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ABSTRACT: We present a Δ-machine learning approach for the prediction of GW quasiparticle energies (ΔMLQP) and
photoelectron spectra of molecules and clusters, using orbital-sensitive representations (OSRs) based on molecular Cartesian
coordinates in kernel ridge regression-based supervised learning. Coulomb matrix, bag-of-bond, and bond-angle-torsion
representations are made orbital-sensitive by augmenting them with atom-centered orbital charges and Kohn−Sham orbital
energies, both of which are readily available from baseline calculations at the level of density functional theory (DFT). We first
illustrate the effects of different constructions of the OSRs on the prediction of frontier orbital energies of 22k molecules of the QM8
data set and show that it is possible to predict the full photoelectron spectrum of molecules within the data set using a single model
with a mean absolute error below 0.1 eV. We further demonstrate that the OSR-based ΔMLQP captures the effects of intra- and
intermolecular conformations in application to water monomers and dimers. Finally, we show that the approach can be embedded in
multiscale simulation workflows, by studying the solvatochromic shifts of quasiparticle and electron−hole excitation energies of
solvated acetone in a setup combining molecular dynamics, DFT, the GW approximation, and the Bethe−Salpeter equation. Our
findings suggest that the ΔMLQP model allows us to predict quasiparticle energies and photoelectron spectra of molecules and
clusters with GW accuracy at DFT cost.

1. INTRODUCTION

Fundamental insights gained by computational analysis of
electronically excited states of molecular systems can help
improve the design of molecular materials and play therefore a
vital role in materials science. However, obtaining quantitative
predictions is challenging, as traditional methods either come
with insufficient accuracy, for example, due to the lack of
correlation in interpreting orbital energies of Hartree−Fock, or
at the price of high computational costs, as for coupled cluster
methods, quantum Monte Carlo, or Green’s function
approaches. Hence, the incorporation of quantum machine
learning (QML) has been gaining great traction over recent
years. QML-based surrogate property models have become a
popular alternative approach for their fast, reliable, and
accurate predictions of molecular and material proper-
ties.1−6,8−16

The main advantage of ML models is that they allow
predictions of molecular properties with improved efficiency at
a lower computational cost compared to traditional quantum
chemistry approaches. Method development in the field of
QML is progressing rapidly, and it is increasingly influencing
traditional methods.6,17−21 Developments in molecular repre-
sentations and QML models have paved the way for predicting
energetic, electronic, and thermodynamic properties, such as
atomization energies, dipole moments, polarizabilities, and
harmonic frequencies.22−24
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QML of excited states of molecules has remained difficult in
comparison. Recent work21,25,26 has achieved promising results
for predictions of single frontier orbital (highest or lowest
molecular orbital) energies. However, some applications, such
as the evaluation of direct or inverse photoelectron spectra,
require predictions for a wider range of orbitals simultaneously,
with sensitivity to conformational details of the actual
molecules and/or a complex embedding environment. Circum-
venting the need to build separate models for each state of
interest and the associated difficulties in finding unique
characterizations of multiple orbitals across a wide range of
chemical space can be achieved, for instance, using neural
networks that learn the required information implicitly from
orbital-free representations5,7 or by capturing both structural
and orbital details in the representation.
In this paper, we show a way of augmenting existing

molecular Cartesian coordinate-based representations with
orbital-specific information from density functional theory
(DFT), which allows us to individually predict quasiparticle
energies at the level of many-body Green’s function theory in
the GW approximation and to calculate full photoelectron
spectra of molecules and clusters with a single-target kernel
ridge regression (KRR) Δ-machine learning model (ΔMLQP).
We adopt the Δ-ML approach23 as its concept of learning the
corrections to a certain baseline property matches directly the
way in which quasiparticle corrections are obtained perturba-
tively to the Kohn−Sham orbital energies, that is, εi

QP = εi
KS +

ΔεiGW. Within ΔMLQP, we consider specifically the orbital-
sensitive augmentation of Coulomb matrix (CM), bag-of-bond
(BoB), and bond-angle-torsion (BAT) representations by a
combination of atom-centered orbital charges and Kohn−
Sham orbital energies, which are all easily accessible from
standard DFT ground-state calculations.2,9,24,27 We illustrate
the effect of different methodological choices, such as the
determination of the orbital charges as Mulliken populations28

or from a Gaussian-distributed multipole analysis29 (GDMA),
on the prediction of the full quasiparticle spectra of molecules
in the QM8 data set. To scrutinize that orbital-sensitive
representations (OSRs) with multiple orbitals are also capable
of resolving the effects of intra- and intermolecular
conformations, we also study the photoelectron spectra of
water monomers and dimers, taken from the H2O-13 data
set.30 Finally, we study the use of the ΔMLQP-predicted,
conformational-sensitive quasiparticle energies embedded in
calculations of electron−hole excitations at the level of the
Bethe−Salpeter equation (BSE) for the prototypical example
of acetone in aqueous solution and compare the solvatochro-
mic shifts obtained from BSE@GW and BSE@ML.
This paper is organized as follows: In Section 2, we briefly

summarize the background of many-body Green’s function
theory in the GW approximation with the BSE of KRR models
and Δ-machine learning. Section 3 introduces the ΔMLQP
approach and showcases results in application to predictions of
quasiparticle energies of molecules from the QM8 data set,
water monomers and dimers, and acetone in aqueous solution.
A brief summary concludes the paper.

2. METHODOLOGICAL BACKGROUND

2.1. Quasiparticle and Electron−Hole Excitations
with GW-BSE. For a given closed-shell ground-state system
with N electrons, one can within DFT get the Kohn−Sham
energies31 by solving

H H Vi i i i
KS KS

0 xc
KS KS KSφ φ ε φ̂ | ⟩ = [ ̂ + ̂ ]| ⟩ = | ⟩ (1)

with Ĥ0 = T̂0 + V̂ext + V̂H, where T̂0 stands for the kinetic
energy, V̂ext is the external potential, V̂H is the Hartree
potential, and V̂xc is the exchange−correlation potential.
The addition (N → N + 1) or removal (N → N − 1) of a

single electron to/from the system can be seen as the
excitation of a quasiparticle. Quasiparticle energies are
essentially the poles of interacting one-electron Green’s
function and obey Dyson’s equation32−35

H ( )i i i i0
QP QP QP QPε φ ε φ[ ̂ + Σ̂ ]| ⟩ = | ⟩ (2)

where|φi
QP⟩ represents the quasiparticle wave functions. The

operator Σ̂(·) is the self-energy operator, which describes the
exchange−correlation many-body effects. This operator can be
expressed within the GW approximation as a convolution of
one-particle Green’s function G(r,r′,ω) with the screened
Coulomb interaction

W vr r r r r r
r r

r r
( , , ) ( , , ) ( , )

( , , )1
c

1

ω ω ω′ = ϵ ′ ′ = ϵ ′
| − ′|

−
−

(3)

where ϵ−1 is the inverse dielectric function calculated in the
random-phase approximation.36 The self-energy operator can
be explicitly written as

i
G Wr r r r r r( , , )

2
d ( , , ) ( , , )∫ω

π
ω ω ω ωΣ ′ = ′ ′ + ′ ′

(4)

Several techniques can be used to perform the frequency
integration, starting from separating the self-energy Σ = iGW
into its bare exchange part Σx = iGvc and its correlation part Σc
= iGW̃, where W̃ = W − vc. With this, the integral can be
evaluated fully analytically by calculating the reducible
polarizability in terms of an eigenvalue decomposition of the
random-phase approximation (RPA) Hamiltonian. See, for
example, refs 37−383940 for details. While this fully analytical
approach (FAA) is analytically exact, it is not feasible for large
systems due to the scaling of the diagonalization of the RPA
Hamiltonian. Instead, the frequency integration can be
approximated within a generalized plasmon-pole model
(PPM).41,42

One can now by expanding quasiparticle wave functions in
terms of Kohn−Sham wave functions transform eq 2 into

H E E V( ) ( )ij i ij i j
QP KS KS

xc
KSε δ φ φ= + ⟨ |Σ̂ − ̂ | ⟩ (5)

Further approximating |φi
QP⟩ = |φi

KS⟩, we can obtain the
quasiparticle energies perturbatively as the diagonals of eq 5

V( )

i i i

i i i i

QP KS GW

KS KS QP
xc

KS

ε ε ε

ε φ ε φ

= + Δ

= + ⟨ |Σ̂ − ̂ | ⟩ (6)

As ΔεiGW itself depends on εi
QP, the abovementioned data

constitutes a fixed-point problem. In addition, the εi
QP enters

both the energy-dependent microscopic dielectric function
determined within the RPA and in Green’s function in the
expression for the self-energy, eq 4. Hence, in the so-called
evGW approach, quasiparticle energies are used to update Σ
until self-consistency is reached in combination with eq 6.
Optical excitations of the system lead to the formation of

coupled electron−hole pairs, which can be described using a
product basis of QP wave functions, that is
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where re (rh) is for the electron (hole) coordinate, and we drop
the label QP for clarity. The expansion coefficients Avc,σσ′
(Bvc,σσ′) of the excited-state wave function in terms of resonant
(anti-resonant) transitions between QP-occupied (occ.) states
v and unoccupied (unocc.) c with spin σ and σ′, respectively,
can be obtained as solutions of the BSE in the form of an
effective two-particle Hamiltonian problem

H M
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(8)

In cases with negligible spin−orbit coupling, it can be shown
that this Hamiltonian has a block structure in terms of the spin
combination of the electron and hole states43 and can therefore
be decomposed into two independent Hamiltonians for singlet
and triplet excitations, respectively. This allows us to drop the
explicit spin variables, and the matrix elements Hres and M are
determined as

H D M Mvc,v c
res

vc,v c vc,v c
x

vc,v c
dκ= + +′ ′ ′ ′ ′ ′ ′ ′ (9)

M M Mcv,v c cv,v c
x

cv,v c
dκ= +′ ′ ′ ′ ′ ′ (10)

where κ = 2 (0) for spin singlet (triplet) excitations, and

D ( )vc,v c c v vv ccε ε δ δ= −′ ′ ′ ′ (11)

M Wr r r r r r

r r

d d ( ) ( ) ( , , 0)

( ) ( )

vc,v c
d 3

e
3

h c e c e e h

v h v h

∫ φ φ ω

φ φ

= − * =

× *

′ ′ ′

′
(12)

M vr r r r r r

r r

d d ( ) ( ) ( , )

( ) ( )

vc,v c
x 3

e
3

h c e v e c e h

c h v h

∫ φ φ

φ φ

= *

× *

′ ′

′ ′ (13)

In eq 11, the term D arises from free interlevel transition
between occupied and empty quasiparticle states, and the direct
interaction Md (eq 12) is responsible for the binding of the
electron−hole pair and is based on the attractive but screened
interaction W (in the static approximation ω = 0) between

Figure 1. Schematic overview of first-principles and data-driven routes for the calculation of GW quasiparticle energies and their embedding into a
BSE@DFT-GW/ML workflow. (a) Atomic charges and atomic coordinates are used as input for DFT calculations. DFT generates Kohn−Sham
energies and wave functions, which are being used as input for either quasiparticle calculations in the first-principles route or Δ-ML model in the
data-driven route. The output of either route is then used as input for BSE calculations to output the excitation energy spectra. The machine
learning block consists of two operations. (b) Details of the ΔMLQP model with OSRs. First, the DFT output together with geometric information
is transformed into a molecular representation. Second, the resulting vector is used to build up a kernel matrix to predict ΔQP energies, which are
then added to KS energies and used as output.
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electrons and holes. The repulsive exchange interaction Mx (eq
13) is responsible for the singlet−triplet splitting.
2.2. Kernel Ridge Regression. The application of KRR

models to predict molecular quantum properties has been very
successful over recent years.8,14,17,23,44 The main idea relies on
constructing a kernel matrix with a kernel function k that can
quantitatively measure similarity between molecular represen-
tations xi and xj, which are vector representations that encode
the molecular physics.6,24,27 The Laplacian kernel function, for
example, is described as

k x x
x x

( , ) expi j
i j 1

σ
= −

|| − ||i
k
jjjjj

y
{
zzzzz (14)

In context of QM, the goal of KRR is to map an input
molecular representation x to a target quantum property p.
Such a mapping is given by

p kx x x( ) ( , )
n

N

n n
1

∑ α=
= (15)

where αn stands for the nth regression coefficient, with xn being
the nth training sample. The learning process within the KRR
framework corresponds to obtaining the regression coefficient
vector α for a given reference property vector ptrain, a kernel
matrix K, and a regularization coefficient λ by evaluating

K I p( ) 1 trainα λ= + −
(16)

where I is an identity matrix. Additionally, the so-called
hyperparameters λ and σ are optimized using the mean
absolute error (MAE) metric, where all optimizations are
performed with fivefold cross-validation.
2.3. Δ-Machine Learning. The typical workflow of a

supervised machine learning-based task is to map an input
vector, for example, a vectorized form of a representation of a
molecular geometry, to a target property, such as an
atomization or excitation energy, calculated with a high-
accuracy method. In some cases, however, it is computationally
infeasible to obtain such high-accuracy data for the large
number of training/testing inputs required to achieve
satisfactory learning results. As a consequence, such direct
ML approaches can be limited to low-accuracy targets. To
circumvent the problem of requiring large high-accuracy data
sets, Δ-ML aims to predict the highly accurate target property
at the same cost of the computationally cheaper methods,
which is often referred to as the baseline property.45,46 This
approach is typically more data-efficient than direct ML, since
the computationally expensive high-accuracy simulations are
needed only for a considerably smaller subset to obtain a
certain predictive power.23,44

The accurate target property is labeled as pt and is obtained
by

p p

p k

x x x

x x x

( ) ( ) ( ) (17)

( ) ( , ) (18)
n

N

n n

t b
b
t

b

1

∑ α

= + Δ

= +
=

with pb being the baseline property and αn being the nth
regression coefficient of a KRR model that is trained to predict
the difference between the target and baseline property, that is,
pt − pb. The Δ-ML model has been used in various
applications and has shown to be powerful in not only saving
computational time but also achieving much higher precision

compared to that of traditional machine learning ap-
proaches.23,46

3. RESULTS
We illustrate the applicability of the orbital-sensitive Δ
machine learning model for predicting full quasiparticle spectra
by reporting the predictive performance on QM8 molecules
and water monomers/dimers for molecular Cartesian coor-
dinate-based representations. Subsequently, to obtain excita-
tion energies of acetone and acetone in water, the proposed
approach is used as a surrogate model to evaluate the BSE. The
results are then used to study solvatochromic shifts and
benchmark them against experimental data.

3.1. Orbital-Sensitive Descriptors. Figure 1a shows a
schematic overview of the ΔMLQP approach as a surrogate
model to predict quasiparticle energies, thereby bypassing the
computationally expensive first-principles GWstep. It is based
on the idea of learning the nonlinear transformations from
Kohn−Sham energies to quasiparticle energies, motivated by
the fact that for all orbitals i

i i i
QP KSε ε ε= + Δ (19)

corresponds directly to the form of eq 17. This allows us to
identify εi

KS with the baseline property pb(x) and to learn the
quasiparticle corrections Δεi = ⟨φi

KS|Σ̂(εiQP) − V̂xc|φi
KS⟩ as in eq

6.
To be able to replace all orbital-dependent Δε by a single

Laplacian kernel-based (or any other) machine learning model
requires a representation that incorporates orbital information.
Traditional graph-based representations, such as the CM and
BoB,2,9,24 which solely rely on the sets of atomic positions {R}
and nuclear charges {Z}, lack such information and have
therefore no injectivity for predicting full spectra of molecules.
We propose an extension to the molecular Cartesian

coordinate-based representation that includes information
about the Kohn−Sham orbital energies and wave functions
and will refer to the extended version as OSR n-OSR, where n
stands for the number of included orbitals. To this end, we
map the {φk

KS(r)} to a set effective orbital-dependent atomic
charges {qk} and add those with its (rescaled) Kohn−Sham
energy Ck = ζεk

KS, where [ζ] = e/Hartree, to the nuclear
charges. For example, the CM representation for a molecule at
the electronic state k can be extended as

Z q C Z q C
I J

Z q C I J

R RCM

( )( )
, for

1
2

( ) for

k

I k
I

k J k
J

k

I J

I k
I

k
2.4

=

+ + + +
|| − ||

≠

+ + =

l

m

oooooooo

n

oooooooo
(20)

A modification as in eq 20 allows us to introduce the missing
injectivity for multistate predictions within a single model, as
indicated in Figure 1b. It is a particularly attractive choice, as
all ingredients for this modification are readily available from
the DFT baseline calculations, and its very simple, physically
interpretable form is easy to implement. The same idea of
incorporating orbital sensitivity can be applied to all R- and Z-
dependent representations, such as BoB or BAT. In the
following, we will evaluate the abovementioned extension of
molecular Cartesian coordinate-based representations and
their dependence on the choice of different methods to obtain
{qk}, in the use of ΔMLQP.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00520
J. Chem. Theory Comput. 2021, 17, 4891−4900

4894

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00520?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.2. QM8 Molecules. We use molecular geometries from
the QM8 data set, which contains more than 20,000
synthetically feasible small organic molecules with up to
eight CONF atoms.22,44 All quantum mechanical calculations
have been performed with the VOTCA-XTP package.39,47 For
each molecule, we first perform DFT ground-state calculations
with the PBE0 hybrid functional,48 the def2-TZVP basis set,49

and an optimized auxiliary basis for the resolution-of-identity
techniques.50 Orbital-dependent atomic charges are deter-
mined from a GDMA29 or from Mulliken populations.28

Eigenvalue self-consistent (evGW) quasiparticle energies are
then determined for the lowest 2Nocc states (excluding the core
levels), where Nocc is the number of occupied levels. All
orbitals are included in the RPA step, and not explicitly
corrected higher levels are scissor-shifted according to the
highest absolute quasiparticle correction among the explicitly
corrected unoccupied orbitals. The frequency integration in eq
4 is performed using the FAA.
In Figure 2, we report the performance measures, such as

correlations and learning curves, for predicting individual
highest occupied molecular orbital (HOMO) energies (Figure
2a,d) and individual lowest unoccupied molecular orbital
(LUMO) energies (Figure 2b,e) and predicting simultaneously
both HOMO and LUMO energies (Figure 2c,f) of QM8
molecules with various CM, BoB, and BAT representations

and extensions based on GDMA orbital charges. In all cases,
here and in the following sections, we used σ = 800 and λ =
10−8 in the KRR models, and ζ = 1e/Hartree. The
hyperparameters were optimized for the QM8 data set with
all considered representations, and for the later use cases, it
was checked that variations of this optimium have a negligible
effect on the predictions.
The correlation and distribution plots display the expected

nonlinear shift between KS and QP energies. As expected, the
HOMO (LUMO) εKS is consistently above (below) the
corresponding εQP. The 1-OSR Δ-ML models as in Figure 2a,b
are constructed using frontier orbitals of 18,000 molecules as
the training set and 2000 samples as the testing set and are
based on the extended BAT representations. They transform
KS energies to QP energies with a MAE of 0.02 eV. The
corresponding learning curves in Figure 2d,e show systematic
decay in error with increasing number of training samples
Nsamples (here, each sample corresponds to one molecule) for
both standard and extended representations. However, it is
also clearly visible that even for a 1-OSR model, the inclusion
of information about the KS orbital energies and wave
functions via the partial charges systematically improves the
MAE at fixed training set size in all cases.
We proceed with discussing the first 2-OSR ΔMLQP model,

trained on a mixed set of 30,000 HOMOs and LUMOs, with

Figure 2. Correlation plots and learning curves for Δ-machine learning HOMO, LUMO, and HOMO−LUMO energies of QM8 molecules. (a,b)
Correlation plots for single-orbital energy level predictions with 1-OSR models, where KS/QP HOMO and LUMO energies are visualized in black
with Δ-ML/QP HOMO and LUMO energies in orange and green, respectively. (c) Correlation plot for the simultaneous prediction of HOMO
and LUMO energies in a 2-OSR model, where KS/QP HOMO/LUMO energies are represented in black with Δ-ML in orange/green. The inset in
each correlation plot shows the histogram of QP (white) and KS (black) energies. (d−f) HOMO, LUMO, and HOMO−LUMO Δ-ML learning
curves for QP predictions with various orbital-independent (black) and orbital-dependent representations (orange, green, and orange/green).
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testing performed on 5000. The results of a model
simultaneously predicting HOMO and LUMO quasiparticle
energies are shown in Figure 2c. Using orbital-sensitive BAT,
we note a combined MAE of 0.04 eV. The associated learning
curves in Figure 2f show clear improvements of the MAE with
increasing number of samples. Note that the training set used
to predict multiple states simultaneously contains for each
molecule multiple states, and the number of samples does not
therefore correspond to the number of molecules. Additionally,
unmodified representations fail in predicting both targets at the
same time, as expected. Overall, the OSRs are more data-
efficient and allow double-state predictions.
Based on the promising performance of the 2-OSR Δ-ML

model, we apply the same method to predict the full
quasiparticle spectra of QM8 molecules in multi-OSR
ΔMLQP. To do this, we first shuffle the data set comprising
all considered quasiparticle levels of all molecules and then
select a random subset with 30,000 samples as the training set
and 5000 samples as the testing set. In Figure 3a, the ML-QP
correlation plot is shown based on application to 1000 out of
sample orbitals. Good agreement of the distributions can be
observed over an energy range covering around 2 Hartree,
where a MAE of 0.06 eV provides a good example of the
predictive capabilities of the multi-OSR Δ-ML model.
Figure 3b shows the learning curves for standard and OSR.

While OSRs allow us to predict the entire QP spectra of QM8
molecules, representations without orbital information fail to
learn, and hence, we cannot report systematic improvement
with increasing number of training samples. How this
translates to a more practical example is shown in Figure 3c.
A density of states (DOS) plot of a randomly chosen QM8
molecule (ID 014520 in the QM8 data set) based on KS, QP,
and ML is shown. The difference between the KS HOMO−
LUMO gap and the QP HOMO−LUMO gap equates to
approximately 4 eV, while the difference between the full QP
spectra and ML spectra is 0.07 eV (MAE of all predicted
levels). The DOS (with a Gaussian broadening of 0.022
Hartree) based on ΔMLQP (solid line) is practically
indistinguishable from the one based on explicit QP energies
(shaded area).

Finally, we compare in Table 1 the MAE of predictions of
quasiparticle energies obtained with generic and different

OSRs. As also apparent from Figure 2d,e, the addition of
orbital information into the representation reduces the MAE
even for the single-orbital models by up to 50%. Differences
between CM, BoB, and BAT are very small in these cases.
Regarding the use of different techniques to obtain effective
orbital charges, we note that GDMA yields ∼0.010 eV lower
MAEs than Mulliken populations, and the overall lowest MAE
is obtained for the BAT-GDMA combination. Moving to the
2-OSR- and multi-OSR models, BoB-GDMA performs slightly
better than BAT-GDMA and CM-GDMA. In the 2-OSR
model comprising the HOMO and LUMO, using Mulliken
charges leads to doubling of the MAE, albeit still lower than
0.1 eV. For multi-OSR, the MAEs are expectedly a bit higher
due to the high dimensionality of the data, but the differences
between the use of GDMA and Mulliken charges are relatively
smaller, in particular for BoB and BAT representations. While
the Mulliken population-based OSRs appear to yield a slightly
higher MAE as compared to the GDMA-based ones, it should
be stressed that the latter come with a higher computational
cost, noticeable in particular for larger systems (see also

Figure 3. Multi-OSR Δ-ML of full quasiparticle spectra of QM8 molecules with a single model. (a) Correlation plot of Δ-ML/QP energies, where
the arrows are pointing at randomly chosen molecules. The inset shows the histogram of ML (orange) and QP (black) energies. (b) Learning
curves for QP energy predictions with various orbital-independent (black) and orbital-dependent representations (orange). (c) DOS of a randomly
chosen QM8 molecule, where the shaded area (light orange) represents the QP energies, while the green and orange lines describe the KS and ML
energies, respectively.

Table 1. MAE (in eV) of Predicting evGW Quasiparticle
Energies by KRR Using Standard CM, BoB, and BAT
Representations and Our Orbital-Sensitive Extension Based
on GDMA and Mulliken Orbital Chargesa

HOMO LUMO 2-OSR multi-OSR

CM 0.043 0.073
BoB 0.036 0.057
BAT 0.032 0.051
CM-GDMA 0.022 0.020 0.046 0.104
BoB-GDMA 0.021 0.019 0.029 0.083
BAT-GDMA 0.017 0.017 0.034 0.089
CM-Mulliken 0.031 0.038 0.109 0.155
BoB-Mulliken 0.026 0.033 0.070 0.108
BAT-Mulliken 0.024 0.030 0.072 0.107

aThe best-performing models are marked in bold.
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Section 3.4) and are not widely available for standard DFT
applications.
3.3. Water Monomers and Dimers. In the QM8

example, we focused on predicting the full QP spectra of
single molecules. In this example, we want to show that a single
Δ-ML model can predict the full QP spectra of water dimers
and monomers simultaneously, that is, ΔMLQP is sensitive to
intermolecular conformations as well.
The molecular geometries used in this application originate

from the H2O-13 data set30 that consists of 2000 water dimers
with O−O distances less than 4.5 Å obtained from an MD
simulation. All GW properties used in the training and testing
sets were calculated as mentioned for the QM8 data in the
previous section. To build a multi-OSR ΔMLQP model, we
first not only consider the 2000 dimer structures but also
extract 4000 monomers from them. In water dimers
(monomers), 18 quasiparticle states are taken into account,
so the orbital data set we have used contains 52,000 samples in
total. From this set, 30,000 randomly selected samples are used
for training and 5k for testing.
Figure 4a shows the QP−KS correlation (black) and QP−

ML correlation (orange/green). The multi-OSR ΔMLQP
approach based on BAT is able to transform the Kohn−Sham
energies to quasiparticle energies with great accuracy (0.03 eV
MAE). In Figure 4b, we plot the DOS of a randomly chosen
water dimer and its constituent monomers broadened by 0.022
Hartree. On the shown scale, the small differences among the
two monomers are hard to distinguish, independent of the
method. More importantly, it is apparent that ΔMLQP
captures the respective openings of the HOMO−LUMO
gaps and energy-dependent quasiparticle corrections and the
effects of intermolecular interactions in the dimer conforma-
tion. This point is emphasized by the analysis of the difference
between the actual dimer DOS and a simple superposition of
the two monomer DOS as in the top panel of Figure 4c,
evaluated based on the explicit QP energies (solid black) and
the one predicted by ΔMLQP (dashed). These differences
reveal the shifts of the coupled dimer energy levels due to

intermolecular interactions, and the effects are captured by
ΔMLQP at very good accuracy not only near the gap but also
for, for example, the deep O 2s levels. The lower panel in
Figure 4c shows monotonous decay of the prediction errors as
a function of training set size, where the orbital-sensitive BoB
and BAT perform slightly better than the orbital-sensitive CM.
Again, we see from the correlation plots, DOS, and the
learning curves that the full QP spectra of water dimers and
monomers can be accurately reproduced with just a single
delta machine learning model.

3.4. Acetone in Water. We now consider an example of
even more complex molecular clusters: aqueous acetone. The
increased complexity stems from combining two different
molecular species and considering more molecules in the
clusters, leading to a very high-dimensional problem as the
number of states and conformations increases dramatically.
Specifically, the choice for aqueous acetone is motivated by the
fact that it is known to exhibit a solvatochromic shift of the
lowest coupled electron−hole excitation energy of ∼0.2
eV,51−53 a combined effect of similar shifts to the individual
quasiparticle energies and modified screening of the electron−
hole interaction in water. From the perspective of our ΔMLQP
model, this poses the additional question of whether its
predictions are accurate enough in such a case to embed them
into the calculation of the electron−hole excitation energies via
the BSE (BSE@ML vs BSE@GW), as noted in the workflow
scheme in Figure 1a.
To answer this question, we first generate structural data by

performing classical molecular dynamics simulations of single
acetone in 219 water molecules using an OPLS-AA-type force
field for acetone, automatically generated using LigParGen,54

and the TIP3P model for water.55 Geometric mixing rules for
Lennard-Jones diameters and energies were used for atoms of
different species.56 Nonbonded interactions between atom
pairs within a molecule separated by one or two bonds were
excluded. The interaction was reduced by a factor of 1/2 for
atoms separated by three bonds and more. Simulations were
run using GROMACS version 2019.6.57 A cutoff of 0.9 nm was

Figure 4. Multi-OSR Δ-ML of full quasiparticle spectra of water monomers and dimers with a single model. (a) Correlation plot for the
simultaneous prediction of all orbital energies, where KS/QP HOMO−LUMO energies are represented in black with Δ-ML in orange for the levels
below the HOMO−LUMO gap and green for the levels above the gap. The inset shows the histogram of QP (white) and KS (black) energies. (b)
DOS plot for a randomly chosen water dimer and its monomers, where the shaded area (light orange) represents the QP energies, while the green
and orange lines describe the KS and ML energies, respectively. (c) Difference between the dimer DOS and the monomer DOS summed together,
where the QP DOS is represented in black with ML in dashed orange. (d) Learning curves for QP energy predictions with various orbital-
dependent representations.
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employed for the real space part of electrostatics and Lennard-
Jones interactions. The long-range electrostatics were calcu-
lated using particle-mesh Ewald58 with the reciprocal space
interactions evaluated on a 0.18 nm grid with cubic
interpolation of order 4. An initial configuration was prepared
in a cubic box of 2 nm size and energy-minimized using the
steepest descent algorithm, followed by a 6 ns simulation in a
constant-particle number, volume, and temperature (NVT)
ensemble. Temperature was kept constant at 300 K using the
stochastic velocity-rescaling thermostat59 with a time constant
of 0.5 ps, and the velocity-Verlet algorithm60 was employed to
integrate the equations of motions with a 1 fs time step.
Simulations were then continued for 200 ns in a constant-
particle number, pressure, and temperature (NpT) ensemble at
300 K and 1 bar controlled using the Berendsen61 barostat
with a coupling time constant of 2.0 ps. From the last 100 ns of
this run, 10,000 snapshots at a time interval of 10 ps are
extracted, and clusters containing acetone and the 10 water
molecules closest to it are selected for the GW-BSE
calculations. With this choice, we ascertain that the first
solvation shell is included in the cluster, contributing the
strongest to the expected solvatochromic shifts. Note that we
are not strictly targeting quantitative accuracy of the actual
excitation energies compared to the experiment with this study,
but we strive to demonstrate the internal consistency between
BSE@GW and BSE@ML in our multi-OSR ΔMLQP
approach.
GW-BSE calculations are performed on the selected clusters

without and with the water molecules included, following the
same protocol as before, with the exception of the treatment of
the frequency dependence in eq 4, for which we employ here a
two-parameter-generalized PPM.41,42,62 Explicit quasiparticle
corrections are determined for the four HOMOs and four
LUMOs, while the full single-particle spectrum is included in
the formation of the product basis for the BSE.
We first construct as a proof of concept a 2-OSR-BoB model

including the HOMO and LUMO in the absence and presence
of a water solvation shell. From the total of 80,000 samples, we
select 5000 for training and 1000 for testing, ensuring that the
sets have an equal amount of data for both the HOMO and

LUMO, with and without water, respectively. The energy
distributions as obtained from the explicit calculations of εQP in
vacuum (in water), calculated on 400 (100 of each case) out of
sample data points, are shown as filled orange (green) areas in
Figure 5a. Indicated are also the means and their error,
showing a distinct lowering of 0.50 and 0.92 eV for the
HOMO and LUMO, respectively, in the presence of water,
thereby decreasing the HOMO−LUMO gap by 0.42 eV.
Comparing the respective distributions obtained from the 2-
OSR ΔMLQP model shown as dashed lines in Figure 5a,
hardly, any differences can be observed.
As mentioned above, the determination of electron−hole

excitation energies with BSE@GW requires inclusion of eight
explicitly corrected orbitals near the gap. For this purpose, we
now build an 8-OSR ΔMLQP model, for which Figure 5b
shows the learning curves. With more than 10k samples, a
MAE of lower than 0.5 kcal/mol can be achieved. Figure 5c
shows the corresponding correlation between explicitly
calculated QP energies and the ones from 8-OSR ΔMLQP,
for which we have selected from the full data set comprising
320k orbitals 120k for training and 10k for testing. Clearly, the
ΔMLQP model again provides excellent predictions for the
eight different orbital energies in vacuum and solution. In the
following step, these predicted quasiparticle energies for the
eight explicitly corrected orbitals are used as input for the BSE.
The remaining occupied (unoccupied) single-particle energies
are scissor-shifted according to the highest absolute
quasiparticle correction among the explicitly corrected
occupied (unoccupied) orbitals, as in the BSE@GW reference.
In Figure 5d, we show the correlation between the determined
S1 energies of the n → π* transition. Two interesting aspects
should be noted: the subset of results for BSE@ML for the
vacuum structure (orange) appears to agree better than the
one for the acetone−water clusters (green), which is not
surprising due to the bigger conformational space of the latter.
More importantly, however, one can clearly see a systematic
shift of the S1 energies in aqueous solution to higher energies
compared to those in vacuoequally obtained for both BSE@
GW and BSE@MLqualitatively in line with the experimental
observations.

Figure 5. Multi-OSR Δ-ML of full quasiparticle spectra of acetone and acetone in water with a single model and application to calculating n → π*
excitation energies with BSE. (a) The black bars are a visual representation of the HOMO−LUMO gap in acetone in vacuum (orange) and acetone
in water (green) with ML predictions. The shaded areas represent the HOMO and LUMO distributions resulting from explicit evGW calculations,
while the ones resulting from the 2-OSR ΔMLQP model are shown as dashed lines. (b) Prediction errors as a function of training set size for the 8-
OSR-BoB model to be used in BSE@ML calculations. (c) QP-ML quasiparticle energy correlation for 8-OSR-BoB. (d) Correlation between S1 (n
→ π*) energies from BSE@GW and BSE@ML. (e) S1 energy distributions of a single acetone (orange) and acetone in water (green) from BSE@
GW and BSE@ML.
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Finally, we show in Figure 5e distributions of the n → π*
excitation energies of acetone as obtained by the BSE@GW
(filled curves) and BSE@ML (dashed lines) approaches in
vacuum (orange) and in water (green), respectively. It is
evident that both methods predict both a broadening of the
distribution upon solvation and a shift to higher energies.
Differences of the distributions in BSE@GW and BSE@ML
levels are miniscule. The predicted solvatochromic shift of the
mean of the distributions amounts to 0.30 eV, as indicated by
the dashed lines in Figure 5e. For peak-to-peak, the shift is 0.13
eV.

4. SUMMARY
We have introduced orbital-sensitive augmentations of
molecular Cartesian coordinate-based representations in Δ-
machine learning of full quasiparticle excitation energies in
molecules and clusters. The proposed ΔMLQP approach is
capable of predicting the GW energies of multiple orbitals
across multiple molecules and/or intra- and intermolecular
conformations in a single KRR-based supervised learning
model. We have demonstrated this in application to the QM8
molecular data set and to water monomers and dimers.
Furthermore, it has been shown that a single orbital-sensitive
Δ-ML model for quasiparticle energies can be embedded in
multiscale simulation workflows, showcased in the prediction
of solvatochromic shifts of excitation energies in aqueous
acetone.
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