistically significant (p-value of >0.05). The standard
deviations are indicated in parentheses.
ROI, region of interest; HI, homogeneity index; CI, conformity index; AAA, anisotropic analytical algorithm.
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Gamma Evaluation
Table 3 shows comparisons of the mean gamma passing rates for
low-resolution andpredicted high-resolutiondoses in theAAA/AXB
doses. The gamma passing rates for the predicted high-resolution
doses from AAA 3, AAA 5, and AXB 3 models were substantially
improvedcompared to those for the low-resolutiondoses inall region
of interests (PTV, bladder, and rectum). These improvements were
statistically significant (p-values of<0.05). Especially the gamma
passing rates for the predicted high-resolution doses except for
AAA 5 model were higher than 98%, although those for the low-
resolution doses in the PTV were lower than 95%. The high-
resolution dose from AAA 5 model showed lower gamma passing
rate than that from AAA 3 and AXB 3 models.

Statistical Analysis
Comparing the baseline AAA doses (with a 1 mm grid) with the
low-resolution AAA doses (with a 3 mm grid), the p-values for
Frontiers in Oncology | www.frontiersin.org 11
most parameters were less than 0.01. This indicates that there are
statistically significant differences between the two doses except
for a few parameters (such as the minimum dose for PTV and
V70% for the bladder/rectum). By contrast, no significant
differences (p-values of >0.05) were observed between the
baseline and the predicted high-resolution dose (AAA 3
model) for the majority of parameters (Table 1). Likewise, a
similar trend was observed for the predicted high-resolution
doses for the AAA 5 and AXB 3 models, as shown in Tables 1
and 2.
DISCUSSION

This paper is the first to attempt the prediction for high-
resolution dose with a 1 mm grid using the cascaded networks
in clinical prostate VMAT. We have presented a detailed outline
of the network construction/data preparation/training procedure
and quantified the network performance, including spatial/
dosimetric parameters. Our model consisted of two cascaded
networks (HD U-net and RDN), which were trained separately.
The proposed model took <0.02 s to predict one axial high-
resolution dose plane from the low-resolution dose plane (with 3
or 5 mm grids) for the same dose calculation algorithm.
Compared to low-resolution doses, the predicted high-
resolution doses were visually similar to the baseline high-
resolution doses; furthermore, the DSC values of the predicted
doses were closer to 1 than those of the low-resolution doses. The
DVH curves for the PTV/OARs for the predicted dose were more
consistent with the DVH curves for the baseline than the low-
resolution dose. For the predicted dose, the average of the
dosimetric parameters, including mean dose, maximum dose,
minimum dose, HI, CI, V95%, V70%, V50%, and V30% were
closer to corresponding parameters obtained in the baseline than
the low-resolution dose. Moreover, the majority of these
parameters demonstrated no statistically significant differences
between the baseline and predicted doses. The gamma passing
rates based on a 2%/2 mm criterion for the predicted high-
resolution does were higher than those for the low-resolution
doses. These results indicate that the proposed network is
capable of achieving dose super-resolution with reduced
computation time.

The AAA 5 model (prediction of the high-resolution AAA
dose from the low-resolution AAA dose with a 5 mm grid)
TABLE 2 | Comparisons of mean dosimetric parameters (across the five cross-
validation folds) between the baseline high-resolution Acuros XB (AXB) dose (with
a 1 mm grid) and the low-resolution AXB dose (with a 3 mm grid)/predicted high-
resolution AXB dose in the planning target volume (PTV), bladder, and rectum.

ROI Parameters AXB

Baseline
(1 mm grid)

3 mm grid Prediction
AXB 3 model

PTV Mean dose (Gy) 73.0 (3.7) 73.7 (3.7) 73.1 (3.7)
Max. dose (Gy) 79.5 (3.3) 79.0 (3.5) 79.3 (3.7)
Min. dose (Gy) 55.3 (4.3) 60.0 (4.3) 56.5 (4.0)
V95% (%) 97.3 (1.0) 97.8 (0.9) 97.4 (0.9)
CI 1.04 (0.02) 1.04 (0.02) 1.04 (0.02)
HI 0.11 (0.02) 0.11 (0.01) 0.11 (0.02)

Bladder Mean dose (Gy) 16.8 (11.0) 17.0 (11.1) 16.8 (10.9)
Max. dose (Gy) 78.3 (3.2) 78.0 (3.2) 77.9 (3.5)
Min. dose (Gy) 1.0 (0.9) 1.0 (0.9) 1.0 (0.9)
V70% (%) 12.8 (11.4) 13.0 (11.6) 12.8 (11.5)
V50% (%) 19.2 (15.8) 19.7 (16.0) 19.3 (15.8)
V30% (%) 27.4 (19.4) 27.9 (19.7) 27.4 (19.4)

Rectum Mean dose (Gy) 27.3 (8.0) 27.9 (8.1) 27.3 (8.0)
Max. dose (Gy) 75.2 (4.2) 75.3 (4.0) 74.9 (4.0)
Min. dose (Gy) 1.0 (0.6) 1.0 (0.6) 1.0 (0.6)
V70% (%) 11.8 (6.6) 12.9 (6.8) 11.9 (6.5)
V50% (%) 29.2 (14.4) 30.3 (14.4) 29.2 (14.3)
V30% (%) 60.8 (16.8) 61.3 (16.5) 60.8 (16.7)
The Vn% indicates the percentage of the volume irradiated by n% of the prescription dose.
Values expressed in bold are not statistically significant (p-value of >0.05). The standard
deviations are indicated in parentheses.
ROI, region of interest; HI, homogeneity index; CI, conformity index; AXB, Acuros XB.
TABLE 3 | Comparisons of mean gamma passing rates (across the five cross-validation folds) for low-resolution dose (with 3 mm or 5 mm grids) and predicted high-
resolution dose in the planning target volume (PTV), bladder, and rectum.

ROI Gamma passing rate with a 2%/2 mm criterion (%)

AAA AXB

3 mm grid Prediction AAA 3 model 5 mm grid Prediction AAA 5 model 3 mm grid Prediction AXB 3 model

PTV 93.6 (3.7) 99.1 (1.0) 71.0 (5.8) 92.4 (4.6) 88.0 (6.2) 98.2 (2.6)
Bladder 98.1 (2.1) 99.5 (1.3) 90.0 (4.7) 97.9 (2.3) 98.0 (2.1) 99.1 (2.4)
Rectum 98.8 (0.8) 100.0 (0.1) 72.4 (6.9) 99.0 (1.1) 98.7 (0.6) 99.4 (0.4)
N
ovember 2020 | V
The standard deviations are indicated in parentheses.
ROI, region of interest; AAA, anisotropic analytical algorithm; AXB, Acuros XB.
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showed poor performance when compared to the AAA 3 model
(prediction from the low-resolution AAA dose with a 3 mm
grid). One reason for this is that the quality of the input for the
AAA 5model was relatively poor compared to the AAA 3model.
Another reason is the large super-resolution scale (×5 for the
AAA 5 model vs. ×3 for the AAA 3 model), which can cause a
blurring effect in the predicted dose. Similar observations were
recorded by previous studies exploring image super-resolution
in the field of computer vision (36, 44, 45). Despite these
problems, the predicted high-resolution doses for the AAA 5
model were better agreement with the baseline high-resolution
doses than the low-resolution AAA doses (with 3 and 5 mm
grids). For the AXB 3model (prediction from the low-resolution
AXB dose with a 3 mm grid), it was observed slightly lower
performance compared to the AAA 3 model. This may be
because bicubic downsampling of the high-resolution doses
(for training dataset of the HD U-net). The downsampling
cause a smoothing effect (46), which does not completely
preserve characteristics of the high-resolution doses.
Especially, this issue might be more pronounced in the
downsampled high-resolution AXB doses than in the
downsampled high-resolution AAA doses because of a
heterogeneity correction. Despite the issue, the AXB model
showed higher accuracy than the low-resolution AXB doses
with 3 mm grid as shown in Tables 2 and 3.

Our study focused on achieving dose super-resolution for the
same dose calculation algorithm, as opposed to the conversion of
the AAA-calculated doses to the AXB-calculated doses.
Obviously, converting the AAA-calculated dose with a 5 mm
grid to that for the AXB algorithm with a 1 mm grid has a great
advantage for computation time; this is because the AAA with a
5 mm grid requires the shortest time for dose calculation,
whereas the AXB algorithm with a 1 mm grid requires the
longest time [a time difference of about 3931 s in a prostate
VMAT plan, see Kim et al. (22)]. However, one drawback
associated with this process is that this conversion requires not
only the dose data but also additional information such as CT
images (34, 35). The need for this additional information may
cause inconvenience to user. Moreover, difference in calculation
time between the AAA with a 5 mm grid and the AXB algorithm
with a 3 mm grid was about 132 s for prostate VMAT plans (22),
which exist within a clinically acceptable calculation time frame.
These support that our dose super-resolution approach in the
same dose calculation algorithm (i.e., converting the AXB-
calculated dose with a 3 mm grid to that with a 1 mm grid) is
sufficiently useful.

Our proposed method combined some advantages of
previously reported networks (27, 38, 47). The first is the use
of residual dense learning (27, 47), which reduces the network
complexity by reducing the number of trainable parameters
compared to the original U-net. The second is the use of sub-
pixel convolution (known as ESPCN) (38) to recover high-
resolution dose planes. This reduces computation time greatly
by rearranging feature maps of the network to high-resolution
frame. The advantages of our network facilitated shorter
Frontiers in Oncology | www.frontiersin.org 12
computation times (<0.02 s for one axial dose plane) compared
to previously proposed network (0.2 s for one axial dose plane)
by Sumida et al. (35) despite achieving dose super-resolution for
a finer grid (1 vs. 2 mm) with lower graphics processing unit
power (GTX 1050 Ti 4GB vs. GTX 1060 6GB).

Although this study focused on prostate VMAT plans only,
retraining the network will likely enable the proposed method to
be applied to other sites, such as the lungs. For example, a
previous study related to lung VMAT recommended using the
AXB algorithm with a 2.5 mm grid instead of a 1 mm grid due to
clinically acceptable calculation time despite the higher accuracy
offered by the 1 mm grid (48). Our method would improve this
problem. Particularly, in the lungs with high heterogeneity, the
dose super-resolution method may be more useful. Our AXB 3
model showed good performance in the rectum (heterogeneous
region), which indicates it has the potential to be sufficiently
applied to lungs. Therefore, potential future work includes
application of such lung VMAT plans. In addition, the
dose super-resolution method could potentially apply to
adaptive radiation therapy to accurately predict daily
dose distribution.

Our dose super-resolution method can be applied in clinic as
a useful tool to assist in improvement of treatment planning. For
example, patient cases with noticeable errors in dose calculations
by large grid sizes can be quickly identified through subtraction
between calculated low-resolution dose and predicted high-
resolution dose. For these cases only, the dose distributions can
be re-calculated with a 1 mm grid. In other words, our method
can provide the radiotherapy staff to information on cases that
require dose calculation with a small grid size.

The proposed method has some limitations. One of these
limitations is the small dataset (73 patients). To mitigate the
effects (such as overfitting) relating to the small dataset, we used
k-fold cross validation (set at k = 5) and data augmentation (flip
and rotations), which are widely recognized as appropriate
techniques for reducing overfitting (49, 50). Furthermore, the
dense connections used in our network architecture have been
reported to decrease the likelihood of overfitting, even with a
small dataset, through the regularization effect (47). While no
overfitting was observed in our networks (Figure 3), a larger
dataset is required to improve the network performance. A
second limitation is that the network is based on 2D dose
planes, which could lead to some errors at the superior and
inferior edges of the high dose volume regions. This limitation
also applies to previous studies focusing on dose super-resolution
due to mainly memory shortage (34, 35). In the field of medical
image segmentation, various networks such as V-net (51) and 3D
U-net (52) have been proposed, which used 3D convolution
efficiently. Moreover, while the HD U-net used in this study was
constructed using 2D operations (such as 2D convolution) due to
memory shortage, the original HD U-net (27) was based on 3D
operations to predict 3D dose volume from the PTV, OAR
structures, and prescription dose. Therefore, future work will
focus on a deep learning model for dose super-resolution based
on the 3D dose volume.
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CONCLUSION

We propose a cascaded network model that exhibits
performance similar to the dose super-resolution of a 1 mm
grid with reduced computation time in prostate VMAT. Our
findings indicate a good agreement between baseline high-
resolution doses with a 1 mm grid and predicted high-
resolution doses. Our dose super-resolution approach uses only
dose distributions without additional data such as CT images,
which provides advantages of convenience to the user over other
dose super-resolution methods. Therefore, our model could be
easily applied to the clinic. The proposed method demonstrates
immense potential and can be extended easily to other sites, such
as the lungs, through retraining the network. In addition, our
model could be a useful tool in other radiotherapy technique
such as adaptive radiation therapy.
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