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ABSTRACT We previously reported widespread differential expression of long non-protein-coding RNAs (ncRNAs) in response to
virus infection. Here, we expanded the study through small RNA transcriptome sequencing analysis of the host response to both
severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza virus infections across four founder mouse strains of
the Collaborative Cross, a recombinant inbred mouse resource for mapping complex traits. We observed differential expression
of over 200 small RNAs of diverse classes during infection. A majority of identified microRNAs (miRNAs) showed divergent
changes in expression across mouse strains with respect to SARS-CoV and influenza virus infections and responded differently
to a highly pathogenic reconstructed 1918 virus compared to a minimally pathogenic seasonal influenza virus isolate. Novel in-
sights into miRNA expression changes, including the association with pathogenic outcomes and large differences between in
vivo and in vitro experimental systems, were further elucidated by a survey of selected miRNAs across diverse virus infections.
The small RNAs identified also included many non-miRNA small RNAs, such as small nucleolar RNAs (snoRNAs), in addition to
nonannotated small RNAs. An integrative sequencing analysis of both small RNAs and long transcripts from the same samples
showed that the results revealing differential expression of miRNAs during infection were largely due to transcriptional regula-
tion and that the predicted miRNA-mRNA network could modulate global host responses to virus infection in a combinatorial
fashion. These findings represent the first integrated sequencing analysis of the response of host small RNAs to virus infection
and show that small RNAs are an integrated component of complex networks involved in regulating the host response to infec-
tion.

IMPORTANCE Most studies examining the host transcriptional response to infection focus only on protein-coding genes. How-
ever, mammalian genomes transcribe many short and long non-protein-coding RNAs (ncRNAs). With the advent of deep-
sequencing technologies, systematic transcriptome analysis of the host response, including analysis of ncRNAs of different sizes,
is now possible. Using this approach, we recently discovered widespread differential expression of host long (>200 nucleotide
[nt]) ncRNAs in response to virus infection. Here, the samples described in the previous report were again used, but we se-
quenced another fraction of the transcriptome to study very short (about 20 to 30 nt) ncRNAs. We demonstrated that virus in-
fection also altered expression of many short ncRNAs of diverse classes. Putting the results of the two studies together, we show
that small RNAs may also play an important role in regulating the host response to virus infection.
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Mammalian genomes transcribe many short and long non-
protein-coding RNAs (ncRNAs), but whether these RNAs

play a role in the host response to virus infection remains an
enigma. It is known that some small RNAs, such as microRNAs

(miRNAs) (1), are involved in virus-host interactions. For exam-
ple, in vitro studies have shown that the liver-specific miR-122 is
required for hepatitis C virus (HCV) RNA replication (2). Distinct
expression profiles of cellular miRNAs enabled researchers to dif-
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ferentiate infection by the lethal 1918 pandemic influenza virus
from nonlethal seasonal influenza virus A/Texas/36/91 infection
(3). It was also reported that HIV-1 virus is able to suppress ex-
pression of the polycistronic miRNA cluster miR-17/92 to enable
efficient viral replication (4). However, changes in expression of
other small RNAs during virus infection have not been systemat-
ically studied.

Using next-generation deep-sequencing technology, we re-
cently discovered widespread differential expression of host long
ncRNAs in response to virus infection (5), but the experimental
protocol used was not designed to capture small RNAs (6). In this
study, we used deep-sequencing technology to perform a comple-
mentary small RNA transcriptome analysis of the same severe
acute respiratory syndrome coronavirus (SARS-CoV)-infected
lung samples collected from four mouse strains as previously re-
ported. In addition, lung samples collected from the same four
influenza virus-infected mouse strains were included in the new
analysis. Our results show that many known miRNAs responded
differently to the two virus infections and that many of them were
also differentially regulated during lethal influenza virus infection,
as shown in a previous study (3). We also discovered many non-
miRNA small RNAs and unannotated small RNAs that were dif-
ferentially expressed during infection. The integration of tran-
scriptome sequencing analysis of long transcripts and small RNAs
showed the intricate interactions of short and long RNAs during
virus infection. The changes in miRNAs positively correlated with
the changes in long transcripts cotranscribing from the same lo-
cus, indicating that the miRNAs were transcriptionally regulated
during virus infection. We predicted that differentially expressed
miRNAs could target the majority of differentially expressed long
transcripts during virus infection.

RESULTS
Deep sequencing of small RNAs in lung samples from mice in-
fected with SARS-CoV or influenza virus. To systematically in-
vestigate the regulation of small RNAs during viral infection, we
performed two batches of small RNA sequencing analysis using
lung samples from virus-infected mice. To follow up our previous
study on long ncRNAs, we first sequenced the small RNAs of the
same lung samples collected from four mouse strains infected with
SARS-CoV: 129S1/SvImJ (129/S1), WSB/EiJ (WSB), PWK/PhJ
(PWK), and CAST/EiJ (CAST) (5). For comparisons, we per-
formed small RNA sequencing analysis using another set of lung
samples collected from additional mice of the same four mouse
strains infected with influenza virus. These mouse strains were
selected because of their differential range of susceptibility pheno-
types as revealed following infection with SARS-CoV or influenza
virus (5) and because of the opportunity they presented of pursu-
ing downstream quantitative trait locus (QTL) mapping of regu-
lation and function in the Collaborative Cross, a recombinant
inbred mouse resource for mapping complex traits (7). Direc-
tional cDNA libraries were constructed using standard Illumina
protocols for small RNA analysis, which targeted small RNAs of
around 19 to 22 nucleotides (nt).

In total, we obtained ~369 million adaptor-trimmed reads
ranging from 16 to 40 nt in length from 20 mouse lung samples
(over 18 million reads per sample on average). As expected, the
reads exhibited a large peak in abundance in the length range of 19
to 22 nt (Fig. 1a; see Fig. S1 in the supplemental material). For each
sample, the majority (88% on average) of total short reads were

mapped into different classes of abundant small RNAs. miRNAs
composed the most abundant class, accounting for about 45% of
total reads on average (Fig. 1b; see also Table S1 in the supplemen-
tal material). We observed a wide range of counts of reads (from 1
to an average of 2,577,006 for the most abundant miRNA in a
given sample) mapped to individual miRNAs in both normal and
virus-infected samples, indicating that techniques with dynamic
ranges as large as 106 are required for comprehensive profiling of
miRNA expression. On average, about 616 of 1,055 annotated
mature mouse miRNAs were detected with at least one read in a
given sample. The detected miRNAs showed very distinctive ex-
pression patterns in both normal and virus-infected mouse lung
samples. In all samples, the top 20 most abundant miRNAs by
read count accounted for about 90% of miRNA reads and the top
10 miRNAs for 80% of miRNA reads. The most abundant miR-
NAs and the overall abundance distribution of all detected miR-
NAs are shown in Fig. 1c and d.

Differential expression of known host miRNAs during virus
infection. We first studied annotated miRNAs, as host miRNAs
represented the most abundant class of small RNAs observed and
the host miRNA response to SARS-CoV infection has not been
reported previously. We identified 45 mature miRNAs that were
differentially expressed during SARS-CoV or influenza virus in-
fection. Thirty were consistently upregulated or consistently
downregulated by more than 1.5-fold across three or more mouse
strains during SARS-CoV infection, and 10 were consistently up-
regulated or consistently downregulated by more than 1.5-fold
across three or more mouse strains during influenza virus infec-
tion (Fig. 2a). In addition, 24 of these miRNAs were consistently
upregulated or consistently downregulated by more than 1.5-fold
in two or more mouse strains during both SARS-CoV and influ-
enza virus infection. Additional quantitative PCR (qPCR) analy-
ses of replicate samples with a large subset of differentially ex-
pressed miRNAs showed good concordance between replicates
and statistical congruence (see Fig. S2 in the supplemental mate-
rial). Interestingly, there were 7 miRNAs that were upregulated in
at least three mouse strains during both SARS-CoV and influenza
virus infection, suggesting that a subset of miRNAs such as these
commonly responded to different virus infections. However, 84%
(38/45) of the differentially expressed miRNAs showed different
expression profiles across four mouse strains in SARS-CoV and
influenza virus infections (Fig. 2a), suggesting that expression of
most miRNAs was likely both host and virus dependent. Although
the physiological relevance of small changes in miRNA expression
remains to be investigated, other studies have indicated that 1.5-
fold changes in expression can have significant biological impact
(8). In addition, because we profiled whole lung samples, some of
the observed changes in expression could have been due to the
infiltration of immune cells into the infected lung.

To investigate whether the differential expression patterns of
the miRNAs were related to viral pathogenesis, we first compared
these findings with those from our previous microarray study of
host miRNAs in mouse lungs infected with the fully reconstructed
1918 pandemic influenza virus (r1918) (3). We found that 17 of
the 45 differentially expressed mature miRNAs identified here
were not on the arrays (8 miRNAs) or not detected (9 miRNAs) by
the previous microarray technology (Fig. 2a), showing the benefits
of deep-sequencing technology, in which the measurement of
RNAs is independent of prior knowledge of transcript annota-
tions and is achieved with a dynamic range of up to 106 (9). Of
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those 28 miRNAs profiled on the microarray in the previous
study, 75% (21/28) showed at least a 1.5-fold difference between
the response to the highly pathogenic r1918 virus infection and
the response to minimally pathogenic A/Texas/36/91 virus infec-
tion for at least one of three time points studied. These findings
suggest that many of these miRNAs may be commonly involved in
viral pathogenesis.

Next, we surveyed the changes in expression of 6 differentially
expressed miRNAs during virus infection across a set of diverse
conditions (Fig. 2b and Materials and Methods). Even with only 6
miRNAs surveyed and relatively large variations among replicate
samples, we were able to observe distinctive miRNA expression
changes. These changes were detected under conditions of infec-
tion with different viruses and were seen with samples generated
in vivo versus in vitro (see Fig. S3 in the supplemental material).
First, we observed that 5 of 6 miRNAs had very different expres-
sion patterns in the highly pathogenic SARS-CoVMA15 versus the
minimally pathogenic Urbani strain (Fig. 2b; Fig. S3). Different
expression patterns were also seen with 3 of 6 miRNAs in compar-
isons of the highly pathogenic VN1203 influenza virus to the at-
tenuated VN1203 hemagglutinin (HA) mutant strain. This argues
that some of the identified miRNAs may be associated with patho-
genic outcomes. Second, many factors may have contributed to
the different expression patterns; however, it appears unlikely that

the observed miRNA changes were due to pure immune cell infil-
tration, as 4 miRNAs showed strong evidence of differential ex-
pression in cultured fibroblasts during infection. Third, and not
surprisingly, several miRNAs showed expression patterns that dif-
fered between the in vivo and in vitro models. The differences
could be attributed to cell type specificity or to different environ-
mental and/or growth conditions, as two miRNAs that did not
show obvious differential expression patterns in cultured fibro-
blasts, miR-155 in macrophages (10) and miR-223 in neutrophils
(11), are known to be related to different immune cell types. In
summary, these results suggest that miRNAs are likely involved in
viral pathogenesis and that the choice of experimental systems
used for miRNA studies should be considered a critical and in-
forming component in the study design.

Differential expression of non-miRNA small RNAs and
novel small RNAs during virus infection. As shown in Table S1 in
the supplemental material, there were still many (about 17 million
in total) “leftover” reads which did not map to annotated or pre-
dicted abundant small RNAs but were aligned to the mouse refer-
ence genome, suggesting that there might be some novel host
small RNAs relevant to virus infection. Therefore, starting by
mapping all short reads directly to the mouse reference genome,
we carried out a genome-wide search of novel small RNAs (see
Materials and Methods).

FIG 1 Overview of deep-sequencing analysis of the small RNA transcriptome in lungs from virus-infected mice. (a) Length distribution of small RNA short
reads in an arbitrarily chosen sample. Reads were adaptor trimmed. Reads � 16 nt were discarded, and reads � 40 nt were shortened to 40 nt by clipping from
the 3 = end. (b) Global classification of small RNA transcriptional activity of the sample described in the panel a legend. Short reads were sequentially mapped to
sequences of ribosomal RNAs (rRNA), transfer RNAs (tRNA), small cytoplasmic RNAs, small nuclear RNAs, small nucleolar RNAs (other ncRNAs), piwi-
associated small RNAs (piRNA), microRNA precursor sequences, a mouse reference genome, and the SARS-CoV genome. (c) Relative abundances of the most
abundant mature miRNAs in lung samples from virus-infected mice. The 10 most abundant mature miRNAs in at least 4 samples across all 20 samples are shown.
(d) Distribution of detected mature miRNAs grouped by normalized read count (the number of the reads per million mapped reads) across all 20 samples.
Numbers in parentheses represent ranges. SARS, SARS-CoV; FLU, influenza virus.
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In total, of 4,473,273 start positions in the genome with at least
one uniquely mapped read, we found that about 5% (233,236)
gave at least 4 reads of the same length in a sample, resulting in
16,054 nonredundant candidate loci for putative small RNAs.
About 1.7% (276/16,054) of the candidate loci (median length,
39 nt) were differentially expressed during SARS-CoV and/or in-
fluenza virus infection (see Table S2 and Fig. S4a in the supple-
mental material); 46 of those candidate loci overlapped with an-
notated miRNA precursors (miRBase version 16). We next used a
conservative filtering strategy to remove 60 of 276 candidate loci
from further analysis because of the possibility of misalignment of
short reads originating from other highly expressed loci (see Ma-
terials and Methods). We considered the remaining 216 to repre-
sent putative small RNA loci, as we reasoned that their showing
consistent responses to virus infection suggested that they were
more likely to be biologically functional rather than to represent
random noise. To validate the analytical approach used to identify
these differentially expressed putative small RNA loci, we com-
pared the expression ratios calculated for infection versus
matched mock infection that we used to identify these putative

FIG 2 miRNAs differentially expressed during virus infection. (a) Overview
of 45 miRNAs differentially expressed in mouse lung samples during SARS-
CoV (MA15) or influenza virus (PR8) infection. Colors on the heat map indi-
cate the log2 ratios of expression (representing normalized read counts) in
virus-infected samples to expression in matched mock-infected samples. Red,
upregulation; green, downregulation. The data in the eight columns under
“small RNA NGS” represent log2 ratios of expression in virus-infected samples
to expression in mock-infected samples as determined on the basis of small
RNA transcriptome sequencing analysis. NGS, next-generation sequencing.
The nine columns under “published microarray” represent log2 ratios deter-
mined on the basis of the microarray measurements of the corresponding
miRNAs in lung samples from a previous study (3) in which mice were infected
with the fully reconstructed 1918 pandemic (1918) or a nonlethal seasonal
(Tx) influenza virus. The three columns under “1918/Tx” show the results of
direct comparisons of miRNA expression in 1918-infected samples to expres-
sion in Tx-infected samples at 1, 3, and 5 days after infection; note that only
changes of at least 1.5-fold are indicated. The log2 ratios of expression in
infected samples to expression in mock-infected samples are shown separately
under “1918” and “Tx,” where rows in grey indicate that the corresponding
miRNAs were not probed by the miRNA microarray and rows in white indi-
cate undetected miRNAs. The left sidebar shows the relative abundances of the
corresponding miRNAs represented as the minimum average normalized read
counts across all samples. (b) Patterns of changes in expression of selected
miRNAs across a panel of virus infection samples measured by qPCR. Six
miRNAs from panel a (indicated in boldface and italics) were selected; two,
namely, miR-155 in macrophages (10) and miR-223 in neutrophils (11), are
known to be related to immune cells. The other four miRNAs came from a
small-scale screening performed using qPCR with a subset of randomly se-
lected differentially expressed miRNAs in PWK/PhJ mouse embryonic fibro-
blasts (MEFs) infected with influenza virus (data not shown). Also, miR-27a*
and miR-671-3p were not measured by previous microarray (see panel a).
Colors on the heat map indicate the log2 ratios (the differences between me-
dians of normalized Ct values of replicate samples) of expression in virus-
infected samples to expression in matched mock-infected samples. Red, up-
regulation; green, downregulation. The “Lung � Flu” data contrast miRNA
expression changes in lung samples from mice infected with highly pathogenic
influenza virus (WT, VN1203) and with minimally pathogenic influenza virus
(HA, VN1203 with a mutation in HA protein) at two time points: days 2 and 4
after infections. Similarly, the “Lung � SARS” data contrast miRNA expres-
sion changes in lung samples from mice infected with highly pathogenic SARS-
CoV (MA, MA15) and minimally pathogenic SARS-CoV (Urb, Urbani). The
“PWK MEFs � Flu” data represent temporal miRNA expression changes in
samples from cultured PWK MEFs infected with the mouse-adapted A/PR/
8/34 influenza virus across four time points after infection. A more detailed
representation of individual replicate experiments is shown in Fig. S3. WT,
wild type.
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small RNA loci to the corresponding expression ratios that we
calculated for the overlapping miRNA precursors on the basis of
the reads directly mapped to annotated precursor sequences. We
obtained very good agreement (analysis of variance [ANOVA]
F test, P � 9.4e-101; Pearson correlation coefficient, r � 0.85)
between the two estimations. This result confirmed that the ana-
lytical approach used here performed well, since we performed an
unbiased genome-wide search for all small RNAs without consid-
ering any known annotations instead of looking only at annotated
miRNA sequences.

To investigate the genomic origins of the putative small RNA
loci, we compared the loci to those included in a previously com-
piled nonredundant set of mouse genome annotations (5). We
found that 63% (135/216) overlapped (sense or antisense) with
annotated loci, including coding RNAs, ncRNAs, and those with
unannotated genomic regions (Table 1), suggesting that the ma-
jority of small RNAs originated from genomic regions encoding
long transcripts. Also, the result suggested that long transcripts
from some of these regions have not been well annotated or that
some regions formed independent transcriptional units exclusive
to small RNAs, as 37% of putative small RNA loci did not overlap
annotated long transcript-transcribing regions. To understand
the classes of putative small RNAs produced from the loci, we then
compared them to annotated or predicted abundant small RNAs.
Interestingly, many putative small RNA loci overlapped non-
miRNA small RNAs such as small nucleolar RNAs (snoRNAs) and
piwi-associated small RNAs (piRNAs) (Table 1). snoRNAs guide
the chemical modification of ribosomal RNAs and other ncRNAs
and are essential for major biological processes, including protein
translation and mRNA splicing (12). piRNAs represent a class of
small RNAs that are 24 to 32 nt long and have been linked to
transcriptional gene silencing in germ line cells (13). piRNAs have
also been identified in various somatic tissues (14, 15). Also, we
observed length distributions of small RNA loci overlapping an-

notated small RNA loci that were similar to those of small RNA
loci with no overlap (Fig. 3a), indicating that our identified loci
were indeed producing small RNAs. Examples of detailed read
mapping of loci overlapped with annotated small RNAs are shown
in Fig. 3b and c; similar results determined using read mapping of
putative novel small RNA loci are shown in Fig. 4. We observed
that 32 putative small RNA loci overlapped with annotated snoR-
NAs on the basis of the updated Ensembl annotation and that
almost all (29 of 32) of the loci also overlapped with annotated
coding or ncRNA loci, suggesting that, in addition to miRNAs,
snoRNAs might represent another large class of small RNAs dif-
ferentially expressed in response to virus infection and originating
from long transcript-encoding loci.

Coupling changes in host short and long RNA expression
through parallel small RNA and whole-transcriptome sequenc-
ing. To better understand the host response to virus infection at
the system level, we performed an integrative analysis of small
RNA transcriptome sequencing with our previously reported
whole-transcriptome sequencing method using the same set of
SARS-CoV-infected samples (5). To the best of our knowledge,
studies have profiled host miRNA expression changes during virus
infection (1, 3, 16, 17), but regulation of such miRNA expression
changes has not been systematically investigated. miRNA biogen-
esis can be regulated at different steps (18), including at least three
steps of RNA processing: (i) the transcription of miRNA primary
transcripts (pri-miRNA) of several thousand base pairs, (ii) the
processing of the long pri-miRNAs to miRNA precursors (70 to
100 nt), and (iii) the processing of miRNA precursors into mature
miRNAs (about 20 to 22 nt). As we had previously generated
whole-transcriptome data using the set of lung samples infected
with SARS-CoV with which we quantified long transcripts (espe-
cially those �200 nt in length) (5), we reasoned that the long
pri-miRNAs were also quantified.

Though the transcript structures of pri-miRNAs have not been

TABLE 1 Genomic overlap of 216 differentially expressed putative small RNA loci with existing annotationsa

Overlap status
of putative loci

Annotated
locus category

Total no.
of putative
small RNA loci

No. of putative small RNA loci
in indicated category of overlap
with annotated small RNAs

miRNA snoRNA piRNA RNA repeat Total (%)

Overlapped with annotative loci Protein coding 95 25 23 4 7 54 (57)
Antisense

to protein coding
22 3 0 2 2 5 (23)

ncRNA 19 2 6 3 6 14 (74)
Antisense

to ncRNA
10 0 3 2 5 8 (80)

Genomic region 6 2 2 0 1 5 (83)
Antisense

to genomic region
3 0 0 0 0 0 (0)

Total sense 118 29 29 7 14 71 (60)
Total antisense 35 3 3 4 7 13 (37)

Total 135 31 29 9 16 75 (56)
No overlap 81 15 3 16 37 53 (65)
a Annotated loci data represent the set of nonredundant annotations of mouse protein-coding loci and ncRNAs compiled in reference (5), combined with the set of unannotated
genomic regions identified in the same study. Annotated small RNAs are as follows: miRNA, miRNA precursors; snoRNA, small nucleolar RNAs; piRNA, piwi-associated small
RNAs. RNA repeat data were downloaded from the UCSC genome browser (http://genome.ucsc.edu/). Numbers of putative small RNA loci represent the numbers of putative small
RNA loci overlapped with different classes of annotated loci in terms of genomic coordinates; sense and antisense loci are counted separately. For example, 95 putative small RNA
loci overlapped with annotated protein-coding loci on the sense strand (column 3, row 1). Total sense data represent the total numbers of putative small RNA loci that overlapped
with annotated loci on the sense strand. Total antisense data represent the total numbers of putative small RNA loci overlapped with annotated loci on the antisense strand. The
putative small RNA loci that overlapped with annotated loci were further classified by checking whether they also overlapped with different annotated small loci in terms of
genomic coordinates. For example, of 95 small RNA loci that overlapped with annotated loci, 25 also overlapped with annotated miRNAs (column 4, row 1).
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completely annotated, it is known that many mature miRNAs
originate from annotated long (protein-coding or noncoding)
transcripts. We reasoned that those annotated loci overlapping
miRNA precursors would be a good proxy for pri-miRNAs, as it
has been shown that many mammalian miRNAs are transcrip-
tionally linked to expression of the genes from which they origi-

nate (19, 20). We then compared the changes in expression of
identified mature miRNAs obtained during SARS-CoV infection
to the corresponding changes in expression of overlapping loci
obtained from the previous whole-transcriptome sequencing
analysis (5). Interestingly, we found that the changes in expression
of mature miRNAs and the overlapping loci significantly posi-

FIG 3 Length distributions of identified putative small RNA loci and two examples of non-miRNA small RNAs differentially expressed during SARS-CoV and
influenza virus infection. (a) The length distribution of the identified putative small RNA loci. Data for “overlap annotated smRNAs” represent loci overlapping
annotated or predicted small RNAs, including miRNAs, snoRNAs, piRNAs, and RNA repeats. “No overlap” data represent loci that do not overlap any small
RNAs. (b) UCSC genome browser (http://genome.ucsc.edu) display of the locations of reads mapped to a 350-bp region of chromosome 6 (chr6). On the left,
each track represents short reads collected from small RNA transcriptome sequencing analysis of a single mouse lung sample. Because there were too many reads
to be displayed individually, total reads were condensed (dense mode) to display the genomic regions with mapped reads. The red color indicates that the reads
were mapped to the negative strand. The black horizontal bar under the sample tracks shows the location of the predicted small RNA locus. The red horizontal
bar represents a Y RNA, a small noncoding RNA component of the Ro ribonucleoprotein particle, as annotated by the use of Ensembl software. The raw total read
counts of the corresponding small RNA locus across all 20 samples are represented on the right in the same order as shown on the left. Read counts indicate that
expression of the small RNA was upregulated during virus infection. Mammal cons, UCSC track (http://genome.ucsc.edu) showing the placental mammal
basewise conservation by PhyloP. (c) An overview similar to that shown in panel b for a 700-bp region of chromosome 1 covering two predicted small RNA loci.
Each track represents a condensation of the short reads from a single sample (middle panel). The blue color indicates the reads were mapped to the positive strand.
Green boxes show two predicted small RNA loci overlapped with two snoRNAs (the red horizontal bar inside each green box) annotated by the use of Ensembl
software (version 61) and located in the introns of Gas5, a known long ncRNA located on the positive strand. Different isoforms of Gas5 are shown on the track
labeled Ensembl Genes. An expanded view of the read mapping highlighted by the red box is displayed on the left. Distributions of the lengths and mapped
locations of short reads from the single sample are shown. Raw read counts of two corresponding small RNA loci across all 20 samples are shown on the right (in
the same order as shown in the middle panel). Both small RNA loci were upregulated during SARS-CoV and influenza virus infection.

Peng et al.

6 ® mbio.asm.org November/December 2011 Volume 2 Issue 6 e00198-11

http://genome.ucsc.edu
http://genome.ucsc.edu
mbio.asm.org


tively correlated (ANOVA P � 7e-11; Pearson correlation coeffi-
cient � 0.51) (Fig. 5a). Further, we took the 2-kb genomic regions
surrounding each annotated miRNA precursor (1 kb upstream
and 1 kb downstream, excluding the precursor region) as another
approximation of pri-miRNAs and observed a similarly high pos-
itive correlation with changes in expression (ANOVA P � 1.3e-08;
Pearson correlation coefficient � 0.42) (Fig. 5b). These results
show for the first time that the transcriptional regulation of pri-
miRNAs could be largely responsible for the differential regula-
tion of mature miRNAs during virus infection.

To investigate the potential functional impact of differential
expression of mature miRNAs, we combined the data showing the
mRNA expression changes measured by the whole-transcriptome
sequencing analysis with that from the miRNA target predictions.
We found that the majority (78%) of mRNA loci were predicted as
targets of at least 1 of the 45 differentially expressed mature miR-
NAs identified above (see Fig. S5a in the supplemental material)
and that the differentially expressed mRNA loci listed were sig-
nificantly (P � 2.2e-16 [chi-square test]) enriched with pre-
dicted targets of those differentially expressed miRNAs. The
ratio of miRNA targets versus nontargets for differentially ex-
pressed mRNA loci was ~3.5 compared to ~1.6 for those loci
that were not differentially expressed during infection, repre-
senting an enrichment of about 2.2-fold. These results strongly
suggest that collectively differentially expressed miRNAs mod-
ulate the global host responses to virus infection. Notably,
about 80% of those differentially expressed targets were pre-
dicted targets of two or more identified mature miRNAs, indi-
cating that a single target could be regulated in vivo by multiple
miRNAs at the same time during virus infection. Importantly,
82% of the targets predicted to be regulated by multiple miR-
NAs were targeted by both upregulated and downregulated

miRNAs at the same time, showing that additional studies are
necessary to elucidate which specific miRNAs, if any, play a
regulatory role in the changes of individual targets in vivo
(Fig. S5b). Functional analysis of predicted miRNA targets also
indicated that many important aspects of the host response
(such as innate immunity and cytokine production) were likely
modulated by miRNAs (see Table S3 in the supplemental ma-
terial). Figure S6 shows a subnetwork of differentially ex-
pressed miRNAs and their predicted targets in several antiviral
pathways.

DISCUSSION

Studies of the host small RNA response to virus infection have
been focused on miRNAs (1, 3, 16, 17), but there is growing evi-
dence that the mammalian transcriptome comprises a diversity of
small RNAs in addition to miRNAs. For example, human and
protozoan snoRNAs have been reported to be processed into
miRNA-like RNAs (21, 22), and the members of a class of novel
small RNAs have been reported to be derived from many snoR-
NAs (23). Abundant small RNAs are also derived from tRNAs in a
Dicer-dependent manner (9), and human tRNA-derived small
RNAs appear to be involved in the global control of small RNA
silencing (24). To our knowledge, the present study was the first to
use comprehensive deep-sequencing technology to characterize
virus infection-induced changes in expression of miRNAs and
other classes of small RNAs, including many nonannotated small
RNAs. As the biological functions of these diverse types of small
RNAs are largely unknown, virus infection models also offer a
unique platform for studying the regulation and biology of these
diverse small RNAs. For example, the influenza virus NS1 protein
inhibits host pre-mRNA splicing through its interaction with
snoRNAs (25–27). Also, it has been shown that SARS-CoV and

FIG 4 Examples of two nonannotated small RNAs. (a) An overview of a 400-bp region of chromosome 5 similar to that shown in Fig. 3b. The predicted small
RNA is located in an intron of the Trim56 protein-coding gene (top). Both Trim56 and the predicted small RNA are on the negative strand. (b) An overview of
a 400-bp region of chromosome X similar to that shown in panel a. The predicted small RNA is antisense to an intronic region of the Il1rapl1 protein-coding gene
(top). Ll1rapl1 is on the negative strand, and the predicted small RNA is on the positive strand.
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other nidoviruses encode a protein with sequence similarity to
XendoU, a eukaryotic endoribonuclease that is involved in cellu-
lar snoRNA processing (28, 29). Though the experimental proto-
col used here is not optimized for the capture of RNA products
with 2=,3=-cyclic phosphates as specifically generated by XendoU
(30), we did observe that the fold changes of identified small RNAs
tended to be larger in SARS-CoV-infected samples than in influ-
enza virus-infected samples (see Fig. S4b and c in the supplemen-
tal material), suggesting that further investigation of the impact of
viral proteins on host small RNA processing could represent an-
other approach for the study of virus-host interactions.

It is known that the characteristics of their secondary struc-
tures could be indicative of the types of putative small RNAs such
as miRNAs and therefore of their general functional mechanisms.
We therefore investigated whether the putative small RNAs iden-
tified here tended to have stable secondary RNA structures (see
Materials and Methods). In total, 89 (41%) putative small RNA
loci were predicted by secondary structure analysis; 20 of those
loci did not overlap with those of the annotated small RNAs (see
Table S4 in the supplemental material). Interestingly, those that
overlapped with annotated small RNAs were significantly (chi-
square test; P � 9.26e-06) more likely to be predicted by RNA
secondary structure analysis (54% [69/128]) compared to those
which did not overlap any annotated small RNAs (23% [20/88]),
suggesting that the existing annotation of small RNAs might be
biased toward those with stable local secondary structures. For
example, out of 46 putative small RNA loci that overlapped with
known miRNA precursors, 76% (one prediction only) to 87% (all
four predictions combined) were predicted with secondary struc-
tures, indicating that our automated strategy for structure predic-
tion performed well in terms of finding local RNA structures such
as hairpins. For those putative loci that overlapped with other
classes of small RNAs, however, the percentage predicted with

secondary structures was much lower, ranging from 40.6% to 59%
for snoRNAs to 24% for piRNAs. A closer look at those loci over-
lapping snoRNAs showed that 90% (9/10) of the loci that over-
lapped with H/ACA box family snoRNAs but only about 45%
(10/22) of the loci that overlapped with C/D box family snoRNAs
were predicted with secondary structures. Since snoRNAs are
broadly classified into two families, corresponding to a C/D box
with one short (~5 nt) hairpin structure and an H/ACA box with
at least two large hairpin structures (31), these results suggest that
investigations based solely on a typical RNA secondary structure-
based approach might miss many small RNAs that do not form
stable local RNA structures per se and that approaches utilizing
transcriptome sequencing might be able to identify broader
classes of small RNAs.

Compared to the current knowledge regarding noncanonical
small RNAs, the functional mechanism of miRNAs is relatively
better understood. However, the regulation of miRNA expression
changes during virus infection has not been systematically inves-
tigated. Through integrative analysis of parallel sequencing of
both small RNAs and long transcripts from the same samples, we
were able to infer the regulatory relationships both upstream and
downstream of miRNAs with respect to the differences in expres-
sion. Not only did we show that the differential expression of
miRNAs was likely due to transcriptional regulation, but our data
also indicate that those miRNAs may collectively play a role in
modulating the global host response. Since it has been shown that
mechanistically mammalian miRNAs mainly act to decrease tar-
get mRNA levels, thus leading to reduced protein output (32),
these results argue that a better understanding of the small RNAs,
including miRNAs, would be required for complete knowledge of
the regulation of host responses to virus infections. As evidenced
here and in other studies (33), multiple miRNAs can simultane-
ously regulate the same targets, arguing that experimental design

FIG 5 Correlations of mature miRNA expression changes with the corresponding pri-miRNA estimates. (a) Scatterplot of the log2 fold changes of mature
miRNA expression measured by small RNA transcriptome sequencing analysis (y axis) and the log2 fold changes in expression of the annotated loci overlapped
with the corresponding miRNAs measured by whole-transcriptome sequencing analysis using the same samples (x axis). In total, 36 mature miRNA loci
overlapped annotated loci and were included in the plot. (b) Data are presented as described for panel a, with the y axis data showing the log2 fold changes in
expression of the 2-kb genomic regions surrounding the corresponding miRNA precursors measured by whole-transcriptome sequencing analysis of the same
samples. In total, 42 mature miRNAs were included in the plot, as 3 of 45 genomic regions surrounding differentially expressed miRNAs were not subjected to
differential expression analysis due to the lack of a sufficient number of reads for quantification in the whole-transcriptome sequencing data.
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and computational strategies of greater complexity, such as we
proposed previously (17), are necessary to elucidate the combina-
torial nature of miRNA-mRNA regulatory networks in vivo.

Our integrated sequencing analysis also offers several addi-
tional benefits, such as the investigation of the functions of some
long ncRNAs. We previously reported that many long ncRNAs of
unknown function respond to virus infection (5), and it is known
that long ncRNAs can serve as precursors for small RNAs (34). In
this study, we identified a number of small RNAs that overlapped
with long ncRNAs (Table 1). For example, miR-155, one of the
upregulated miRNAs identified here (Fig. 2a), is produced from
an exon of the long ncRNA BIC, which was also observed to be
upregulated by whole-transcriptome sequencing analysis (5).
Both miR-155 and BIC were induced in primary murine macro-
phages stimulated by beta interferon (INF-�) (10). Loss-of-
function studies showed that mice lacking a functional BIC/miR-
155 gene exhibited a defective immune response in vivo and were
deficient in cytokine production (35, 36). Also, Fig. 3 shows two
small RNAs overlapping snoRNAs encoded in the introns of Gas5,
another long ncRNA that was previously identified as an apoptosis
regulator (37). It is unclear whether snoRNAs from Gas5 play any
functional roles in response to virus infection, but it has been
hypothesized that the functional effect of Gas5 on T-cell growth
may be mediated through its intronic snoRNAs (38). These exam-
ples suggest that a detailed investigation of the connections be-
tween long ncRNAs and the coexpressed small RNAs might facil-
itate a better understanding of the regulation of host responses.
Moreover, even though the study of viral small RNAs is beyond
the scope of this report, it is worth noting that we also observed
many small sequence reads from both viral genomes (see Table S1
in the supplemental material). Though isolation of small RNAs
from SARS-CoV infections has not been reported, it was shown
recently that influenza virus expresses many small RNAs (39, 40).
In summary, our results convincingly show that, in the future,
integrated sequencing analysis of different fractions of the com-
plex transcriptome should facilitate a full understanding of virus-
host interactions and viral pathogenesis.

MATERIALS AND METHODS
Mouse lines and virus infection. The small RNA transcriptome deep-
sequencing analysis was performed on lung samples from our previously
published study (5). Briefly, we infected four of the eight founder mouse
strains used in generating the Collaborative Cross, a recombinant inbred
mouse resource for mapping complex traits (41). These strains included
129S1/SvImJ (129/S1), WSB/EiJ (WSB), PWK/PhJ (PWK), and CAST/EiJ
(CAST) mice. Ten-week-old mice were intranasally infected with
phosphate-buffered saline (PBS) alone or with 1 � 105 PFU of mouse-
adapted severe acute respiratory syndrome coronavirus (SARS-CoV;
rMA15), or 500 PFU of influenza A virus strain A/Pr/8/34 (H1N1; PR8).

To match the previous whole-transcriptome analysis, we performed
small RNA transcriptome sequencing analysis on the same eight samples
from mice with SARS-CoV infections, including one SARS-CoV rMA15-
infected mouse and one matched mock-infected mouse from each of the
four strains at 2 days postinfection (dpi). In addition, we sequenced the
small RNA transcriptome for 12 samples obtained from influenza virus-
infected mice, including two PR8-infected mice and one matched mock-
infected mouse from each of the four strains at 2 dpi. The additional
replicate samples from matched infections were used for evaluation by
quantitative reverse transcription-PCR (qRT-PCR).

Additional virus infections for qPCR assay. Twenty-week-old
C57BL/6 mice were infected by intranasal instillation of influenza virus
VN1203 (1 � 103 PFU), VN1203 HA avirulent (VN1203 with a mutation

of the HA protein) (1 � 104 PFU), SARS-CoV rMA15 (1 � 105 PFU), or
infectious-clone SARS (icSARS) Urbani (1 � 105 PFU) in 50 �l of PBS or
were subjected to mock infection with PBS alone. In this experiment,
VN1203 was treated as a highly pathogenic strain and VN1203 HA avir-
ulent as a minimally pathogenic strain of influenza virus, as the 50%
mouse lethal doses were 1 PFU for VN1203 and 104.3 PFU for VN1203
HA (unpublished data). Similarly, MA15 was treated as a highly patho-
genic strain and Urbani as a minimally pathogenic strain of SARS-CoV
based on a previous study (42). Lung tissues were removed on days 2 and
4 postinfection, and total RNA was harvested from an individual lung
lobe. There were 3 mice for each time point and 3 animals for the time-
matched mock-infected samples.

PWK/PhJ mouse embryonic fibroblasts (MEFs) were infected with
A/PR/8/34 influenza virus at a multiplicity of infection (MOI) of 2.0.
Allantoic fluid was used for mock treatments (n � 3 per set of conditions
at each time point). Following infection, cells were washed once and in-
cubated in complete medium at 37°C. At 6, 8, 12, and 24 h postinfection,
cells were harvested in TRIzol and samples were processed using an miR-
Neasy Mini kit (Qiagen) according to the manufacturer’s instructions.

RNA preparation. The individual lung lobes were homogenized using
Trizol and a Magnalyser system (Roche) according to the manufacturer’s
instructions. RNA was further purified using an miRNeasy Mini kit (Qia-
gen) according to the manufacturer’s instructions. RNA samples were
spectroscopically verified for purity, and the quality of the intact RNA was
assessed using an Agilent 2100 Bioanalyzer. The assay also confirmed that
the RNA samples were free of genomic DNA contamination.

Library construction. For SARS MA15-infected samples, small RNA
libraries were prepared with a Small RNA v1.5 sample preparation kit
following the manufacturer’s instructions (Illumina, San Diego, CA). To-
tal RNA was ligated with a 3 = RNA adaptor (5=-/5rApp/ATCTCGTATG
CCGTCTTCTGCTTG/3ddC/) specifically modified to target miRNAs
and other small RNAs that have a 3 = hydroxyl group resulting from
cleavage by Dicer and other RNA-processing enzymes and then with a 5 =
RNA adaptor (5=-GUUCAGAGUUCUACAGUCCGACGAUC) at the 5 =
end of RNA with a phosphate group. The 5 = adaptor also included the
sequencing primer. RT-PCR amplification was then done using the adap-
tors as primers, selectively enriching the fragments that had adaptors on
both ends. The resulting double-stranded DNA libraries were polyacryl-
amide gel electrophoresis (PAGE) (6% Novex Tris-borate-EDTA [TBE]
PAGE; Invitrogen) purified and size selected to eliminate dimerized adap-
tors.

For influenza virus-infected samples, small RNA libraries were pre-
pared using a TruSeq Small RNA sample preparation kit (Illumina, San
Diego, CA) following the manufacturer’s instructions. This protocol is
very similar to that of the version 1.5 sample preparation kit but with a
change in the 3 = adapter (5 = TGGAATTCTCGGGTGCCAAGG) that also
targets the 3 = hydroxyl resulting from enzymatic cleavage by Dicer.

Sequencing and read mapping. All libraries were sequenced to 50 nt
(SARS-CoV infection) or 54 nt (influenza virus infection) of read length
on individual lanes on a Genome Analyzer II system following the proto-
cols of the manufacturer (Illumina, San Diego, CA).

The adaptor sequences were first trimmed from small RNA reads.
After adaptor trimming, reads � 16 nt in length were discarded, and reads
� 40 nt were shortened to 40 nt by clipping from the 3 = end. Bowtie
software (43) was used to align the trimmed reads to reference sequences,
allowing up to two mismatches and with options selected as “-k 1 –m1
– best –strata,” which kept only uniquely mapped reads.

For the global classification, the trimmed reads were aligned se-
quentially to mouse ribosomal sequences (rRNA) from GenBank, tRNA
sequences (tRNA) from the genome browser of the University of
California, Santa Cruz (UCSC), (http://genome.ucsc.edu), small cyto-
plasmic RNA (scRNA), small nuclear RNA (snRNA), and small nucleolar
RNAs (snoRNA) sequences from NCBI RefSeq annotation, piwi-
associated small RNA (piRNA) sequences from the functional RNA data-
base (44), microRNA (miRNA) precursor sequences from miRBase
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(http://www.mirbase.org, release 16), the mouse reference genome
(mm9, July 2007, NCBI build 37, reference strain C57BL/6J), and SARS-
CoV (GenBank accession no. DQ497008) or influenza virus (GenBank
accession no. AF389115 to AF389122) genomic sequences. Also, un-
mapped reads after rRNA alignment were mapped directly to the same
mouse reference genome to search for nonannotated small RNAs. For
visualization, BAM files were generated using SAMtools (45) and dis-
played using the UCSC genome browser.

Differential expression analysis of small RNAs from annotated loci.
To quantify transcript expression, we estimated transcript abundance by
counting the total number of reads mapped to each transcript. Read se-
quences that mapped to more than one location were excluded from
expression quantification. To compare transcript expression data across
different sets of conditions, the transcript abundances, i.e., the raw read
counts, were scaled first as the number of reads per million (rpm) mapped
for each sample. Next, we chose the geometric mean of all samples as a
reference. The quantile-quantile (qq) plots of the distribution of differ-
ences between the reference and remaining samples in the numbers of
log2-transformed revolutions per minute were compared. We determined
a scaling factor for each sample as the median difference between the
corresponding quantile values of the individual sample and the reference.
An offset of 1 was added to all normalized values to facilitate comparisons
involving one or more values of zero and to reduce the variability of the
log ratios for low expression values.

For quantification of annotated miRNAs, we first removed reads
mapped to other abundant small RNAs (rRNAs, tRNAs, snoRNAs,
snRNAs, scRNAs, and piRNAs) and used the results to map the remaining
reads directly to miRNA precursors. To accommodate the variability in
the RNA sequences of individual mature miRNAs, i.e., the so-called
isomiRs (46), we counted all reads mapped with start positions located
within a 3-nt window for each annotated mature miRNA. Only reads of 19
to 25 nt were used for miRNA quantification.

For other annotated loci, we used the mapping results of the reads to
search the mouse reference genome. A nonredundant set of annotations
that included annotations of long (�200 nt) noncoding RNAs was com-
piled as previously described (5). In brief, we clustered the overlapping
annotated transcripts into single loci. We found 10,986 nonoverlapping
ncRNA loci (8,008 of which were larger than 200 nt) in addition to 21,565
protein-coding loci. Read sequences that mapped to multiple locations on
the corresponding reference sequences were excluded from the counts
during all differential expression analyses. The repeat information was
downloaded as a RepeatMasker track using the UCSC genome browser.

Identification of non-miRNA and novel small RNAs by a genome-
wide search. We carried out a genome-wide search of novel small RNAs,
starting by mapping all short reads directly to the mouse reference ge-
nome. We located start positions in the genome mapped with short reads
from all 20 samples and counted the number of reads of the same length
from the same sample for each start position mapped. We then identified
the (top 5%) most abundant start positions by the read count of all start
positions located as described above as candidate loci for putative small
RNAs. We next merged overlapping candidate loci into single loci to
create a set of nonredundant candidate loci for putative small RNAs. We
counted the number of reads that were 16 to 36 nt in length that mapped
to each of nonredundant candidate loci across all samples and estimated
the changes in expression of these candidate loci during virus infection by
the use of a method similar to that used for miRNA differential analysis.
The differentially expressed candidate loci were predicted as putative
small RNA loci.

To minimize the possibility that an identification of a non-miRNA
small RNA was due to a partial misalignment of short reads that origi-
nated from very abundant RNAs sharing high sequence similarities, we
located all genomic regions with high sequence similarity to each putative
small RNA locus. These “homologous” genomic regions were identified as
follows: (i) for putative small RNA loci that were relatively long (�40 nt),
we used the standalone BLAT program with the default setting for DNA

alignment to align the genomic sequence of the small RNA locus to the
reference genome sequence (47); (ii) for small RNA locus that were rela-
tively short (40 nt or less), we extracted all reads uniquely mapped to the
small RNA locus as described above. We then used the Bowtie program as
described above (43) but with criteria that were less stringent (i.e., with a
change from 2 mismatches to 3 mismatches) and with adjustments of the
program settings to report all valid alignments (Bowtie option “-all”) to
realign the extracted reads to the reference genomes. For both alignment
approaches, we treated the genomic region corresponding to each ob-
tained alignment as a genomic region “homologous” to the small RNA
locus. To remove redundancies, we merged overlapping homologous
genomic regions into single homologous genomic regions. For each iden-
tified homologous region, we counted the number of uniquely mapped
reads obtained across all samples as described above. We then compared
the read counts of these homologous regions to that of the genomic region
corresponding to the original small RNA locus. We kept a putative small
locus for further analysis only when the number of uniquely mapped
reads in the genomic region corresponding to the small RNA locus was at
least twice as large (on average, across all samples) as that of the homolo-
gous region with the highest number of uniquely mapped reads.

We used RNAfold (48) and RNAz (49) to perform RNA secondary
structure predictions for putative small RNA loci. Conserved RNA sec-
ondary structures (P � 0.5) were predicted using 30-way multiple align-
ments downloaded from the UCSC genome browser (http://genome.ucsc
.edu) and RNAz (49). For predictions performed using RNAfold (48), we
extracted three genomic windows of different sizes (100, 150, and 200 nt)
surrounding each putative small RNA loci. When a locus was shorter than
the desired genomic window, we expanded the locus by first adding neigh-
boring candidate loci within the desired genomic window and then ex-
tending the sequence at both ends to achieve the desired width. To eval-
uate the statistical significance of the secondary structures predicted by
RNAfold, we generated 500 randomly permutated sequences from the
original sequence, with dinucleotide frequencies preserved using uShuffle
(50), and used RNAfold to similarly fold all random sequences. We cal-
culated the percentage of times that a random sequence exhibited a higher
minimum free energy level than the original sequence as the P value of the
predicted secondary structure for the locus. A prediction with P � 0.05
was considered significant.

Quantitative real-time PCR (qPCR). Quantitative real-time PCR was
used to validate expression of selected miRNAs on replicate samples. For
each miRNA qRT-PCR assay, the total RNA input used was 20 ng per
sample. qPCR (including reverse transcription- and miRNA-specific
primer sets) was performed using a miRCURY LNA Universal RT mi-
croRNA PCR system (Exiqon, Woburn, MA). qPCR was performed with
an ABI 7900 real-time PCR system and SYBR green chemistry. Each assay
was run in triplicate with Power SYBR green PCR master mix (Applied
Biosystems, Carlsbad, CA) for miRNA detections in a 10-�l total reaction
volume.
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