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Amechanistic model of pure and lipidic
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Parkinson’s therapies
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Alpha-synuclein (aSyn) plays a crucial role in Parkinson’s disease, with various aggregates proposed
as pathogenic triggers and therapeutic targets. However, anti-aSyn aggregation compounds often fail
due to limited knowledge of the underlying molecular basis. In particular, interactions with lipid
membranes are central to both physiological and pathological roles of aSyn, yet their underlying
mechanisms remain unclear. Disrupting this balance may drive Parkinson’s onset and progression,
underscoring the need for a mechanistic understanding of pure and lipid-mediated aggregation.
Building on well-established in vitro aggregation studies, we propose a mathematical model of aSyn
accumulation incorporating both aggregation routes via a nucleation-conversion-polymerization
process with self-amplifying loops and toxic oligomers. Model calibration uses data from in vitro
assaysmimickingphysiologically relevant conditions, providing insights into transient andstable aSyn
intermediates. Incorporating aSyn-lipid interactions enables in silico exploration of how lipid-to-aSyn
ratio influences aggregation, with possible implications for neurodegeneration. Sensitivity analysis
highlights secondary nucleation inhibition as a potential anti-aggregation strategy. Overall, our work
contributes to a unified framework for investigating in vitro aSyn aggregation and evaluating
Parkinson’s therapies by building on existingmodels. It can serve as a stand-alone tool and amodular
component in multiscale models, with potential applications in quantitative systems pharmacology.

The neuronal protein alpha-synuclein (aSyn) and its aggregation play a
critical role in the onset and progression of Parkinson’s disease (PD). This
close connection between aSyn and PD pathology is underscored by recent
advances in aSyn-based biomarkers, which have defined a new biological
framework for the disease1,2. Moreover, different aSyn aggregates have been
suggested as crucial pathogenic triggers of PD neurodegeneration and
considered potential therapeutic targets. Therefore, each new insight into
aSynmolecular landscape, andultimately its thorough understanding, could
serve as a linchpin for the rational design of anti-aSyn aggregation therapies.

Over the past few decades, significant progress has been made in
characterizing aSyn aggregation. It is well-established that, upon misfolding
due to post-translational modifications, increased oxidative stress, or other
cellular stressors, aSyn monomers slowly aggregate into oligomeric species,
thus creating nucleation seeds. In return, seeding-competent oligomers can
rapidly accumulate, forming protofibrils and insoluble fibrils. Multiple aSyn
species eventually gather into large cytoplasmic inclusions known as Lewy
bodies (LBs) and Lewy neurites (LNs), representing one of PD main
molecular hallmarks. The transition from monomers to fibrils through

multiple intermediate species relies on a complex molecular network. The
resulting aggregates differ in size, conformational structure, and role in the
aggregationpathway.Themechanisms involved canbedivided into primary
and secondary reactions, and their corresponding reverse reactions. Primary
events include (i) homogeneous and heterogeneous (i.e., surface-catalyzed)
nucleation mechanisms combining monomers into nucleation seeds, i.e.,
newly formed oligomers, as the first step of the aggregation cascade, (ii)
conformational changes between intermediate aggregates, and (iii) fibril
formation and elongation by monomer addition. On the other hand,
nucleation catalyzed by the surface of existingfibrils andfibril fragmentation
are labeled as secondary events, resulting in positive feedback loops.

Uncontrolled accumulation hinges on aSyn oligomers, which have
been identified as crucial early steps of the aggregation pathway and sug-
gested as key contributors to PD neurodegeneration. Two oligomeric spe-
cies, i.e., type-A and type-B oligomers, have been differentiated based on
their structural conformation and degradation susceptibility3,4. Type-A
oligomers are intrinsically disordered andhighly susceptible toproteinase-K
treatment, whereas type-B oligomers have a partially formed fibrillar
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structure characterized by high β-sheet content and high resistance to
proteinase-Kdegradation. This distinction arises not only from the different
structural conformations of type-Aand type-Boligomers but also fromtheir
related roles in theprocess. Experimental evidencepoints to oligomers as the
major source of inherent toxicitywithin the aggregationpathway, compared
to insoluble aggregates such as mature fibrils and Lewy bodies. Indeed,
oligomer formation results in higher levels of oxidative stress, increased cell
membrane permeability, deregulated calcium and metal ion homeostasis,
impairedmitochondrial function, and dysfunctional protein degradation5,6.
In this context, type-B oligomers have been suggested as themost cytotoxic
aSyn species due to their specific conformation associated with high degrees
ofβ-sheet content andhydrophobic exposure, in contrast to non-toxic type-
A oligomers3,5. For instance, cell-free in vitro and in vivo experiments have
shown that these oligomers can rapidly and significantly increase cyto-
plasmic reactive oxygen species (ROS) production3,4,7. These oligomeric
species are sequential intermediates in fibril formation, thus defined as on-
pathway. Given the heterogeneous and elusive nature of oligomers, addi-
tional species may result from side reactions (i.e., off-pathway), depending
on experimental conditions and cellular co-factors, and their presence
cannot be ruled out5,8–10.However, we focus on type-A and type-Boligomers
as they represent the primary path to fibrils in aSyn aggregation11,12.

Strong evidence also supports co-aggregation between aSyn and lipid
molecules, both in vivo and in vitro, in the pathological scenario. For
instance, Lewy bodies have been observed as cytoplasmic deposits of aSyn
filaments alongside crowded membranes from vesicles and fragmented
organelles13, potentially incorporated at every stage in the formation
process14. In more controlled environments such as in vitro aggregation
assays, lipid-protein co-assemblies can spontaneously form from mixtures
of monomeric protein and negatively charged lipid membranes, typically
introduced as small unilamellar vesicles (SUVs). Different factors, e.g.,
vesicle composition and lipid-to-aSyn ratio, affect the co-aggregation pro-
cess, thus modulating fibril morphology and aggregation kinetics14. Gal-
vagnion et al.15 showed that lipid-aSyn binding can lead to the rapid but
reversible breakup of vesicles into small disc-like lipid-protein structures
that mediate favorable protein-protein interactions, inducing aggregation.
As a result, lipidic fibrils emerge as lipid-aSyn co-aggregates, differing from
pure protein fibrils in flexibility and thermodynamical stability. None-
theless, these species share a connection. Despite these differences, lipid-
decorated fibrils can undergo structural conversion upon heating or pro-
teolytic protein removal, potentially transitioning into pure protein fibrils15.
Pure protein and lipidic fibrils not only differ in structure but also in their
modes of formation. Both fibrillar species result frommonomer nucleation
and oligomeric conversion but differ in the elongation mechanism. Indeed,
new mechanistic insights suggest that lipids act as reactants consumed
during aggregation, wherein the interaction of existing fibrils with
monomer-coated lipid vesicles boosts fibril elongation15,16.

These insights result from the extensive study of aSyn aggregation in
test-tube, in vitro, and in vivo experiments17,18. Of particular interest, due to
their invaluable contribution to the field, are the chemical kinetic models,
developed to complement test-tube experiments. Evolving alongside
advancing methodologies for aggregate detection, these models aim to
determine the microscopic events that govern aggregation and their kinetic
rates under specific experimentally controlled scenarios16,17,19,20.

Notwithstanding ongoing progress in understanding the central role of
aSyn aggregation in PD neurodegeneration, many unclear aspects still
hamper the quest for effective disease-modifying therapies, which remain
unavailable to date. Indeed, the biological complexity of the aggregation
process comeswith the limited availability of experimentalmeasurements of
aSyn intracellular dynamics, particularly in cell cultures and living systems.
This data paucity often results from technical difficulties in tracking
aggregate formation over time and addressing the heterogeneous and elu-
sive nature of oligomers. As a result, a quantitative analysis of the aggre-
gation kinetics in these settings requires continuous improvement.
Moreover, different aspects of aSyn-lipid interplay are still elusive since this
protein interacts with lipid membranes as part of both its physiological and

pathological roles in the brain. Its unfolded form has essential functions
mainly associated with the synaptic vesicles. The most agreed-upon yet
elusive activity involves a lipid-bound helical form regulating synaptic
vesicle recycling and neurotransmitter release through interactions with
phospholipids of synaptic vesicle membranes21,22. On the other hand, aSyn-
lipid co-aggregation can have pathological consequences: lipid membranes
interfere with aggregation, and, in turn, various aSyn species can lead to
alterations in membrane morphology and permeability, resulting in a
vicious cycle. A slight perturbation of this finely-tuned balance between
functional and deleterious interactions of aSyn and lipids may result in PD
pathogenicity23. Therefore, understanding the mechanisms underlying
aSyn-lipid interactions and the interplay between pure and lipidic aSyn
aggregation can lead to crucial physiological implications.

These knowledge gaps would benefit from a unified mechanistic fra-
mework for in vitro aSyn aggregation that builds on existing insights to
explore new scenarios in silico and support therapeutic development. Such a
framework would also strengthen multiscale modeling approaches that
connect molecular events to cellular, tissue, and clinical outcomes, particu-
larly in quantitative systems pharmacology (QSP) and physiologically based
pharmacokinetic (PBPK) models. While these models account for various
biological processes (e.g., degradation pathways and oxidative stress), they
often simplify aSyn aggregation, reducing its complexity to coarse-grained
variables that overlook the details of aggregation kinetics24. Conversely, when
aggregation is explicitly modeled, kinetic parameters are often drawn from
diverse literature sources25, which can lead to inconsistencies due to differ-
ences in experimental conditions, some of which do not reflect physiological
environments. Integrating a unified molecular-level model of aSyn aggre-
gation into thesemultiscale frameworkswould provide a clearer link between
microscopic aggregation events and system-level proteostasis failure, leading
to a bridge between in vitro findings and in vivo disease mechanisms and
deepening our understanding of PD neurodegeneration26–29.

Results
Chemical kinetic models have provided significant insights into in vitro
aSyn aggregation16,17,19,20. Tailored to ad-hoc test-tube experiments, they
typically include a minimal set of reactions relevant to aggregation, fol-
lowing the principle of model parsimony. By leveraging their framework
and mechanistic insights, we developed a mathematical model that inte-
grates pure and lipid-mediated aggregation pathways into a unified fra-
mework grounded in in vitro knowledge. This approach allows to explore
diverse experimental conditions and aggregation dynamics while aligning
with established findings.

Model structure
The system includesmicroscopic events involved in pure protein and lipidic
aggregation and are specifically related to aSyn as reported in the literature.
As shown in Fig. 1, it represents a nucleation-conversion-polymerization
process that describes fibril formation from monomers via oligomeric
intermediates. It explicitly accounts for two oligomeric species and the
corresponding monomer-independent conversion steps en route to fibrils,
from type-A to type-Boligomers tofibrils. Type-Aoligomers appear early in
the process, resulting from different primary nucleationmechanisms. They
can dissociate back into monomers or undergo a structural conversion that
results in type-B oligomers, which eventually form fibrils through another
conformational change and do not spontaneously revert to type-A oligo-
mers. Similarly, fibrils do not convert back to type-B oligomers. Structural
transitions in amyloid aggregation pathways often result in more stable
species and can therefore be effectively treated as irreversible30. Accordingly,
we consider type-B oligomer formation as a unidirectional process, as these
oligomers exhibit increased structural stability and resistance to reversal,
making the relatively slow reverse reaction negligible. This assumption
aligns with existing chemical kinetic models of aSyn aggregation that
explicitly include type-A and type-B oligomers3,30,31. Additionally, the sys-
tem accounts for pure protein and lipidicfibrils15,16,32, thus reflecting another
critical biological and mechanistic distinction between aSyn species.
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The model describes the temporal evolution of protein species,
including free and vesicle-bound monomers (m and mb), type-A and
type-B oligomers (A and B), newly formed fibrils (F*), pure protein and
lipidic fibrils (Fp and Fl), as well as free, monomer-coated, and fibril-
bound vesicles (Vf, Vb, and VF,b). In addition to monitoring the number

concentration of each aSyn species, the model also incorporates mass
concentration to keep track of the monomer molecule count within each
aSyn species. Such a choice of variable follows the chemical kinetic fra-
mework proposed by Knowles and colleagues17 by leveraging a (sto-
chastic) master equation approach33, detailed in the Material and
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Methods section. As outlined in Table 1, MA, MB, MF� , MF,p, and MF,l

represent the concentration of monomers in oligomeric and fibrillar
aggregates. In particular, we assumed that fibrils are the only species that
can elongate by monomer addition at their ends, whereas oligomers,
being nonfibrillar, are characterized by negligible elongation rate con-
stant. This assumption results in the relationship MA = nA andMB = nB.
Such a coarse-grained representation of oligomer populations aligns with
the kinetic modeling framework in Iljina et al.30 and Dear et al.31. The
limited contribution of oligomers to monomer consumption, as indi-
cated by smFRET data30, supports the assumption of a negligible oligo-
meric elongation rate constant compared to the dominant/driving
process of fibril elongation. In our notation, MF,p and MF,l both include
the mass concentration of newly generate fibrils MF,*, with the differ-
ences indicated by ~MF;p and ~MF;l, respectively. Therefore, the total mass
concentration of fibrils MF,TOT corresponds to the combined species
concentration (MF,p and MF,l) that accounts for the overlap (MF� ), i.e.,
MF;TOT ¼ ~MF;p þ ~MF;l þMF;� ¼ MF;p þMF;l �MF;�. Accordingly,
the concentration of both fibrillar species includes the amount of
newly generated fibrils, with Fp ¼ ~Fp þ F� and Fl ¼ ~F l þ F�, where ~Fp
and ~F l refer to pure protein and lipidic fibrils originating
through F* elongation and vesicle-F* binding, respectively; and
FTOT ¼ ~Fp þ ~F l þ F� ¼ Fp þ F l � F�.

These variables are interconnected through primary and secondary
nucleation, oligomer conversion anddissociation,fibril formation, pure and
vesicle-mediated fibril elongation, and monomer-vesicle binding, listed in
Table 1. Reactions such as monomer-independent unimolecular oligomer
structural conversions, oligomer dissociation, fibril formation, reversible
monomer-vesicle binding, and pure fibril elongation are regulated by first-
or second-ordermass action rate laws. In contrast to homogeneous primary
nucleation that cannot display saturation effects, heterogeneous primary
nucleation involves a two-step enzymatic reaction catalyzed by various
surfaces within the reaction vessel (e.g., the plate surface or the air-water
interface concentration). To form oligomers A, monomers interact with a
surfaceW according to the reaction:

n �mþW$
kp

k�p

C1 !
kcat;I

AþW ð1Þ

The correspondingHill functionHðKmax;I;KP; nÞ is definedas kmax;I
mn

mnþKn
P
,

with half-saturation constantKP= (k-p+ kcat,I)/kp. Themaximal production
rate is given by kmax;I ¼ kcat;IWTOT, whereWTOT, subsumed into the rate
constant, represents the total concentration of surfaces catalyzing this
reaction. Likewise, secondary nucleation involves a two-step catalytic
reaction catalyzed by fibril surfaces S:

n �mþ Sk�sks$C2 !
kcat;II

Aþ S ð2Þ

The correspondingHill functionH(kmax,II,KS, n) is given by kmax;II
mn

mnþKn
S
S,

where KS = (k-s + kcat,II)/ks represents the half-saturation constant, and
kmax;II ¼ kcat;II denotes the maximal production rate constant. Here, S is
assumed to be proportional to fibril mass concentration. Specifically, in the
model, secondary nucleation can occur on pure, lipidic, and newly

generatedfibril surfaces, which are assumedproportional to ~MF;p, ~MF;l, and
MF,*, respectively. The corresponding secondary nucleation rate constants
are defined as kpmax;II, k

l
max;II, and k�max;II. When only one secondary

nucleationmechanism is considered, the rate constant is indicated as simply
kmax;II. Note that assuming the same rate constant for different secondary
nucleation mechanisms results in a corresponding flux proportional to the
total fibril mass concentration, i.e., kmax;II

mn

mnþKn
S
MF;TOT.

In lipidic environments, monomers reversibly bind to and dissociate
from free vesicles in solution, regulated by a dissociation constant KD = k−/
k+. This process contributes to the dynamic partitioning of monomers
between the free and vesicle-bound states. The reversible binding is repre-
sented by a second-order mass action:

mþ V fk
�kþ$mb ð3Þ

Here, mb ¼ Ms
γ Vb, with Ms and γ denoting the lipid count of a vesicle

(estimated to approximately 6000 lipids per SUV) and the number of lipids
within a vesicle involved in binding to a proteinmonomer (estimated to~30
lipids per protein), respectively32. The resultingmonomer-coatedvesiclesVb

play a crucial role in fibril elongation by delivering both lipids and
monomers to growing fibrils.

According toDear et al.16, lipid-mediated fibril elongation proceeds via
a co-elongation mechanism: lipids are actively incorporated into the
growingfibril structure during the elongationphase, rather than at the initial
nucleation stages, and this process depends on the relative rates of protein
and vesicle addition. Specifically, monomer-coated vesicles initially bind to
fibril ends at rate constant kon. As approximately y monomers are
sequentially added to fibrils at rate constant kl2, these monomers intermix
with lipids provided by vesicles to form lipid-protein co-aggregates, which
thus do not result from pre-bound “lipidic monomers”. While vesicle
binding to fibril surfaces andmonomer addition to fibril ends are reversible
reactions, we assumed back reactions to be significantly slower than their
corresponding forward reactions and thus negligible16. In particular, vesicles
likely do not remain permanently bound to the fibril surface but stay
temporarily to enable elongation, facilitating the formation of lipid-protein
co-aggregates without requiring vesicle engulfment or disassembly. Given
that the model focuses on the overall aggregation kinetics - not on tracking
theprecise dynamics of individual vesicles, the vesicle dynamics is simplified
to a “delivery”model: upon ymonomers incorporation per binding event, a
newvesicle needs to “dock” to thenewgrowing endand “deliver” its cargoof
lipids to further elongation, implying that the vesicle is no longer con-
tributing tofibril growth. Therefore, the kon constant effectively accounts for
both vesicle binding and the delivery of lipids necessary for the process.

Thismechanism is representedby a functiondependingon the amount
of free monomers and monomer-coated vesicles, defined as:

f ðy; kon; kl2Þ ¼ ykonVb
kl2m

kl2mþ ykonVb
Fl ð4Þ

where kon and kl2 correspond to the rate constants of vesicle-fibril binding
and lipidic fibril elongation by monomer addition, respectively. We
assumed lipidic fibrils to elongate at the same rate constant as pure fibrils,
i.e., kl1 = kl2. This function has been recently proposed byDear et al.

16, and a

Fig. 1 | Graphical representation of aSyn aggregation. a A conceptual scheme of
pure protein and lipidic aggregation pathways represented in our model, including all
microscopic events involved in a nucleation-conversion-polymerization process and the
interactions between aSyn and lipidic vesicles. Green and pink boxes represent pure
protein and lipidic aggregation pathways, respectively. The two oligomeric species are
explicitly represented due to their crucial role in aggregation-related cytotoxicity. bModel
diagram. Circles correspond to the system variables, i.e., monomers (m), type-A and type-
B oligomers (A and B), newly generated fibrils (F*), pure and lipidic fibrils in terms of both
number concentration (Fp and Fl) and mass concentration (MF,p andMF,l), and free and
bound vesicles (Vf and Vb); with ~Fp and ~F l as auxiliary variables indicating pure and
lipidic fibrils that are not newly generated, i.e., such that Fp ¼ ~Fp þ F� and

Fl ¼ ~Fl þ F� . Edged arrows represent the reactions governing the dynamics of the
system variables, including nucleation, elongation, structural conversions, and binding
events, with the corresponding parameters. This model diagram presents a variable choice
that relies on the distinction between number and mass concentrations. Green and pink
boxes, together with supplementary circles, highlight pure protein and lipidic fibril species,
respectively, whereas the gray box represents MF,TOT as the union of MF,p and MF,l. For
simplicity of representation, we neglect the terms konVbMF� and kl1mMF� , involving the
mass concentration of newly formed, pure protein, and lipidic fibrils. Note that there is no
arrow between F* and MF� , given that newly formed fibrils F* transition to ~Fp upon
elongation by monomer addition and do not grow in monomer count.
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more detailed description of its derivation is provided in the Material and
Method section.

Themodel accounts for pure and lipidic aggregation routes by assuming
shared initial aggregation and distinct elongation processes for the two
fibrillar species. Specifically, on-pathway oligomers are assumed to be pure in
both pathways, given the lack of detailed structural and mechanistic char-
acterization of lipidic oligomers and the central role of lipid incorporation
during the co-elongation phase of lipidic fibrils. While to our knowledge no
mechanistic description of lipid-oligomer interactions is available in the lit-
erature to our knowledge, the existence of lipidic oligomers cannot be entirely

excluded. According to Dear et al.16, various protein-only and protein-lipid
clusters develop during nucleation in the lipid vesicle experimental setup.
While these clusters couldbe intermediates, the authors identified thenucleus
by its co-aggregate nature and ability to grow into fibrils - i.e., as “the first
species that structurally resembles the final aggregates and can rapidly grow
throughmonomer addition” - rather than as an earlier-stage intermediate in
the aggregation pathway. Therefore, early oligomerization may follow a
protein-only pathway, with lipid incorporation becoming more prominent
during fibril elongation. Building on these insights, our model focuses on
monomer- and fibril-vesicle interactions as key reactions in lipidic fibril
formation, reflecting themechanistic emphasis on lipid incorporation at later
stages rather than at early oligomerization or nucleation.

Figure 1a provides a graphical representation of the molecular
mechanisms underlying our model, formalized by the diagram in Fig. 1b.
Overall, the model of aSyn aggregation is based on a system of Ordinary
Differential Equations (ODEs) describing the time evolution of monomer
and aggregate levels. It consists of 12 ODEs, with 12 variables, 12 reactions,
and up to 20 parameters (if we consider three distinct secondary nucleation
mechanisms), and two algebraic equations corresponding to the con-
servation law of total monomer and vesicle concentrations, ensuring mass
balance throughout the process. Table 1 lists the model variables and
parameters; the highlighted variables appear in the model equations.

Integration of chemical kinetic model components. A detailed com-
parison between our work and other chemical kinetic models of aSyn
aggregation16,30–32,34,35 can be found in Supplementary Table 1 of the Supple-
mentary Note 1, highlighting differences in mechanisms, variables, and
reaction kinetics (e.g., mass action vs. catalytic processes). Chemical kinetic
models often exclude intermediate species19,34, focusing on nucleation-
polymerization processes, or consider a single oligomeric state32,35, facing
limitations of data availability. Specific aSyn oligomers, however, play a
crucial role in aggregation dynamics and cytotoxicity. Our model explicitly
includes on-pathway oligomers undergoing structural conversion (from
type-A to type-B), following the approach of Iljina et al.30. In addition, our
model distinguishes between homogeneous and heterogeneous primary
nucleation, in line with evidence suggesting distinct roles for these processes
under specific experimental conditions; while homogeneous nucleation is
required for initiating any aggregation process, heterogeneous nucleation is
the dominant primary nucleation pathway for aSyn in many cases16.
Although secondary nucleation is represented as a mass action process of
order n, with n < 1 representing saturation, in many models31,32,34,35, we
explicitly represent it as a catalyzed reaction,wherefibril surfaces - assumed to
be proportional to fibril mass concentration - act as enzymes for type-A
oligomer formation. For lipidic aggregation, our model incorporates the
detailed aSyn-lipid interaction mechanisms described by Dear et al.16 and
includes explicit monomer-vesicle binding, moving beyond pre-equilibrium
assumptions. While chemical kinetic models often focus on either pure or
lipid-mediated aggregation, our approach acknowledges that both likely
occur simultaneously in physiological environments, where aSyn interacts
with various cellular co-factors and undergoes dynamic changes in its sur-
roundings (e.g., pH shifts, variations in local lipid concentration, etc).Overall,
our model uniquely integrates reaction types relevant to aSyn aggregation,
from oligomer conversions and secondary nucleation to lipid interactions.

Context-dependent mechanisms of in vitro aSyn aggregation:
model calibration and validation
The mechanisms involved in the model can contribute to the whole aggre-
gation process to a different extent depending on the pathophysiological
conditions of the surrounding environment. In in vitro aggregation assays,
aSyn monomers in solution are resistant to nucleation, and specific catalysts
are required to trigger their aggregation. The process can be accelerated or
slowed down by different reactions depending on the nature of the initiating
agents, physicochemical factors (e.g., pH, ionic strength, water activity), and
solution conditions. For instance, the presence of lipid vesicles significantly
boosts fibril elongation16, whereas secondary nucleation dominates the

Table 1 | Model variables and parameters

Model variables

Variable name Symbol

Monomer concentration m

Type-A oligomer concentration A

Type-B oligomer concentration B

Newly generated fibril concentration F*

Pure fibril concentration Fp

Type-A oligomer mass concentration MA

Type-B oligomer mass concentration MB

Newly generated fibril mass concentration MF*

Pure fibril mass concentration MF,p

Free vesicle concentration Vf

Monomer-coated vesicle concentration Vb

Fibril-boundmonomer-coated vesicle concentration VF,b

Vesicle-bound monomer concentration mb

Fibril-bound vesicle-coating monomer concentration mF,b

Lipidic fibril concentration Fl

Lipidic fibril mass concentration MF,I

Total vesicle concentration VTOT

Total monomer concentration mTOT

Total fibril mass concentration MF,TOT

Model parameters

Parameter name Symbol

Number of monomers involved in nucleation n

Rate constant for homogeneous primary nucleation kn

Maximum rate for heterogeneous primary nucleation kmax;I

Nucleation equilibrium constant (heterogeneous) KP

Maximum rate constant for secondary nucleation kmax;II

Nucleation equilibrium constant (secondary) KS

Rate constant for oligomer conversion kc1

Rate constant for oligomer dissociation kd

Rate constant for fibril formation kc2

Rate constant for pure fibril elongation kl1

Rate constant for lipidic fibril elongation kl2

Coefficient for vesicle-mediated fibril elongation y

Rate constant for vesicle-fibril binding kon

Dissociation constant for monomer-vesicle binding KD

Backward rate constant for monomer-vesicle binding k−

Forward rate constant for monomer-vesicle binding k+

Number of lipids binding a monomer γ

Average lipid count in vesicles Ms

The bold variables are those included in the model equations, as reported in the “Material and
methods” section.
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aggregation process as a result of pH variations and the addition of preformed
fibril seeds34. This information has emerged from the rigorous analysis of
aSyn aggregation kinetics16,17,19,30,32,34,36. To account for the significant variations
in the contribution of eachmicroscopic event, we calibrated and validated the
model on different sets of published data from in vitro aggregation assays of
recombinant purified aSyn30,32,34. Specifically, we considered four aggregation
scenarios, three shown in Fig. 2 and the fourth in Fig. 3:

1. constant agitation of aSyn monomers with oligomer data obtained
using single-molecule Förster Resonance Energy Transfer (smFRET)
measurements30;

2. pH variations from neutral to mildly acidic levels and inclusion of
preformed fibrils seeds with Thioflavin-T (ThT) dye fluorescence data
of pure aSyn fibrillation34;

3. introduction of anionic phospholipidic vesicles, i.e., DMPS SUVs, in
solution with monomers with a ThT-derived fibril mass dataset32;

4. cytosolic ionic strength, neutral pH, and seeding with fibril and oli-
gomer mass data obtained by ThT dye fluorescence and single-
molecule fluorescence-free electrophoresis (FFE), respectively35.

Although calibrating the model on smFRET-derived data obtained
under mechanical stress provides valuable insights into aSyn oligomeriza-
tion, there is a potentialmismatch between constant agitation ofmonomers
in solution and the initiating factors of aggregation in vivo.

To address this limitation, we incorporated more physiologically
relevant scenarios; aSyn is predominantly cytosolic, where the pH ranges
from 7.2 to 7.4, but also interacts with mildly acidic cellular compartments,
such as intracellular vesicles, endosomes, and lysosomes, where a slightly
lower pH can influence its aggregation dynamics. In this context, a shift
from neutral to mildly acidic pH, coupled with the strong seeding of pre-
formed fibrils, represents a physiologically relevant scenario. Similarly, the
presence of lipid vesicles at varying lipid-to-aSyn ratios provides an addi-
tional layer of biological relevance, given the well-established role of
membrane interactions in aSyn aggregation. Finally, to further account for
physiological conditions mimicking the cellular environment, we extended
our analysis to a dataset reflecting aggregationunder cytosolic ionic strength
and neutral pH35.

The model allows for calibration with pure protein or lipidic fibrillation
datasets. Under the experimental conditions of the lipid vesicle setup, pure

Fig. 2 | Calibration and validation of the model of pure and lipid-mediated aSyn
aggregation on experimental data from in vitro aggregation assays of monomers
in solution with different initiators. The three scenarios differ in terms of solution
conditions and measurement techniques: I. Mechanical stress by constant agitation
at 200 rpm, neutral pH, T = 37∘, smFRET30; II. Mildly acidic pH (=5.5) and pre-
formed fibril seeds (MF,p = 1 μM), quiescent solution, T = 37∘, ThT dye
fluorescence34; III. DMPS SUVs, quiescent solution, neutral pH, T = 30∘, ThT dye
fluorescence32. Here, ODE deterministic simulations (lines) represent the time
evolution of monomer, oligomer, and fibril mass concentrations. Dots indicate the

experimental data and bars the standard deviation, if available. Simulations are
color-coded for different initial monomer levels, for the first two scenarios, and
multiple lipid-to-aSyn ratios (DMPSTOT/mTOT), obtained by varying the lipid
amount and keeping total monomer concentration fixed at 50 μM. Uncertainty
quantification on the parameter estimates related to the best-in-fit was performed to
produce lower and upper bands corresponding to the 5th and 95th percentiles of the
simulations for the fitted variables. Themodel diagrams in the bottom row represent
activated reactions in each calibration scenario, depending on the aggregationnature
(pure vs. lipidic).
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protein fibrils do not form under these conditions, and lipidic fibrils are the
main aggregation product15,16. Accordingly, when calibrating on lipid-
mediated aggregation data, we deactivated pure aggregation. For all sce-
narios, the model was calibrated on data associated with the highest and
lowest initial monomer, seeding conditions, and lipid-to-aSyn levels, and
validated on the remaining time series. For effective calibration across
multiple datasets, we implemented a step-wise approach guided by data
availability and biological knowledge, as detailed in the Material and
Methods section. Parameter estimation followed two main principles: (i) for
reactions consistently shared with existing models (such as standard and
lipid-induced fibril elongation and oligomer dissociation), we maintained
literature-derived values; (ii) the remaining parameters, including rate con-
stants for oligomeric conformational changes and nucleation mechanisms,
were estimated. To address data limitations, particularly the lack of oligomer
measurements across different scenarios, we applied additional constraints
such as maintaining fixed ratios between oligomer conversion rates, derived
by calibration on available oligomer data from shaking-induced
aggregation30. The resulting parameter estimates are shown in
Tables 2 and 3.When the comparison is feasible in terms of unit of measure,
our parameter estimates align with previously published values while
extending themodel applicability across diverse experimental conditions (see
Supplementary Table 2). In addition, we performed uncertainty quantifica-
tion on the parameter estimates related to the best fit to assess whether the
model design is flexible enough to reflect the entire variability expressed by
the data while retaining a meaningful and interpretable parametrization.

The model recapitulates critical aspects of aSyn aggregation
dynamics across diverse in vitro scenarios
The resulting model simulations against experimental data are shown in
Fig. 2, with the corresponding parameter estimates in Table 2. Fibril mass
concentration exhibits the characteristic sigmoidal profile, identified by
an initial lag phase, followed by a growth phase due to increased
monomer-to-fibril conversion until a plateau is reached, usually due to
monomer depletion. This curve shows a propensity for faster monomer
addition to existing aggregates rather than de novo oligomer formation.

Fig. 3 | Quantitative analysis of aSyn aggregation kinetics under physiological
solution conditions. Neutral pH (=7.4), quiescent solution, T = 37∘, cytosolic ionic
strength, and varying preformed fibril seeds. Model simulations (solid lines) com-
pared with experimental measurements (dots), i.e., total oligomer mass (MO,TOT)
and fibril mass (MF,p), measured by single molecule microfluidics and ThT dye
fluorescence, respectively, and normalized to total protein contentmTOT = 100 μM;
low experimental accuracy of oligomer measurements indicated by the error bars
(standard deviation) results from a yet-to-optimize protocol. Experimental data is
obtained fromXu et al.35.Model calibration using combinedfibril and oligomermass
measurements from 0% (orange) and 1% (purple) seeing conditions, showing oli-
gomer dynamics with time-shifted peaks and corresponding fibril formation with
distinct lag phases. Model validation with updated parameter estimates against fibril
mass measurements for 0.1% (light pink) seeding conditions. Lower and upper
bands constraining the shaded areas represent the 5th and 95th percentiles of the
uncertainty quantification of the fitted variables. Updated parameter estimates are
provided in Table 3.

Table 2 | Parameter estimates derived fromastep-wisemodel calibration procedure ondata from in vitro aggregation assaysof
recombinant purified aSyn under various conditions: (a) mechanical stress through constant agitation, (b) a shift in pH from
neutral to mildly acidic & preformed fibril seeds, and (c) the presence of lipid vesicles, as detailed in the main text and shown
in Fig. 2

Weassumedafixedsize foroligomers,setting theparametern to2as in the literature55. Fittedparameters ineachscenarioarehighlighted in lightblue.Followingastep-wiseapproach, theparametershighlighted in
gray are carried over from themodel calibrationof theprevious scenario (from left to right). The remaining parameters are fixed to literature values; thosewithout a reference are derived from relationships defined in
the literature, as detailed in the Material and Methods section.
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As shown in the second scenario, the presence of preformed fibrils can
bypass primary nucleation. As the pH becomes acidic, the estimated rate
constant for secondary nucleation exceeds the rate constants associated
with primary nucleation reactions, underscoring the significance of
secondary nucleation in driving the aggregation process34. An increase in
the preexisting fibril seed level or the total monomer level (while
maintaining the same initial concentration of fibrils) leads to a faster
overall aggregation reaction. Conversely, the initial lag phase is prolonged
when aggregation is initiated not by the presence of aggregates but by
other factors, such as mechanical stress or lipidic vesicles. Furthermore,
our model reproduces fibrils with average lengths consistent with in vitro
experimental data across different aggregation scenarios (see Supple-
mentary Note 2 and Supplementary Fig. 1).

The lipidic environment considered for model calibration involves
intermediate lipid-to-protein ratios, corresponding to a surplus of free aSyn
monomers over the amount that saturates the vesicle membranes. The
relativeproportionof lipids tomonomers significantly affect the aggregation
kinetics. These specific conditions promote the formation of amyloid fibrils,
where the experimental plateau levels scale linearly with lipid
concentration32.Ourmodel captures this feature and other critical aspects of
lipidic aSyn aggregation, owing to the specific formulation of the flux
associated with vesicle-mediated fibril elongation (see eq. (4))16. Indeed, the
dual dependence of the rate of lipid-mediated fibril elongation on both the
concentrations of monomer-coated vesicles and free monomers triggers a
rapid transition in the rate of fibril formation within the specified time
interval and across themajority of initial lipid-to-aSyn ratios. This transition
results from a shift in the rate-limiting step of aggregation, moving from
protein-dependent to lipid-dependent kinetics. In the following section, we
provide the specifics of this case and discuss the broader implications.

In both pure protein and lipidic aggregation pathways, the structural
conversion reactions between oligomeric and fibrillar species are crucial
steps. The smFRETmethod predominantly detects stable oligomers, which
persist throughout the aggregation pathway. Therefore, by fitting smFRET-
derived oligomerdata froma shaking-inducedaggregation assay, ourmodel
effectively captures the dynamics of these long-lived oligomers. In parti-
cular,model simulations can grasp the sequential nature of stable oligomers:
type-A oligomer concentration reaches the peak before type-B oligomers,
confirming that both oligomeric types are on-pathway. In the lipid-rich
environment, the sequential order of oligomeric peaks is maintained, albeit
with a delayed peak time. On the other hand, the oligomeric abundance
decreases by twoorders ofmagnitude compared to scenarios of pure protein
aggregation. According to our model calibration on oligomer data30, the
conformational change from type-B oligomers to fibrils is one order of
magnitude slower (i.e., kc2/kc1 = 0.15) than fast conversion between the two
oligomeric species. Assuming that the ratio kc2/kc1 is maintained across all
aggregation scenarios, our model implied that the rates of oligomer

structural conversion increase substantially to capture the observed fibril
growth profile in the second and third scenarios (see Table 2).

Providing mechanistic insights into secondary nucleation and oli-
gomer nature in physiological conditions. Recent work by Xu et al.35

introduced an in vitro aggregation assay that mimics the cellular envir-
onment by maintaining neutral pH and cytosolic ionic strength across
various seeding scenarios. Our model, originally calibrated under mildly
acidic conditions, successfully captured fibril mass concentration-time
profiles for intermediate-to-high seeding, i.e., 1% and 10% seeds, but
showed limitations at low seeding, i.e., 0% and 0.1% seeds (see Supple-
mentary Fig. 2). This validation suggests that cytosolic ionic strength
likely governs aggregation initiation at low seed concentrations, whereas
preformed fibrils are the primary catalysts of aggregation at higher
seeding levels. Indeed, robust performance of themodel in higher seeding
scenarios stems from its calibration dataset, which spans seeding levels
from2% to 100% (1 μMpreformed fibrilmass, 1 - 50 μMinitialmonomer
concentration). These results indicate that secondary nucleation para-
meters remain reasonably constrained across varying pH conditions
when sufficient seeds are present. While pH strongly modulates sec-
ondary nucleation rates under low seeding conditions as previously
shown36, the effect of pH on this mechanism becomes less critical due to
the high local concentration of catalytic surfaces.

Oligomers reported in Xu et al.35, on the other hand, showed sub-
stantially higher abundance (45 to 65-fold increase) and faster dissociation
rates (hours versus days) compared to those in Iljina et al.30, which provided
the initial calibration data. This discrepancy stems from fundamental dif-
ferences in detection methods rather than solution conditions (see Supple-
mentary Fig. 2 and Supplementary Table 3 in Supplementary Note 3). While
offering detailed insights into stable oligomers, traditional smFRET is limited
by sample dilution, which hampers the detection of transient species. In
contrast, newer minimally perturbative techniques, such as single-molecule
microfluidics35, preserve oligomer equilibrium and capture fleeting, transient
species. These methods may detect either transient species or the total oli-
gomer population, of which stable oligomers represent a small fraction.

Since the model was initially calibrated on smFRET-derived data, it
specifically captures the dynamics of long-lived oligomers. To account
for short-live oligomers observed under native-like conditions, we
recalibrated the model using combined fibril and oligomer mass time-
concentration profiles for 0% and 1% seeded aggregation (see the
Materials and Methods section for further details). The model fitted both
fibril and oligomer kinetics for 0% and 0.1% seeds and was able to
reproduce the the fibril mass profile for 0.1% seeding conditions, as
shown in Fig. 3 and Supplementary Fig. 3. Notably, the updated sec-
ondary nucleation and oligomer dissociation rate constants reached
comparable magnitudes, indicating a balance between oligomer forma-
tion and dissociation into monomers under physiological conditions.
This result confirmed secondary nucleation as the primary source of
aSynoligomer formation35. Moreover, removing the prior constraint on
oligomer conversion rates (i.e., kc2/kc1 = 0.15), previously established for
long-lived species, revealed that fibril formation outpaces inter-oligomer
conversion in short-lived oligomers (i.e., kc2/kc1 ~ 2).

A virtual lab for in silico experiments
Our model provides a computational environment for running a broad
spectrum of in silico experiments, enabling the prediction and validation of
hypotheses that underpin experimental investigations. In particular, it can
provide insights into the interplay between pure protein and lipidic path-
ways and suggest target mechanisms to counteract aggregation.

Reproducing the impact of lipid-to-aSyn ratio on the dynamics of
lipidic aggregation. As highlighted in the literature16,32 and confirmed in
the model calibration phase, the lipid-to-aSyn ratio R (i.e., DMPSTOT/
mTOT here) is a crucial control parameter for in vitro lipidic aSyn
aggregation. While the calibration step focused on intermediate ratios,

Table 3 | Parameter estimates derived frommodel calibration
on aSyn aggregation data obtained under physiological
solution conditions, as reported by Xu et al.35

Parameter Estimates Unit

n 2 unitless

kn 1.21e-06 μM−1 h−1

kmax,II 6.32e-03 μMh−1

KP 5.25 μM

kmax,II 6.67 h−1

KS 44.40 μM

kd 135 h−1

kc1 8.67e-03 h−1

kc2 1.71e-02 h−1

kl1 7.9236 μM−1 h−1

Fitted parameters are highlighted in bold. Corresponding model simulations are shown in Fig. 3.
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the model can be used to expand the analysis to a wider range of initial
conditions, from surplus of monomers to excess of vesicles, thus pro-
viding predictions to be tested in vitro.

As shown in Fig. 4 (column 1 - pink/purple curves and points), our
model faithfully reproduces the dynamics of lipidic aggregation, which was
first experimentally observed by Galvagnion et al.32 and more recently

analyzed in mechanistic terms by Dear et al.16. The system includes the
reversible binding between lipidic vesicles and free monomers, which is
faster than fibril formation16,32. Therefore, an excess of lipids in the solution
at the beginning results in lipid-boundmonomers and aminimal amount of
free monomers left for aggregation. Vice versa, a significant excess of
monomers over lipids underlies an insufficient amount ofmonomer-coated
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vesicles to enable the elongation of lipidic fibrils bymonomer addition, thus
inhibiting aggregation. Notably, in this case, oligomers persist longer and
primarily give rise to newly generated fibrils, which become the dominant
aggregate type as the scarcity of lipidic vesicles prevents their elongation into
fibrils (Fig. 4a, column 1). These behaviors arise from an unbalance between
free and vesicle-boundmonomers. Conversely, when the concentrations of
the two species are balanced such that there is a surplus of monomers over
the amount that saturates the lipidic vesicles, the system induces aggrega-
tion. Specifically, lipidic fibrils increase linearly in both number and mass
concentrations with increasing total lipid concentrations, but only up to a
certain lipid-to-protein ratio (DMPSTOT/mTOT~ 10 in our simulationswith
50 μM aSyn monomers and 100 to 5000 μM DMPS vesicles). Beyond this
threshold, lipidic aggregation drops. The third scenario used for model
calibration falls within this latter case of intermediate lipid-to-aSyn ratios.

While the lipidic aggregation rate is initially determined by the flux
related to type-Boligomer conversion, it canbe reasonably approximatedby
the flux term related to vesicle-mediated fibril elongation16 at prolonged
times. This reaction rate depends on the availability of free monomers and
monomer-coated vesicles. Following the work of Dear et al.16, we can
identify two regimes: (i) when bound vesicles are in excess over free
monomers (ykonVb≫ kl2m), the lipidic aggregation rate is limited by free
monomer concentration and, thus, the plateau level is reached upon
monomerdepletion.Conversely, (ii) in the case of freemonomer excess over
bound vesicles (ykonVb≪ kl2m), the lipidic aggregation rate is limited by the
availability of monomer-coated vesicles, and the fibril mass concentration
stabilizes at a plateau level upon vesicle depletion.Here, the plateau of lipidic
fibril mass concentration ~MF;l scales linearly with total lipid concentration,
being defined by the number of free monomers added to fibril ends upon
vesicle binding y and the total vesicle concentration VTOT, with no depen-
dence on the initial monomer concentration, in agreement with experi-
mental results32. Unlike pure protein aggregation, a certain amount of free
monomers remains in solution instead of being incorporated into fibrils.
Moreover, the monomer count of newly generated fibrils significantly
contributes to the totalfibrilmass concentration in the lipid-limiting regime,
whereas it is nearly zero in the monomer-limiting regime.

The switch from protein-dependent to lipid-dependent kinetics occurs
for Vb/m= y−1 kl2/kon, when the concentration of bound lipids is approxi-
mately 1.4 times the free monomer level, given the parameter estimates in
Table 2. Whether this transition in the rate of fibril formation takes place
depends on the initial lipid-to-protein ratio. Since our model explicitly
describesmonomer-vesicle binding, without a pre-equilibrium assumption, a
short initial time interval existsduringwhichmonomer-coated vesicles arenot
yet formed in the deterministic simulations, thus kl2m≫ ykonVb. This con-
dition persists throughout the experiment, resulting in a lipid-limiting regime
for low lipid-to-protein ratios, corresponding to an excess of monomers over
lipids. Conversely, high lipid-to-protein ratios trigger and sustain the reverse
condition (kl2m≪ ykonVb), as bound vesicles significantly outnumber free
monomers. Finally, intermediate lipid-to-protein ratios lead to an initial
transition from the lipid- to the protein-limiting regime, followed by a shift
back to the lipid-limitingkinetics, allwithin the sameexperimental time frame.

Exploring the interplay of pure and lipidic aggregation in response to
varying lipid-to-aSyn ratios. Under physiological conditions, aSyn likely
undergoes both aggregation routes simultaneously. The propensity for one
pathway over the other depends on various cellular co-factors and

conditions,with lipid-to-aSyn ratiopossibly playing an important regulatory
role. For example, in response to endosomal sorting, recyclingpathways, and
environmental factors, cellular environments such as synaptic vesicles or
endosomal compartments may experience fluctuations in local vesicle and
protein concentrations, which could disrupt the fine-tuned balance between
beneficial and detrimental aSyn-lipid interactions. A mechanistic under-
standing of the response of aggregation system responds to these pertur-
bations is therefore crucial. In this regard, our model provides an in silico
framework to elucidate how varying lipid-to-aSyn ratios influence the
interplay between pure and lipidic aggregation.

The previous scenario, based on the experimental setup with lipidic
vesicles used formodel calibration, represented an idealized casewhere pure
protein fibrils do not form16,32 (see Fig. 4c). Indeed, the pure aggregation
pathway was entirely suppressed by imposing a strict constraint on fibril
elongation (kl1 = 0), preventing newly generated and pure fibrils from
elongating via monomer addition and ensuring that all fibrillar products
contain lipids. This analysis underscored the critical role of the lipid-to-aSyn
ratio in regulating lipidic aggregation and driving distinct kinetic regimes.
To explore how these dynamical and steady-state features of lipidic aggre-
gation translate into a more physiologically relevant scenario - where pure
and lipidic aggregation occur simultaneously - we extended the previous
scenario by relaxing the constraint onpurefibril elongation (i.e., kl1 = kl2). In
addition to enabling pure fibril growth, this modification introduces new
fibril surface areas that promote oligomer formation, triggering a positive
feedback loop via secondarynucleationwith rate constantkpmax;II: oligomers,
in turn, convert into newly generated fibrils, amplifying both pure and
lipidic fibril formation due to their shared aggregation route. Figure 4 shows
the comparison between lipidic aggregation combined with pure protein
aggregation (in green) and lipidic aggregation in isolation (in pink), in terms
of dynamics and specific aggregation metrics (detailed in the Material and
Methods section). In particular, Fig. 4c shows the relative mass of aSyn
species - and system variables - at the final simulation time (tf = 120). We
performed an additional analysis to disentangle the effects of pure and
lipidic elongationwithin the full aggregation systemby excluding secondary
nucleation mechanisms from both pathways. As shown in Supplementary
Fig. 5 and Supplementary Note 4, the fundamental insights not specifically
related to secondary nucleation remain unchanged.

In the absence of lipidic vesicles (R = 0), pure fibrillation is the only
viablepathway.Newly generatedfibrils cannot transition into lipidicfibrillar
species but can elongate via standard monomer addition, forming pure
fibrils. Therefore, in contrast to lipidic aggregation alone, oligomers appear
transiently even at low lipid-to-protein ratios. Moreover, the availability of
new fibril surfaces triggers the secondary nucleation flux (proportional to
~MF;p), significantly increasing oligomer abundance. Oligomer peak levels
are highest in the absence of lipidic vesicles and decreases as the lipid-to-
monomer ratio rises, eventually matching levels observedwhen only lipidic
aggregation occurred, with no secondary nucleation assumed. Conversely,
at high lipid-to-monomer ratios (R > 50), bothpure and lipidicpathways are
inhibited due tomonomer sequestration by lipids. Most monomers bind to
vesicles, leavingminimal freemonomers for either pathway. The remaining
free monomers are divided between pure and lipidic fibril formation as
conditions allow, leading to similar system behavior regardless of aggrega-
tion mode (lipidic pathway alone or combined).

At intermediate R, the system exhibits a competitive environment
where pure and lipidic pathways influence each other kinetics and steady-

Fig. 4 | The impact of varying lipid-to-aSyn ratios on pure and lipidic aggrega-
tion. Pink and green shades denote lipid-mediated aggregation in isolation and in
combinationwith pure protein aggregation, respectively. Concentrations (μM), time
(hours). R represents the initial lipid-to-aSyn ratio (i.e., DMPSTOT/mTOT).
a Deterministic simulations of aSyn oligomer and fibril formation (number and
mass concentrations) under varying lipid concentrations (DMPSTOT) with a fixed
initial monomer concentration mTOT= 50 μM. Column one represents simulations
with pure aSyn aggregation turned off, while column two depicts simulations with
both pathways active, assuming equal rate constants for pure protein and lipidic

fibril formation (kl1 = kl2) and active secondary nucleation on pure fibrils (k
p
max;II≠0);

bmetrics including oligomeric peak time and level, lipidic and total fibril abundance
(normalized to mTOT) and half-times, fibril number concentrations at tf = 120 h
(normalized to FTOT), and propensity for lipidic aggregation over pure protein
aggregation; peak times and half-times are in log scale. Each point corresponds to a
deterministic simulation colored according to the subplot above, with simulations
ending at tf = 120 h; c relative mass concentration of aSyn species in the model, i.e.,
(free and bound) monomer concentration and oligomer and fibril mass con-
centrations (normalized to mTOT).
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state behavior. As lipidic vesicles are introduced, monomers initially bind
vesicles before being depleted via pure and lipidic elongation. Increasing R
reduces pure fibril mass concentration ( ~MF;p) while favoring lipidic fibrils
( ~MF;l) and monomer-coated vesicles - free or bound to fibrils (mb ormF,b),
as described by Fig. 4c. Eventually, the system mirrors lipidic aggregation
alone as previously discussed.Despite reducedmass concentration across all
ratios, the qualitative behavior of lipidic fibrils ( ~MF;l and ~Fl) remains con-
sistent with previous findings.When lipidic aggregation occurs in isolation,
lipidic fibril mass and number concentrations increase linearly with total
lipid concentration until a threshold (R ~ 10), beyond which aggregation
declines. When pure and lipidic aggregation coexist, a scaled yet non-linear
increase in lipidic fibril mass and number concentrations was observed at
plateau, peaking at R ~ 30 before declining due to monomer depletion
caused by vesicle excess. Figure 4c (right) shows the remaining monomers
distribute between pure fibrils and vesicle-bound monomers, with pro-
portions varying by lipid-to-aSyn level. Overall, incorporating pure aggre-
gation into the system shifts lipidic aggregation thresholds and breaks
robustness of the plateau of lipidic fibril mass ~MF;l to variations in initial
monomer levels (see Supplementary Fig. 4) but does not blur the distinction
between lipid- and protein-limiting kinetic regimes.

As shown by Fig. 4b, total fibril mass (MF,TOT) decreases monotonically
from mTOT (pure protein aggregation) as lipid concentration increases. This
reflects an initial dominance of pure fibrils, followed by a balance between
pure and lipidic fibrils at higher lipid concentrations, with unincorporated
monomers accumulating due to vesicle surplus. Notably, newly generated
fibrils strongly favor lipidic aggregation, even at low lipid-to-monomer ratios,
reaching nearly 90% propensity for the lipidic pathway at high R. This trend
is observed in fibril number concentrations (see Fig. 4b). In particular, the
switch from pure to lipidic dominance at very low R results from secondary
nucleation, which enhances pure as well as lipidic aggregation due to their
shared early-stage processes. As detailed in theMaterial andMethods section,
we derived measures that quantify Lewy body composition. These indexes -
albeit artificial in vitro conditions - can provide a system measure of the
interplay of aggregation pathways. In combined aggregation (see Supple-
mentary Fig. 6), the system consistently forms heterogeneous Lewy body-like
inclusions across most lipid-to-aSyn ratios (except at very low ones), char-
acterized by limited pure fibril derivation (Ip up to 6%) and up to 66% lipidic
fibril derivation (Il), alongside significant cross index contribution (Icross).

In silico-aided therapeutic strategies informed by local sensitivity
analysis. Mechanistic insights into aSyn aggregation can be crucial in
guiding the development of Parkinson’s disease therapies. What is the
ideal mechanism of action for small molecules targeting aSyn aggrega-
tion? Which reactions should be perturbed by candidate compounds?
Our model of pure and lipid-mediated aSyn fibrillation allows to inves-
tigate the effect of therapeutic strategies that affect both aggregation
routes, tuning their effect to maximize their efficacy potential.

As previously discussed, our model assumes the overlap between pure
and lipid-induced pathways at the initial steps of aggregation, until elon-
gation mechanisms differentiate between pure and lipidic fibrils. Another
assumption involved secondary nucleation mechanisms. Evidence for sec-
ondary nucleation in lipid-induced aggregation is significantly weaker than
in pure protein aggregation16,32. Accordingly, we suppressed it when cali-
brating the model for lipidic aggregation at intermediate lipid-to-aSyn
ratios. However, given the limited fibril surface exposure due to bound
vesicles, secondary nucleation rate is likely reduced - not negligible - in the
lipidic pathway. To analyze the impact of secondary nucleation on the
interplay between pure and lipidic aggregation, we differentiated between
two secondary nucleation rate constants for pure and lipidic aggregation
(kpmax;II and klmax;II, respectively). We assumed klmax;II to be one order of
magnitude slower than kpmax;II and newly generated fibrils, shared between
the two pathways, to be too short to provide sufficient surface area for
oligomer formation (i.e., k�max;II ¼ 0). A more refined approach could scale
the lipidic contribution to the secondary nucleation flux according to the
reduced accessible surface area dictated by vesicle binding ( < ~MF;l). To

analyze the impact of secondary nucleation and the other aggregation
mechanisms on the cross-talk between pure and lipidic pathways, we relied
on the second parameter combination for pure protein aggregation (see
Table 2), reflecting a mildly acidic pH scenario where all nucleation reac-
tions contribute to the process to some extent, and on the third set of
parameter estimates for lipidic aggregation.

As shown by Fig. 5, we performed a local sensitivity analysis (LSA) to
quantify the impact of model parameters on relevant aSyn species through
the AUC-based sensitivity index (SI) defined in the Material and Methods
section. The sensitivity of each parameter is indicated by the distance of its
correspondingpoint from the centerof thefigure.Here,we also explored the
impact of initial conditions, i.e., the presence or absence of aggregates, on
parameter sensitivity. For most parameters, such variations either have a
minimal effect on the outcome or corroborate the trend observed in the
sensitivity ranking from the alternative scenario. As expected, the rate
constants of oligomer conversions kc1 and kc2 mainly affect oligomer and
pure fibril kinetics. Moreover, when considering type-A and type-B oligo-
mers, as well as lipidic fibrils in terms of number and mass concentration,
ourmodel identifies the rate constant of secondarynucleationonpurefibrils
kpmax;II as one of the most sensitive parameters. Interestingly, variations in
this parameter significantly influence lipidic fibrils but do not affect pure
fibril levels. In general, alterations of other parameters onlymarginally affect
the monomer count of pure fibrils. Conversely, no variable seems to be
affected byperturbation of secondary nucleation lipidic rate constant klmax;II.
Another relevant parameter is the rate constant associated with pure fibril
elongation kl1, which consistently ranks among the top three sensitive
parameters across relevant aSyn species, such as pure and lipidic fibrils and
oligomers in terms of number concentration. In contrast, lipid-mediated
fibril elongation rate constant kl2 counts among the insensitive parameters,
even for the lipidic species.

Relying on these results, we simulated the impact of potential com-
pounds targeting the most sensitive reactions by varying the corresponding
model parameter. The LSA-informed model can virtually explore how
significant variations of themost sensitive parameters (up to 50%) affect the
dynamics and features of aSyn oligomers and fibrils throughout the
aggregation process.Metrics such as type-B oligomer peak level and time, as
well as pure protein and lipidicfibril abundances andhalf-times, can be seen
as gauges of the toxicity level of the aggregation process. Even though the
specific mechanisms of toxicity associated with aSyn aggregation are not
fully understood, experimental evidence pointed to the inherent toxicity as
well as seeding and spreading abilities of the aggregates as structural and
functional drivers of the overall toxicity5,37. In particular, small fibril frag-
ments have been suggested as primary spreading agents in PD because of
their high seeding efficiency and internalization ability30,38. On the other
hand, type-B oligomers have been identified as the most cytotoxic species
due to their high β-sheet content3,5.

Parameters such as kc1, kc2, and kpmax;II are crucial as they directly
control oligomer concentrations. In particular, as suggested by LSA and
shown in Fig. 5b, c, a 50% inhibition of secondary nucleation catalyzed by
pure fibrils leads to significant changes in oligomer and fibril dynamics.
Specifically, this perturbation reduces the oligomeric peak time while low-
ering the peak level of type-A and type-B oligomers by 40% and 20%,
respectively. Given the high toxicity of type-B oligomers, e.g., linked to
increased levels of ROS, this intervention couldmitigate the harmful impact
of aSyn aggregation. The effect of this inhibition on fibrils is less straight-
forward. As shown in Fig. 5c, under nominal parameter conditions, the
system is characterized by a highly lipidic fibrillar content (~80% of total
fibril concentration) and a strong propensity for lipidic over pure protein
aggregation. Conversely, perturbing secondary nucleation only marginally
affects thesemetrics. In particular, halving the rate constant kpmax;II decreases
both lipidic andpurefibril concentrations (~F l and ~Fp). This results in a slight
reduction in lipidic aggregation propensity while promoting a significant
increase in pure fibrillar content - though not enough to overturn lipidic
dominance. In terms of monomer counts, total fibril mass concentration
shows a minimal overall loss (under 0.03% to 50% inhibition), driven by a
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Fig. 5 | Local sensitivity analysis-informed modeling of the effect of anti-aSyn
aggregation drugs. aRelative AUC-based sensitivity index corresponding to the 1%
perturbation of each rate constant. Different colors correspond to different initial
concentrations: absence (dark) and presence (light) of aggregates at t = 0, i.e.,
m = 35 μM, ~MF;p ¼ 1 μM, and MA + MB = 4%mTOT. b Deterministic simulations
representing the variations in the model dynamics in response to perturbations of

the secondary nucleation rate constant kpmax;II, up to 50% of the nominal level;
c Percentage variation of specific metrics describing the dynamics and features of
oligomers and fibrils throughout the aggregation process. Each point is associated
with the deterministic simulation of the corresponding color in the subplot above,
with final time tf = 120 h.
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small increase in pure fibrils counterbalanced by a significant decrease in
lipidic fibrils. In summary, while strong inhibition of secondary nucleation
favors pure fibril formation, it is insufficient to substantially reduce overall
lipidic contributions, as also reflected in Lewy body composition indexes.

Discussion
By elucidating the dynamics of pure and lipid-mediated aSyn aggregation in
diverse environments, our model offers a unified representation of specific
mechanisms underlying PDpathogenesis. Ourwork is grounded in insights
mainly provided by the chemical kinetic models16,17,19,20. Tailored on ad-hoc
test-tube experiments, these models include a minimal set of reactions
relevant to protein aggregation in a specific scenario. For instance, they are
typically coarse-grained to the extent that they either entirely exclude
intermediate species or consider a single oligomeric state (e.g., see refs. 3,32),
due to the principle of model parsimony and limitations in data availability.
Since we aimed at a unified description of aggregation in vitro, we propose a
mathematical model that accounts for microscopic events physiologically
related to uncontrolled aSyn accumulation in the literature, exploiting prior
biological and mechanistic knowledge and a step-wise calibration on
various test-tube aggregation datasets. A detailed comparison between our
work and other models of aSyn aggregation, in terms of structure and
parameter estimates, is available at Supplementary Table 1 and Supple-
mentary Table 2.

The mathematical description of aggregation presented here incor-
porates competing nucleation reactions, suggesting a dominant role for
secondary nucleation in aSyn aggregation and thus in anti-aSyn aggregation
therapies. This result alignswith recentfindings thathighlight the role of this
reaction in oligomer and fibril formation under physiological conditions,
either with acidic34,36 or neutral pH35,39. Parameters estimated at acidic pH
successfully described fibril formation driven by secondary nucleation at
neutral pH for medium-high seeding conditions. However, this result may
rise some doubts given previous findings on pH-dependence of secondary
nucleation. Specifically, Buell et al.36 reported that secondary nucleation flux
increases dramatically at acidic compared to neutral pH. However, the
experimental setup required to reveal this pHdependence relied on very low
seed levels (nM seeds vs. μM monomers). Therefore, our model suggests
that seeding conditions can modulate the impact of pH on secondary
nucleation-dependent processes. Yet, the specificmechanisms bywhich pH
affects secondary nucleation rates require further investigation.

In linewith previouswork focusedon stable oligomers12,30,31, ourmodel
confirms the critical role of the kinetics of oligomer structural conversion in
determining the overall fibril growth dynamics in the given aggregation
scenarios. We considered two sequential oligomeric types connected by
conformational changes with distinct rate constants, comparable to esti-
mates of oligomer conversion rates from the literature3,30–32. The ratio kc2/
kc1 = 0.15 suggests that type-B oligomers predominate during aggregation,
indicating higher stability than type-A oligomers. Given the higher toxicity
of type-B oligomers, the conversion rate may be a crucial factor in con-
trolling neuronal damage. Targeting this reactionmay represent an effective
approach adopted by intracellular defense mechanisms3 and holds promise
as a strategy for therapeutic interventionbymolecular chaperones and small
molecules. These results on oligomer conversion derive from model cali-
bration using smFRET data and, thus, refer to long-lived oligomers. Given
their prolonged presence and association with increased ROS production,
long-livedoligomers represent a toxicologically relevant yet small fractionof
the total oligomeric population. Indeed, recent methodologies indicate that
short-lived oligomers are substantially more abundant. By investigating
their kineticsunderphysiological neutral conditions (asdescribed in ref. 35),
our model confirmed previous results on short-lived oligomer formation
driven by secondary nucleation and mainly balanced by oligomer dis-
sociation, and suggests a higher stability of type-A compared to type-B
species (kc2/kc1 ~ 2). Such a kinetic dichotomy between transient and stable
oligomeric species further points to fundamental differences in their bio-
logical roles. For instance, since their formation is catalyzed by fibrils, short-
lived oligomers may act not only as bulk nucleation products influencing

aggregation kinetics but also as sources of toxicity and aggregate spreading,
through mechanisms that remains to be fully elucidated.

Xu et al.35 modeled transient oligomers kinetics by integrating two
processes: a complete nucleation-polymerization pathway - encompassing
primary nucleation, fibril elongation, and secondary nucleation - and an
oligomer formation/dissociation cycle catalyzed by fibrils. Focusing on the
dominant mechanisms of oligomer formation and depletion, this approach
suggests an off-pathway nature for short-lived oligomers while not
excluding the presence of distinct on-pathway species. The model was
calibrated in two steps: first to fibril mass data across seeding scenarios
(1–10% seeds, Amylofit35) and then to oligomer data (0% and 1% seeds).
Our work raises mechanistic questions about these oligomers. For example,
do short-lived oligomers undergo structural conversion as their long-lived
counterparts? Are both transient and stable oligomers on-pathway and
governed by the same formation and depletion mechanisms? Our model
assumes that both transient and stable oligomers are on-pathway to fibril
formation and undergo sequential conformational changes (from type-A to
type-B). Upon calibration on combined fibril and oligomer mass data, the
model successfully reproducefibril andoligomerprofiles for various seeding
conditions. This goodperformance, comparable to that in ref. 35, challenges
the strictly off-pathway nature of microfluidic-detected oligomers. They
could represent either early unstable intermediates or aggregation products
generated alongside fibril formation. Nonetheless, their fibril-catalyzed
formation makes them an integral part of the aggregation landscape. Fur-
ther singlemoleculemicrofluidic data on transient species would be needed
to address these mechanistic knowledge gaps. Overall, our quantitative
analysis requires caution due to the sparsity and noisiness of these mea-
surements compared to smFRET data. Expanding datasets obtained by
minimally perturbative techniques, particularly time series under varying
monomer concentrations, will be essential to better constrain model para-
meters and refinemodels that capture both short- and long-lived oligomers,
thereby advancing our understanding of oligomer dynamics.

Building on previous mechanistic insights into aSyn-lipid
interactions16,32, we included aSyn monomer-lipid binding and vesicle-
boosted fibril elongation in ourmodel. These mechanisms capture the linear
scaling of lipidic fibril concentration at plateau. However, themodel does not
fully account for the fibril growth phase in this aggregation scenario, sug-
gesting hidden non-linear interactions between aSyn fibril and lipids. Future
modeling efforts should explore this mechanism in collaboration with
experimentalists. Additionally, further refinement should focus on the role of
lipids in heterogeneous primary nucleation, a controversial aspect in lipidic
aggregation research15,16,32. We assumed that heterogeneous primary
nucleation occurs at air-water interfaces rather than on lipidic vesicles, as
suggested byDear et al.16.While lipid incorporationwasmodeled at the fibril
elongation stage, we cannot exclude the possibility that some lipids integrate
into intermediate species formingat the air-water interfaceduringnucleation.
A lipid monolayer at this interface could provide a ready supply of lipids,
influencing the nucleation process. Since the concentration of heterogeneous
nucleation sites is incorporated into the rate constant (kmax;I) in the model,
any lipid-induced effect at this stage would be reflected in its value. Another
refinement could involve monomer-vesicle binding. While our model
assumes a fixed monomer count per vesicle, an alternative approach could
account for vesicles with varying boundmonomer counts, though this would
require additional experimental data to characterize their distribution and
impact on fibril elongation as well as on aSyn aggregation dynamics.

Exploring the interplay between pure and lipidic aggregation and the
impact of lipid-to-aSyn ratio canoffer insights intopathologicalmechanisms
and can suggest potential therapeutic strategies. To this end, our model
provides a virtual lab for investigating how the availability of freemonomers
and lipidic vesicles affects the dynamics of in vitro aSyn aggregation via pure
and lipidic routes and how this may relate to PD onset and development.
Integratingpure and lipidic aggregationpreserved thequalitative behavior of
lipidic fibrils across lipid-to-aSyn ratios: monomer excess inhibits lipidic
fibril formation; vesicle surplus suppresses all aggregation by sequestering
monomers; a balance between monomers and lipidic vesicles results in a

https://doi.org/10.1038/s42004-025-01558-3 Article

Communications Chemistry |           (2025) 8:186 13

www.nature.com/commschem


scaled yet non-linear increase of lipidic fibril mass and number concentra-
tions with lost robustness of the plateau level of ~MF;l to variations in initial
monomer concentration. As a result, total fibril mass concentration
decreases monotonically with increasing lipid-to-aSyn ratios, reflecting the
competitive interplay between the two pathways. Therefore, lipid and pro-
tein availability can reshape fibril composition and kinetics in this crosstalk,
with relevant physiological and pathological implications. For example, the
model can be used for testing different hypotheses on the in vitro formation
and crowding of vesicular structures interspersed with aSyn filaments,
hinting at the role of aSyn-lipid interactions in modulating Lewy body
composition13,14. However, these insights, along with the Lewy body com-
position indexes introduced in this work, should be seen as indicative rather
than directly informative of in vivo scenarios, given that the model does not
account for aSyn production and degradation, as discussed below.

Given its confirmed crucial role in in vitro aSyn aggregation, the lipid-
to-aSyn ratio could serve as a proxy for specific risk factors for Parkinson’s
disease, such as genetic alterations and aging. Specifically, investigating how
variations of this control parameter affect aSyn dynamics can be relevant for
understanding disease-associated mutations leading to aSyn over-
expression, e.g., via gene duplication and triplication. Even small pertur-
bations of free monomer concentrations can disrupt the physiological
balance between free vesicles and monomeric aSyn and, thus, substantially
affect aggregation. On the other hand, aging can be associated with lipid
vesicle concentration alterations. As discussed in Kiechle et al.40, age-related
factors often lead to decreased local lipid-to-protein ratio. To showcase the
model potential, we simulated an in silico scenario mimicking the condi-
tions of a damaged dopaminergic neuron flooded with aSyn aggregates and
the impact of oscillations in the DMPS to free aSyn monomer ratio (see
Supplementary Note 6 and Supplementary Fig. 7). Ourmodel suggests that
such imbalances between available free vesicles andmonomers can enhance
aSyn aggregation. Overall, perturbations of the lipid-to-aSyn ratio may
disrupt the balance between benign and harmful effects of aSyn-lipid
interactions, leading to PD pathogenicity. Notably, the lipid-to-aSyn ratio
can also serve as a proxy for the mechanism of action of candidate drugs
targeting aSyn-lipid interactions ormodulating vesicle concentrations, such
as genipin. This iridoid glucoside is currently under investigation for its
direct interaction with aSyn monomers, which alters the nucleation step,
and its putative effect on lipid storage, which leads to reduced lipid-to-aSyn
ratio41. Both modes of action and their impact on aSyn aggregation can be
investigated through our model.

In these critical times, when clinical trials for PD continue to fail,
modeling can play a crucial role in supporting the design of new therapeutic
compounds and drugs currently under investigation in various ways.
Besides affecting the local lipid concentration, a candidate compound can
directly bind aSyn in one of its various states, e.g., monomers, oligomers, or
fibrils, perturbing one or moremechanisms within the aggregation process.
In this context, ourmodel can facilitate the analysis of anti-aSyn aggregation
compounds42, such as those that have reached the clinical state of devel-
opment, i.e., Anle-138b43 and UCB-059944, other small molecules, e.g.,
EGCG and SynuClean-D, and nanobodies, e.g., NbSyn2 and NbSyn8745.
Moreover, it can be used to investigate therapeutic strategies involving a
combination of small molecules with different modes of action. As sug-
gested by the results of the LSAanalysis, it can also support the identification
of potential pharmacological targets. In particular, our model suggests that
inhibiting secondary nucleation may be an effective therapeutic strategy to
reduce harmful oligomeric species, thus supporting the idea that developing
compounds targeting fibril surfaces could be crucial for lowering aggrega-
tion inherent toxicity16. Indeed, fibrils are critical sites where oligomeric
species form and lipids interact with growing fibrils, acting as a common
element in both aggregation pathways. Such an effect is associated with
various inhibitors of secondary nucleation, for example, small molecules
binding the catalytic sites on fibril surfaces46,47 and aminosterol compounds
with high blood-brain barrier penetrability, e.g., trodusquemine48,49. Our
model also predicts that inhibiting secondary nucleation can have a mixed
impact on aSyn aggregation: while it reduces toxic type-B oligomers, its

effect on fibril composition remains ambiguous. This intervention favors
pure fibril formation but does not significantly reduce overall fibril mass
concentration and lipidic fibril dominance. Given the uncertainty regarding
whether lipidic or pure fibrils are more detrimental to neurons, the overall
impact of this strategy remains unclear. Therefore, understanding the
implications of lipidic dominance and clarifying the pathological roles of
different fibril types is crucial to determining whether this intervention
could effectively counteract aSyn aggregation.

When exploring mechanistic effects in test-tube experiments using
chemical kinetics models18, inherent challenges of translating results from
in vitro to in vivo settings must be accounted. Indeed, there is a tight link
between the contribution of each microscopic event to the overall aggre-
gation and the solution conditions. For example, secondary nucleation has
been proven to contribute to a different extent depending on the pH of the
surrounding environment and seeding levels34,36. Moreover, in the presence
of lipids, their identity strongly affects the aggregation kinetics16,32, and
DMPS SUVs have a different composition from vesicles found in a synaptic
bouton or functional synaptosome32. On the other hand, we expect several
aspects of aSyn aggregation highlighted by our model to translate into
in vivo scenarios. Indeed, the monomer concentrations associated with the
in vitro aggregation assays used for model calibration fall within the phy-
siologically relevant range50, given that aSyn reaches micromolar con-
centrations in synaptic boutons51. Moreover, as highlighted by recent
studies16,35,39, a wide range of lipids results in aSyn-lipid co-assemblies as the
main species in the aggregation pathway, and secondary nucleation has a
central role in aSyn aggregation also inneutral pH solutions under quiescent
conditions.Moregenerally, despite potential variations in rate constants and
rate-limiting steps, the fundamental mechanisms of aSyn aggregation
remain consistent. Therefore, although our model is calibrated for specific
experimental conditions, it hinges on processes that retain in vivo trans-
latability, such as oligomeric conversion, secondary nucleation, and fibril
elongation via the incorporation of monomers and lipids. This consistency
aligns with the holistic approach of QSP and PBPK frameworks, which
integrate system-level dynamics to model complex biological processes.

To capture the impact of aSyn aggregation on neuronal function
in vivo, future work should extend the model presented here to encompass
additional mechanisms, particularly those involving fibril breakdown
mechanisms. For example, based on its negligible impact on aggregation
dynamics, we have chosen to disregard fibril depolymerization, i.e., the
reverse of fibril elongation bymonomer addition, as a contributing factor in
our model. This process is significantly slower than other dominant
aggregation events and becomes especially insignificant as monomer con-
centrations are depleted at equilibrium31. Moreover, our model does not
include fibril disaggregation into oligomers. This modeling choice aligns
with existing chemical kinetic models of aSyn aggregation, which typically
exclude this reaction due to its negligible impact under standard experi-
mental setups and its limited mechanistic role under physiological
conditions3,30,31,35. Indeed, fibril disaggregation into oligomers has been
observed primarily under destabilizing conditions, such as monomer-
depleted environments or altered pH3,52. Moreover, this simplification
supports the broader goal of integrating the model into a QSP framework,
where excluding processes with minimal impact simplifies the model while
still capturing the key features of aSyn aggregation relevant for drug
development. Nevertheless, fibril disaggregation could play a more sig-
nificant role in specific physiological contexts or under therapeutic inter-
ventions aimedat destabilizingfibrils. For example,fibril disaggregation can
release cytotoxic oligomers that may accelerate neurodegeneration3, and
intracellular processes such as chaperone-mediated disaggregation could
influence this pathway53. Future iterations of this model could incorporate
fibril disaggregation to explore its potential contributions to disease pro-
gression and therapeutic outcomes, particularly in scenarios involving
environmental or cellular stressors and enzymatic activity that promote
fibril destabilization.

Current research highlights secondary nucleation as the candidate
secondary mechanism governing aSyn aggregation, whereas fibril
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fragmentation is typically excluded frommodels of test-tube fibril formation
due to its minimal impact on early-time dynamics (hours or days). Indeed,
under physiological conditions, experimental measurements suggest that
fragmentation rates are low compared to secondary nucleation35. Never-
theless, this mechanism may become more relevant over longer timescales
associated with disease progression (days to years), particularly in fibril
length redistribution and potential prion-like spread. Fragmentation indeed
generates shorter seeds (<50 nm) with enhanced cell penetration and high
cytotoxicity54, potentially accelerating neuropathological spread in later
disease stages. Further extensions of this model could incorporate frag-
mentation delayed pathological role for multi-timescale simulations of
Parkinson’s disease progression. This would be particularly relevant in
scenarios where monomer depletion approaches critical concentrations or
where mechanical stresses become more pronounced (e.g., trauma,
shear forces in CSF, or cellular motility). However, while fragmentation
becomes the main reason for fibril number increase at full monomer
depletion, in vivo systems rarely reach full depletion due to continuous
protein production.

While total protein mass concentration remains constant in test-tube
experiments, aggregation dynamics is regulated by monomer production
and protein clearance in vivo. Therefore, another model extension would
consist in adopting a modular and incremental strategy to integrate the
standalone aggregation module with a minimal reaction set, accounting for
protein synthesis, misfolding, and generic degradation mechanisms (e.g.,
Thompsonet al.55). Such amodelwouldprovide insights into the interplay of
aSyn aggregation and dysfunctional degradation and, thus, into PD patho-
genesis. Indeed, while PDhas commonly been identified as a proteinopathy,
it is not merely a consequence of aSyn aggregation but manifests as a mul-
tifactorial disorder wherein various pathological mechanisms converge.
Disrupted aSyn homeostasis, controlled by uncontrolled protein accumu-
lationandage-related impairments of thedegradationmachinery, standsout
among theseprocesses.Therefore, targetingaSynaggregationordegradation

processes within the deregulated proteostasis network can be a promising
strategy to slow down or halt PD progression. In this context, a mechanistic
understanding of the role of aSyn aggregation in this intricate molecular
landscape is critical for developing effective therapeutic interventions.

Although ourmodel is rooted in in vitro findings, by offering a unified
description of in vitro aggregation, it can serve both as a stand-alone tool for
advancing therapeutic strategy design throughmolecular-level mechanistic
insights and as a modular component in multiscale models.

Aligned with recent work inmodeling neurodegenerative diseases25,56,57,
this model is well-suited for integration into a mechanistic framework that
includes a brain compartment along with compartments representing aSyn
detection sites, such as cerebrospinal fluid and blood. This approach would
leverage data from ongoing clinical trials on various disease-modifying
therapies42,58,59. More specifically, our work provides a ready-to-go model
grounded in prior in vitro mechanistic knowledge that can be seamlessly
integrated into larger modeling frameworks. Overall, within a QSP frame-
work, our model might serve as a key building block for an intraneuronal
model of disrupted aSyn homeostasis in Parkinson’s disease.

Ourwork contributes to a coherentmechanistic understandingof aSyn
aggregation by combining keyfindings andpublished in vitro data, acquired
from various experimental conditions and through different techniques.
The model corroborates mechanistic findings across diverse aggregation
scenarios and provides insights into in vitro experimental outcomes.
Therefore, it serves as a virtual lab for in silico experiments that, while
impractical in vitro,may be relevant to in vivo biology,making it well-suited
for integration into QSP and PBPK frameworks.

Material and methods
ODE system and deterministic implementation
TheODE system of themodel of pure and lipidic aSyn aggregation consists
of 12 variables, 12 reactions, and 18 parameters, listed in Table 1. Refer to
Fig. 1 for a graphical representation of this model.
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where ~MF;p ¼ MF;p �MF;�, ~MF;l ¼ MF;l �MF;�, andMF;TOT ¼ MF;pþ
MF;l �MF� ¼ ~MF;p þ ~MF;l þMF;�. Also, mb ¼ Ms

γ Vb and
mF;b ¼ Ms

γ VF;b. Given an initial lipid amount DMPSTOT, the total vesicle
concentration VTOT =DMPSTOT/Ms. Type-A and type-B oligomer mass
concentrations correspond toMA = nA andMB = nB, respectively.

We implemented theODE system inMATLAB 2024a, using the built-
in ODE solver function ode23s for simulations.

Master equation approach
Within the modeling framework proposed by Knowles and colleagues17,33,
the deterministic model proposed here results from a moment-based
approximation of a master equation, relying on the chemical kinetic
representation of protein aggregation17. The master equation approach
describes in probabilistic terms the time course of the species involved in the
system and identified by their monomer count. Specifically, this stochastic
representation presents the evolution of the molecule number of filaments
of length j at time t, i.e., f(j, t), using the concentration ofmonomers at time t.
The resulting master equation summarizes an infinite system of non-linear
differential equations. By extracting the zero-th and first moments, e.g.,
FX(t) =∑j>nf(j, t) andMF,X =∑j>njf(j, t), we obtain the corresponding ODE
deterministic system describing the dynamics of aggregate number and
mass concentrations, respectively.

Note that the reaction flow of lipid-mediated fibril elongation has been
taken from Dear et al.16. This term relies on the assumption that newly
generated fibrils F* and fibrils with vesicles bound ymonomers away from
the fibril ends Fl,y can bind a new monomer-coated vesicle, whereas the
other fibrillar species Fl,i (0 ≤ i < y) can only elongate with rate constant kl2.
By adopting a mean field approach as in16, we derived the differential
equations:
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Assuming that the nucleation rates are negligible compared to the elonga-
tion rates and approximating to a pre-equilibrium between the different
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where ε represents the additional terms governingMF,l time derivative.

Model calibration and validation
Calibration of pure protein aggregation. Given the crucial role of oli-
gomers in the aggregation pathway, we first focused on available data of
aSyn oligomerization in solution, corresponding to the first pure protein
aggregation scenario30. Retrieving time-series data on oligomer levels
proves challenging due to their diverse and transient nature; smFRET

stands out among the few experimental techniques that can monitor
oligomers’ time evolution (e.g., quantitative size exclusion chromato-
graphy, multispectral microchip free-flow electrophoresis) as it can dif-
ferentiate between type-A and type-B oligomers linked to low and high
FRET levels. Therefore, we used the available smFRET measurements of
monomers and oligomers to calibrate oligomeric conversion and fibril
formation, in addition to primary nucleation reactions. Conversely, rate
constants associated with oligomer dissociation and fibril elongation
were set to fixed values derived from the literature31,36. Drawing on
existing biological insights into the role of secondary events in this sce-
nario, we switched off secondary nucleation and ruled out fibril frag-
mentation in our model. Indeed, fibril-catalyzed nucleation plays a
marginal role compared to homogeneous and heterogeneous primary
nucleation, especially at early reaction times, when high fibril levels are
not reached yet. Moreover, even though constant agitation is known to
promote fibril fragmentation, we excluded this reaction from the model
diagram upon assessment of its negligible impact on early-time
dynamics. At the same time, constant agitation promotes hetero-
geneous primary nucleation by introducing shearing forces or increasing
turnover at the air-water interface34,60. Therefore, while mechanical stress
is not explicitly modeled, its effects are implicitly captured through the
calibrated parameters, particularly by the heterogeneous nucleation rate
constant.

Approaching a more physiologically relevant scenario as compared to
shaking-induced aggregation, we calibrated the model to reproduce the
dynamics of pure aSyn aggregation triggered with preformed fibril seeds and
exacerbated by a pH shift from neutral to mildly acidic. Secondary
nucleation plays a predominant role in this setting compared to primary
nucleation34. Parameters associated with this mechanism were fitted while
keeping those related to primary nucleationmechanisms fixed, by leveraging
the results from the initial calibration step. Note that we estimated the rate
constant of secondary nucleation on pure and newly generated fibrils as a
single parameter kmax;II (i.e., k

p
max;II ¼ k�max;II). Simultaneously, we adjusted

the rate constants governing oligomer conformational changes, maintaining
a fixed ratio kc2/kc1. In contrast to the first calibration step, the model was
calibrated on measurements of fibril mass concentration by Thioflavin-T
(ThT) dye fluorescence. Althoughmore precise than smFRET, this standard
technique cannot provide oligomer data but only detect fibril levels.

In addition to smFRET, single-molecule microfluidics can also detect
oligomer mass data35. Here, we focused on ThT-derived fibril mass and
single molecule FFE-derived oligomer mass data obtained under solution
conditions that mimic the cytosolic environment (neutral pH and physio-
logical ionic strength). To recalibrate the model for 0% and 1% seeded
aggregation, we (i) retained primary nucleation and fibril elongation esti-
mates from the second calibration scenario, (ii) increased the oligomer
dissociation rate constant (kd = 1 h−1 vs. kd = 2.4 × 10−3 h−1 in previous
calibrations), (iii) removed constraints on oligomeric conversion rate con-
stants for long-lived oligomeric species (i.e., kc2 = 0.15kc1). As for the pre-
vious scenario, we estimated the rate constant of secondary nucleation on
pure and newly generated fibrils as a single parameter kmax;II
(i.e., kpmax;II ¼ k�max;II).

Calibration of lipid-mediated aggregation. We considered another
biologically meaningful scenario related to aSyn normal functions in the
synapses. DMPS vesicles are introduced in neutral pH solutions with
monomers at different lipid-to-aSyn ratios, obtained by adjusting the
initial lipid amount while maintaining a constant total monomer con-
centration. DMPS phospholipids, commonly used in lipid-mixing vesicle
preparation to form thinmembranes, promote significant lipid uptake in
aSyn co-aggregates14. This in vitro aggregation assay has proven valuable
for analyzing lipidic aSyn aggregation. By leveraging this experimental
setup, Dear et al.16 challenged the traditional perspective that lipid
bilayers act as catalysts for primary nucleation, increasing the local
protein concentration on their surface to facilitate aggregation32. While
lipids may have a role in primary nucleation, their primary function is
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actively boosting fibril elongation, which governs the aggregation
process15,16. We integrated these recent mechanistic findings into the
model structure and set some of the parameters associated with lipidic
interactions (KD = 3.8e-01 μM, γ ~ 30,Ms = 6000, and 7.5 ≤ kon/kl2≤ 16)
to values provided by the existing literature16,32.

We relaxed the pre-equilibrium assumption on monomer-vesicle
binding set by Dear et al.16. As a result, model calibration required assessing
the rate constant of monomer-vesicle unbinding k−, such that KD= k−/k+,
and fitting the coefficient of vesicle-mediated fibril elongation y as a free
parameter instead of deriving it directly from stoichiometric relationships.
To obtain this parameter value, Dear et al.16 used the formula y=Ms/γ−Ms/
χ, where the stoichiometry of lipid-to-protein in lipidic fibrils χ was
experimentally estimated at ~15 lipids per protein monomer under optimal
conditions16,32. Without pre-equilibrium, the assumption of a fixed stoi-
chiometry no longer strictly applies, and the explicit relationship between y,
χ, and other parameters becomes dynamic/less deterministic, with deviations
in stoichiometry arising under sub-optimal conditions. In our model, y
represents no longer a fixed number but an empirical average number of
monomers added per vesicle binding event; thus, it reflects an average
behavior influenced by experimental conditions such as lipid-to-protein
ratio, vesicle size (Ms), and binding kinetics (k+ and k−). The estimated value
still aligns with the values obtained in the literature. Nevertheless, treating y
as a fitted parameter can provide flexibility in modeling variability across
experimental conditions while capturing essential features of lipid-mediated
co-elongation and maintaining consistency with experimental observations.

Furthermore, we assumed that lipidic fibrils elongate at the same rate
constant as pure fibrils, i.e., kl1 = kl2, with the parameter value derived from
the literature36.

Based on parameter estimates from prior calibrations, we adjusted the
rate constants related to oligomer structural conversionswhile keeping their
ratio fixed. Moreover, we switched off all nucleation reactions except for
heterogeneous primary nucleation (estimated), which has been identified as
the predominant nucleation reaction in this experimental setting16. In line
with this, the fitting procedure suggested a negligible impact of secondary
nucleation in this experimental scenario (klmax;II ¼ k�max;II ¼ 0).

Optimizationalgorithmanduncertainty quantification. The parameter
estimation procedure relied on a global stochastic optimization method
computing the covariance matrix of the search distribution to estimate
unknown model parameters, namely, the covariance-based evolutionary
optimization (CMA-ES) algorithm61. The optimization problem corre-
sponded to minimizing a weighted least squares objective function tailored
for each calibration scenario. To avoid model overfitting and take into
account the differences in initial monomer and lipid concentrations, we
calibrated the aggregation module on multiple time-series for the con-
sidered species in the system corresponding to the highest and lowest initial
monomer concentrations/lipid-to-monomer ratios. Complementarily, we
validated the model on the time series related to intermediate levels of
initial monomer concentrations and lipid-to-monomer ratios.

To perform uncertainty quantification, we randomly sampled 1000
parameter sets from a standard normal distribution centered in the para-
meter estimateswith coefficient of variationof 20%(10%for y).We then run
model simulations for eachparameter set and computed themedian and the
5th and 95th percentiles of the time series distribution for each model
species.

Aggregation metrics
For comparison across in silico experiments, we computeddifferentmetrics
that directly relate to aggregation:
• the oligomer peak level and time.
• the final level of pure, lipidic, and newly generated fibril mass con-

centration normalized to the total monomer concentration (i.e., ~MF;p,
~MF;l, and MF,* relative abundance), along with the corresponding
half-time.

• the final level of pure, lipidic, and newly generated fibril number
concentration normalized to the total fibril concentration (i.e., ~Fp, ~F l,
and F* relative abundance), serving as ameasure of the composition of
the fibrillar population.

• the propensity of newly generated fibrils to undergo lipidic over pure
protein aggregation normalized for the time range, identified by

Z tf

0

konVbðtÞ
kl1mðtÞ þ konVbðtÞ

dt;

serving as a measure of the relative occurrence of the two reactions
and, thus, determining the overall dominance of lipidic fibril for-
mation over pure protein fibril formation.

• Lewy body composition indexes measuring the composition of Lewy
body-like structures that result from our in vitro model system. These
inclusions are not direct analogs of the cytoplasmic Lewy bodies in PD
patients. Instead, they emerge as a natural outcome of in vitro
aggregation, where “LB” seeds form through fibril-fibril interactions,
and growth occurs through further fibril incorporation. The indexes
introduced below track contributions of different fibril types. Given
AUC( ⋅ ) as the area under the curve over a specified time interval (i.e.,
AUC ðxðtÞÞ ¼ R T

0 xðtÞ dt), we define:
– self-contribution indexes for pure, lipidic, and newly generated
fibrils:

Ip ¼
AUC ðeF2pÞ
AUC ðeF2TOTÞ I l ¼ AUC ðeF2l Þ

AUC ðeF2TOTÞ I� ¼ AUC ðeF2�Þ
AUC ðeF2TOTÞ

ð5Þ

which sum to Iself ¼ Ip þ I l þ I� ¼
P

i2fp;l;�g AUC ðeF 2

i Þ

AUC ðeF 2

TOTÞ
.

– a cross-contribution index for interactions between different fibril
types:

Icross ¼
2
P

i;j2fp;l;�g AUC ðeFieFjÞ
AUCð~F2

TOTÞ
ð6Þ

By definition, Iself + Icross = 1, ensuring a complete
decomposition. A detailed derivation of these indexes is
provided in Supplementary Note 5.

Local sensitivity analysis
Wecarried out a local sensitivity analysis (LSA) to quantify the impact of the
model parameters on the system dynamics. For each parameter in
p = (p1, …, pj, …, pm), we computed a logarithmic sensitivity index (SI)
based on the area-under-the-curve (AUC) of each model variables in
x= (x1,…, xi,…, xn) within the experimental time interval [0, tf]. Relying on
a numerical approximation given by the second order central finite differ-
ence formula, the sensitivity index Si,j associated with the model variable xi
and the δ=±1%perturbationof theparameterpj from itsnominal valuewas
obtained as

SIi;j ¼
∂ log AUCðxiðpjÞÞ

∂ log pj
¼

∂AUC ðxiðpjÞÞ
∂pj

pj
xiðpjÞ

¼
AUCðxiðpj þ δpjÞÞ � AUC ðxiðpj � δpjÞÞ

2δpj

pj
AUC ðxiðpjÞÞ

where AUC ðxiðpjÞÞ ¼
R tf
0 xiðpj; tÞdt, with xi(pj, t) denoting the i-th model

variable at time t considering the nominal value of the j-th parameter pj.

Data availability
This study did not generate any new experimental data. All datasets used in
this research were obtained from published literature, with appropriate
citations provided. The mathematical model results are provided in
the Supplementary Data File.
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Code availability
The model code and parameters are available at https://github.com/cosbi-
research/aSynAggMod. Additionally, the provided code enables the
reproduction of Figure 4 from the manuscript.
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