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Abstract

Millions of people suffer mild traumatic brain injuries (mTBIs) every year, and there is growing evidence that
repeated injuries can result in long-term pathology. The acute symptoms of these injuries may or may not include
the loss of consciousness but do include disorientation, confusion, and/or the inability to concentrate. Most of
these acute symptoms spontaneously resolve within a few hours or days. However, the underlying physiological
and cellular mechanisms remain unclear. Spreading depolarizations (SDs) are known to occur in rodents and
humans following moderate and severe TBls, and SDs have long been hypothesized to occur in more mild injuries.
Using a closed skull impact model, we investigated the presence of SDs immediately following a mTBI. Animals
remained motionless for multiple minutes following an impact and once recovered had fewer episodes of
movement. We recorded the defining electrophysiological properties of SDs, including the large extracellular field
potential shifts and suppression of high-frequency cortical activity. Impact-induced SDs were also associated
with a propagating wave of reduced cerebral blood flow (CBF). In the wake of the SD, there was a prolonged
period of reduced CBF that recovered in approximately 90 min. Similar to SDs in more severe injuries, the
impact-induced SDs could be blocked with ketamine. Interestingly, impacts at a slower velocity did not produce
the prolonged immobility and did not initiate SDs. Our data suggest that SDs play a significant role in mTBls and
SDs may contribute to the acute symptoms of mTBIs.

Key words: cerebral blood flow; closed skull impact; concussion; cortical spreading depression; electrophysi-
ology; laser speckle contrast imaging
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Millions of people suffer from concussions every year and repeated concussions are associated with
chronic traumatic encephalopathy (CTE). Spreading depolarizations (SDs) are propagating waves of brain
tissue depolarization that have been associated with strokes, subarachnoid hemorrhages, and moderate to
severe brain injuries. SDs have long been hypothesized to occur in mild brain injuries, but have not been
recorded. Our studies are the first to directly record the electrophysiological properties of SDs following a
closed skull impact, and suggest that SDs may contribute to the acute symptoms of mild traumatic brain

kinjuries (mTBISs). j
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Introduction

Concussions are serious injuries and are now consid-
ered to be mild traumatic brain injuries (mTBIs). It is
estimated that there are ~3.8 million sports-related con-
cussions each year (Clay et al., 2013). This is most likely
an underestimate due to under reporting and/or a lack of
a diagnosis. Concussions are often defined by the imme-
diate and transient symptoms associated with impaired
neurologic function. Most individuals recover within a few
days or weeks, but ~20-30% suffer from a constellation
of prolonged symptoms including the inability to concen-
trate, dizziness, headaches, behavioral deficits, cognitive
deficits, and/or sleep disruption for months (Silver et al.,
2009; Brent and Max, 2017). In addition to cognitive and
behavioral deficits, repeated mTBIs are associated with
diffuse axonal injury, accumulation of amyloid precursor
protein (APP), increases in amyloid-3, diffuse AB plaques,
which collectively are used to diagnose chronic traumatic
encephalopathy (CTE; for review, see DeKosky et al,
2013). A mTBI can disrupt cellular membranes, intracel-
lular scaffolding, axonal fibers, synaptic connections, ce-
rebral blood flow (CBF), and the blood brain barrier
(Chodobski et al., 2011; Giza and Hovda, 2014). mTBls
are most commonly associated with reduced CBF
(McLaughlin and Marion, 1996; Dietrich et al., 2000; Giri
et al., 2000) and neurochemical and ion imbalances
(Denny-Brown and Russell, 1941; Ward, 1964; Takahashi
et al., 1981; West et al., 1982; Kubota et al., 1989; Katay-
ama et al., 1990; Yoshino et al., 1991). Recovery from this
imbalance is metabolically demanding and is likely to
occur in the presence of reduced blood flow. This imbal-
ance has been described as a neurometabolic cascade
and can take days to weeks to fully recover (Giza and
Hovda, 2014). It has been suggested that the underlying
component of the neurometabolic cascade could be
spreading depolarizations (SDs), but the role of SDs in
mild injuries remains unclear.

SDs are propagating waves of complete tissue depo-
larization that result in a transient suppression of cortical
activity lasting multiple minutes. SDs were first character-
ized in rabbits (Leao, 1944) and later extensively studied in
rodents (Buresova, 1956; Bures and Buresova, 1960;
Fifkova et al., 1961; Krivanek, 1961; Monakhov et al.,
1962; Ruediger et al.,, 1962; Ward and Sinnett, 1971;
Maxson and Cowen, 1977). Over 10 years of clinical
recordings have implicated SDs in humans following trau-
matic brain injuries and strokes (Strong et al., 2002, 2007;
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Hartings et al., 2008, 2011). SDs have also been linked to
the visual auras of migraine sufferers (Lauritzen et al.,
1983; Cao et al., 1999; Hadjikhani et al., 2001). It has long
been thought that SDs occur during mTBIs due to the
similarities in the neurochemical imbalance and disrup-
tions in CBF (Meyer and Denny-Brown, 1955; Zachar and
Zacharova, 1958, 1961; Kubota et al., 1989; West et al.,
1982; Watanabe and Noriaki, 2002). However, exciting
new data from Bouley and colleagues described the he-
modynamic responses that are associated with SDs im-
mediately following an injury (Bouley et al., 2019). The
hemodynamic response immediately following the injury
was followed by a period of prolonged post-SD oligemia
and was associated with neurologic dysfunction hours
after the injury (Bouley et al., 2019). The electrophysiolog-
ical properties of SDs have been recorded in more inva-
sive models of mTBIs (i.e., fluid percussion and cortical
impact; Takahashi et al., 1981; Kubota et al., 1989; Su-
nami and Nakamura, 1989; Nilsson et al., 1993; Sword
et al., 2013). However, direct electrophysiological record-
ings of SDs have not been established in a mild closed
skull injury model.

In this study, we use a mouse model of mTBI that
produces concussion-like behavior, but does not result in
gross tissue damage. SDs are defined by their electro-
physiological properties of a large extracellular field po-
tential shift and suppression of high-frequency cortical
activity. We have directly recorded these electrical events
in our model, and have correlated the presence of SDs to
the behavioral phenotype of our model.

Materials and Methods

Animals

All animal procedures were performed in accordance
with the authors’ University Institutional Animal Care and
Use Committee. Wild-type C57/BI6 mice were purchased
from The Jackson Laboratory. To model late adolescence
and early adulthood we used mice between eight and 14
weeks of age. Both male and female mice were used for
these studies and were analyzed separately to identify any
sex related differences before combining. Our preliminary
analyses did not indicate any differences between the
sexes, so all of our data sets include both male and
female mice in equivalent numbers.

mTBI model

The model used in these studies was adapted from
previously published work using controlled cortical im-
pactors without craniotomy (Lighthall, 1988; Shitaka et al.,
2011; Main et al., 2017). The modification here is that the
motion of the head and body was not restricted during the
impact to allow for coup and countercoup motion. Ani-
mals were anesthetized with either isoflurane (2-4%) or
urethane (1.5 mg/g). The anesthetized animal was placed
on a custom Kaizen foam (FastCap) platform directly
beneath the impactor without restricting the body or head.
The Impact One controlled impactor (Leica Biosystems)
was used to deliver the impact to the intact skin and skull.
The foam platform and impactor are shown in Figure 1A.
The animal’s head was not restrained during the impact.
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Figure 1. Closed skull impacts induce mTBlI-like behavior. A,
Animals are anesthetized with isoflurane and placed on a custom
Kaizen foam platform and impacted without restricting the head.
Animals were impacted on top of the head at 2 or 4 m/s with a
5-mm diameter and a 5-mm deflection. B, Schematic represen-
tation of the impact site including the position of the burr hole for
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Figure 1. continued

the electrophysiological recordings. C, Representative heatmaps
indicating positions most frequently visited in warmer colors. The
impacted animals displayed a prolonged time in the center fol-
lowing the impact and did not explore the arena as the sham-
treated animals during the entire 10-min trial. Cumulative data for
the latency to right themselves (D), latency to regain movement
(E), and total episodes of movements (F) over the entire 10-min
trial. Representative heatmaps for sham and 2-m/s impacted
animals show similar time in the center and exploratory behavior
(G). There was no significant difference in the latency to regain
movement (H) and total episodes of movement () between sham
and 2-m/s animals.

The 5 mm impactor tip was positioned with the front edge
of the impact tip aligned with the eyes resulting in the
impact center at ~1 mm rostral to bregma. A schematic
representation of the impact site is show in Figure 1B. The
impactor tip was lowered to press the animals head down
to the surface of the platform before tip retraction. The
impactor was then lowered an additional 5 mm for the
deflection. The animals were impacted at a speed of 4 or
2 m/s with a dwell time of 20 ms. The impact resulted in
the deflection of the animal’s head away from the impact
site. Sham-treated animals were anesthetized, placed on
the platform, and the impactor tip was lowered to touch
the animal’s head.

Behavior of mTBI

Mice were anesthetized with 2-4% isoflurane (Clipper
Distribution Company) supplemented with oxygen at a
flow rate of 1 L/min. Isoflurane anesthesia allowed rapid
recovery from anesthesia to monitor short-term behav-
ioral effects. Following an impact, the animals were im-
mediately placed on their side in the center of an open
field arena. This permitted tracking of recovery and be-
havior within seconds of the impact. Behavior was mon-
itored for 10 min using the Ethovison motion tracking
system (Noldus). The time to righting reflex and initial
movement was manually assessed. Recovery of move-
ment was considered to be the first full step of the animal.
Total distance traveled and episodes of movement were
automatically calculated by the Ethovision system. The
parameters were set so that velocities above 4.5 m/s were
considered moving and velocities below 1.75 m/s was
considered not moving. Intermediate velocities were ex-
cluded from the analysis. Movement heatmaps were gen-
erated for each animal for a 10-min trial.

Behavioral and cognitive tasks
Home cage monitoring

We used the photobeam activity system (PAS) (San
Diego Instruments) to monitor behavior continuously for
multiple days after the impact. Animals were singly
housed with 1/4-inch corncob bedding ~3/8 of an inch
deep under a normal light cycle. Animals were acclimated
to the corncob bedding for 24 h before monitoring. Each
cage was placed within the photobeam detectors and
beam breaks were accumulated into 5-min bins. Animals
were monitored for 24 h before treatment. Animals were
only removed from their cage for anesthesia and treat-
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ment (sham vs mTBI), and immediately placed back into
their cage within 5 s of the impact. Animals were moni-
tored for an additional 5 d. Acute mobility was assessed
for 4 h following treatment (5-min bins) and long-tern
mobility was assessed for 7 d, beginning 24 h before
treatment (60-min bins).

Open field and novel object recognition

Open field behavior was monitored via the Ethovison
motion tracking system 24 h after the impact to broadly
assess mobility and anxiety. The arena was well lit with
~300 lux in the center of the arena and ~200 lux in the
corners. Each animal was placed into the center of the
arena and monitored for 10 min before returning back to
its home cage. Total times spent in the center and border
regions were calculated, as well as the total distance
traveled. The novel object task was used to assess learn-
ing and memory 48 h after the impact. The open field
setup was used with identical settings and two identical
objects were placed at the opposite corners of the arena.
The animals were allowed to explore the objects for 5 min.
The animals were removed from the arena and the two
objects and the arena was wiped down. One identical
object and one novel object were placed back into the
arena. Within 5 min, the mice were allowed to explore the
two objects for 5 min. The total duration of time spent
investigating the identical and novel objects were quanti-
fied as a measure of learning and memory.

CatWalk gait analysis

We used the Noldus CatWalk system to quantify gait
characteristics 72 h after the impact. Individual animals
were placed on the glass platform and the animals were
allowed to freely walk up and down the CatWalk. A cam-
era from below captured the animal’s footprint for auto-
mated analysis. The following parameters were used for a
successful run: minimum duration of 0.5 s, maximum
duration of 10 s, and during each run the animal’s speed
could not change >65%. Each run was classified and the
following characteristics were analyzed to assess for gait
abnormalities: print area, swing duration, and stride
length. Print area was calculated by averaging the area of
all the footprints for each individual paw. Swing duration
was considered to be the time between the lifting and
replacing of the same paw. The stride length was calcu-
lated by the distance from the heel of one footprint to the
heel of the next footprint of the same paw.

Trace fear conditioning

We used fear conditioning boxes that were equipped
with infrared motion tracking capabilities (Med Associates
Inc). Animals were treated 24 h before fear conditioning.
Animals were conditioned to the box 120 s before the first
30-s tone that was followed by a 20-s delay and a 2-s foot
shock at 0.6 mA. This was repeated five times with an
average inter-event interval of 120 s. On day 2, the fear
conditioning boxes were moved to a different location, the
walls and floors were change, and a vanilla scent was
added to the behavior box. Animals were again placed
into the box, given the tone for 30 s with no foot shock.
This was repeated three times with an inter-event interval
of 220 s. On day 3, the behavior boxes were moved back
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to the previous location with the original walls and floors.
The animals were place into the box for a total of 480 s.
The automated motion tracking capabilities of the behav-
ior boxes was used to assess freezing and the percentage
time freezing was calculated. Freezing was calculated for
day 2 during the tone and delay period of 220-s delay. For
day 3, the entire 480 s was assessed for freezing behav-
ior.

Laser speckle contrast imaging (LSCI) and
electrophysiological recordings

Animals were anesthetized with 1.5 mg/g urethane
(Sigma-Aldrich) before treatment and remained under an-
esthesia for the entirety of the experiment. Following the
completion of the experiment the animals were sacrificed
by decapitation. LSCI (Boas and Dunn, 2010; Miao et al.,
2011) was used to monitor CBF through the intact skull. A
skin flap was created to expose the skull and the skull was
illuminated with a 785 nm laser diode (Thorlabs). The
scattered light was collected through a 720 nm long pass
filter and a Nikon 18- to 55-mm manual focus lens (f-stop
between 3.5 and 5.6) attached to a stingray F-504 CCD
camera (Allied Vision). Blood flow maps were calculated
and displayed using LabView software (National Instru-
ments) modified from Choi and colleagues (Yang et al.,
2011). Normalized blood flow measurements were calcu-
lated from the LSCI images using Imaged (NIH). Blood
flow was quantified by creating a 600 X 600 um region of
interest (ROI) over the visual cortex in either hemisphere.
The averaged pixel intensity of that region was calculated
and plotted over time to demonstrate the dynamic blood
flow changes that are associated with SDs. For the rep-
erfusion data set, 100 individual images were averaged
together to represent each time point and a 600 X 600 um
ROI was again used over the visual cortex or major vessel.
ROI placement was based on a consistent anatomic lo-
cation throughout the repeated measurements. All data
were normalized to pre-impact LSCI levels. Chronic win-
dows were created to monitor CBF for multiple days
following a single impact. An incision was generated over
the right hemisphere above the visual cortex and the
underlying skull was exposed and cleaned. A drop of
cyanoacrylate glue was placed on the skull and a 4 mm
diameter cover glass was placed on the glue and skull.
The skin was securely glued to the underlying skull and
cover glass. Animals were allowed to recover from the
surgery for 24-48 h before treatment.

Electrophysiological recordings were done with an
Axon 2B amplifier (Molecular Devices) equipped with a
HS-2A headstage. Data were acquired at 10 kHz using a
PowerLab 8/35 (AD Instruments) acquisition system and
LabChart 7. Glass electrodes were pulled with a P-97
Flaming/Brown Micropipette puller (Sutter Instruments)
and filled with artificial CSF (ACSF) containing the follow-
ing: 125 mM NaCl, 2 mM KCI, 1.3 mM NaH,PO,, 26 mM
NaCO;, 10 mM glucose, 2 mM CaCl,, and 1 mM MgSO,.
Electrodes were placed ~500 um beneath the surface of
the brain through a burr hole in the skull located over the
visual cortex (Fig. 1B). The burr hole was generated 60
min before baseline recordings. To maintain the validity of
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the model, these recordings were done without head
restriction resulting in some movement artifacts from an-
imal respiration. Baseline electrophysiological data were
acquired before the impact. The electrode was removed
for the impact and then replaced within 5 s. These record-
ings were done with simultaneous LSCI to ensure that SD
was not generated from the insertion of the electrode.
Electrophysiological recordings were quantified following
the recommendations of the Co-Operative Study on Brain
Injury Depolarizations (COSBID) group (Dreier et al.,
2017). In brief, the slow extracellular potential shifts of SD
were assessed after the low pass filter was set at 5 Hz. SD
onset was considered to occur at the initial drop of the DC
shift and recovery was considered to be when the extra-
cellular potential reached 85% of the pre-SD level. High-
frequency activity was monitored using a bandpass filter
between 0.5 and 45 Hz. Recovery of high-frequency ac-
tivity was assessed from the total power of the high-
frequency activity (V). As recommended, the first spike in
the total power signal was considered recovery of the
high-frequency activity.

Ketamine was used as a pharmacological blocker of
SDs to confirm that the impact-induced SDs were sensi-
tive to NMDA receptor antagonists. Ketamine was admin-
istered via an intraperitoneal injection 30-45 min before
the impact at a dose of 120 mg/kg (Hernandéz-Caceres
et al., 1987; von Bornstadt et al., 2015). Due to the anes-
thetic actions of ketamine at this concentration, the ure-
thane dosage was halved and the animals were monitored
for a pain response. Ketamine was given 10 min before
the urethane and the impact was given within 45 min of
the ketamine injection.

Histology and immunohistochemistry

For histologic analysis the animals were sacrificed 24 h
post-treatment. Animals were heavily anesthetized with
isoflurane and were cardiac perfused first with ice-cold
PBS containing 1 unit/mL heparin followed by ice-cold
4% paraformaldehyde (Sigma-Aldrich). Brains were re-
moved and immediately submerged in 4% paraformalde-
hyde for 48 h at 4°C. Brains were sectioned using a
vibrating vibratome (VT1000S, Leica) at a thickness of 50
wm. Sections were immediately placed in cryoprotection
solution and maintained at —20°C.

For Nissl staining, sections were transferred to frosted
slides and allowed to dry. Sections were then dehydrated
with ethanol (2 X 3 min) and cleared with xylene (15 min).
Sections were washed in 100% ethanol (2 X 3 min) and
rinsed in tap water. Sections were stained for 4—-8 min in
0.1% cresyl violet and rinsed with tap water then washed
with 100% ethanol (2 X 3 min) before mounting in Per-
mount (catalog #SP15, Fisher Chemical).

To assess for micro-bleeds or blood brain barrier dis-
ruptions we used a Prussian blue kit from Abcam (catalog
#ab150674). In brief, sections were mounted on charged
slides and allow to fully dry. Sections were rehydrated in
PBS two times for 5 min each. Slides were dipped into
diH,0 and placed into the iron stain for 5 min. Slides were
immediately transferred to a NucRed stain for 2 min.
Slides were washed four times in diH,0 and dehydrated
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with 95% and 100% ethanol for 2 min each. Sections
were cleared in xylene for 5 min and mounted with Per-
mount.

The in situ apoptosis detection kit from Sigma-Aldrich
(catalog #S7100) was used to assess for cell death with
TUNEL staining. Sections were mounted on charged
slides and allowed to dry completely. Sections were re-
hydrated in PBS and the procedures from the kit were
followed. DAB labeling was done with the ImmPACT DAB
kit from Vector Laboratories (catalog #SK-4105). Images
were converted to 8-bit gray scale and converted to red
for the representative images in ImageJ.

For immunohistochemical assessment, sections were
washed in PBS-T and then blocked using 5% normal
donkey serum and 1% bovine serum albumin in PBS-T for
1 h. To assess for cell death, sections were stained with
Fluoro-Jade C solution (0.0001% Fluoro-Jade C in 0.1%
acetic acid; catalog #AG325, EMD Millipore Corp, Merk)
for 10 min. Sections were washed with PBS-T twice for 10
min each and mounted. Glial fibrillary acidic protein
(GFAP) was used as a marker of astrocyte activation and
the primary antibody (catalog #NE1015, EMD Millipore,
Merk) was diluted 1:500 in the blocking buffer and incu-
bated at 4°C overnight. The following day, the sections
were washed in PBS-T three times for 10 min each before
being incubated with the secondary antibody [Cy3-IgG (H
+ L) donkey anti-mouse, catalog #715-167-003, Jackson
ImmunoResearch] at room temperature for 2 h. Sections
were washed three times for 10 min each in PBS-T, then
mounted onto slides. All images were acquired with an
Olympus IX71 inverted microscope equipped with an
Olympus DP72 RGB camera through either a 4 X UPlanFL
N 0.13 na objective, 10X UPlanFI 0.3 na objective, or 40X
LUCPIanFLN 0.60 na objective. Images were acquired
and stitched with the Olympus cellSens software system
and quantified with ImageJ.

Statistical analysis

All statistical analyses were performed in Prism (v.8). All
datasets were tested for a normal distribution using the
D’Agostino-Pearson test, and for outliers using the Rout
test with Q = 1%. All statistical analyses of pooled data
were performed using a two-tailed Student’s t test or
Mann-Whitney tests, and the level of significance was
considered to be p < 0.05. All statistics are provided in
the figure legends and data are presented as group
means and SEMs. For details of results of statistical anal-
yses, see Table 1.

Results

Closed skull impact results in acute mTBI-like
behavior

We used video monitoring to investigate post-mTBI
behavior. Animals were anesthetized with isoflurane and
placed on a custom-made foam platform. The platform
supported the head in a horizontal position, but did not
restrict the head or body (Fig. 1A). The platform and
impactor are shown in Figure 1A. A schematic represen-
tation of the impact site is shown in Figure 1B. Immedi-
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Table 1. Statistics table
Normal
Description Figure distribution Method Significant torF p value
4-m/s latency to right 1D Yes D’Agostino-Pearson and S-W Yes t = 2.530 p = 0.024
4-m/s latency to movement 1E Yes D’Agostino-Pearson and S-W Yes t =6.413 p < 0.0001
4-m/s episodes of movement 1F Yes D’Agostino-Pearson and S-W Yes t = 9.46 p < 0.0001
2-m/s latency to movement 1H Yes D’Agostino-Pearson and S-W No t = 0.309 p = 0.7618
2-m/s episodes of movement 1I Yes D’Agostino-Pearson and S-W No t = 0.7336 p = 0.4753
4-h home cage monitoring 2A No D’Agostino-Pearson and S-W No F = 0.0806 p = 0.781
5-d home cage monitoring 2B No D’Agostino-Pearson and S-W No F = 0.7883 p = 0.3747
24-h open field total dis 2C Yes D’Agostino-Pearson and S-W No t = 1.051 p = 0.311
24-h open field center 2D No D’Agostino-Pearson and S-W No M-W p = 0.2345
24-h open field borders 2E No D’Agostino-Pearson and S-W No M-W p = 0.2786
48-h NOR 2F Yes D’Agostino-Pearson and S-W Yes F = 5.741 p = 0.0235
72-h CatWalk print area RF 2G Yes D’Agostino-Pearson and S-W No t = 0.8259 p = 0.4284
72-h CatWalk print area RH 2G Yes D’Agostino-Pearson and S-W No t = 0.552 p = 0.5897
72-h CatWalk print area LF 2G Yes D’Agostino-Pearson and S-W No t =10.0714 p = 0.9441
72-h CatWalk print area LH 2G Yes D’Agostino-Pearson and S-W No t = 0.3652 p = 0.7204
72-h CatWalk swing duration RF 2H Yes D’Agostino-Pearson and S-W No t = 0.5281 p = 0.5950
72-h CatWalk swing duration RH 2H No D’Agostino-Pearson and S-W Yes M-W p = 0.0379
72-h CatWalk swing duration LF 2H Yes D’Agostino-Pearson and S-W No t =1.228 p = 0.2398
72-h CatWalk swing duration LH 2H Yes S-W only No t = 0.1183 p = 0.9076
72-h CatWalk stride length RF 2T Yes D’Agostino-Pearson and S-W No t = 0.9193 p = 0.3735
72-h CatWalk stride length RH 21 Yes D’Agostino-Pearson and S-W No t = 1.249 p = 0.2321
72-h CatWalk stride length LF 2T Yes D’Agostino-Pearson and S-W No t = 0.7567 p = 0.4618
72-h CatWalk stride length LH 21 Yes D’Agostino-Pearson and S-W No t = 0.7110 p = 0.8666
GFAP quantification 3E Yes D’Agostino-Pearson only No t = 1.295 p = 0.2138
FluroJade quantification 3F Yes D’Agostino-Pearson and S-W No t = 0.8128 p = 0.4282
Prolonged CBF recovery tissue 5B overall Yes D’Agostino-Pearson and S-W
5B 0 min No p > 0.9999
5B 5 min No p > 0.9999
5B 15 min Yes p = 0.0033
5B 30 min Yes p = 0028
5B 45 min Yes p = 0.0001
5B 60 min Yes p =0.0014
5B 75 min No p = 0.2927
5B 90 min No p > 0.9999
5B 105 min No p > 0.9999
5B 120 min No p > 0.9999
Prolonged CBF recovery venous 5C overall Yes D’Agostino-Pearson and S-W No p > 0.9999
5C 0 min No p > 0.9999
5C 5 min Yes p = 0.0272
5C 15 min Yes p = 0.0016
5C 30 min Yes p = 0.0103
5C 45 min Yes p = 0010
5C 60 min Yes p = 0.0302
5C 75 min No p = 0.6456
5C 90 min No p > 0.9999
5C 105 min No p > 0.9999
5C 120 min No p > 0.9999
Multi-day CBF recovery 5F No S-W only
p > 0.9999
p < 0.0001
p = 0.5034
p = 0.4908
p = 0.9819
SD occurance Ure vs Iso 5G Yes D’Agostino-Pearson and S-W No t = 0.00902 p = 0.9929

ately following treatment, animals were placed in the
center of an open field arena and monitored for 10 min.
On average the mTBI animals righted themselves in 97.5
s compared to 20.6 s for the sham-treated animals (¢4, =
253, p = 0.02; sham n = 8 mTBI n = 9; Fig. 1D).
Representative heat maps are shown in Figure 1C to
demonstrate the overall difference between the treatment
groups. In addition to the righting reflex, the mTBI animals
took on average 228.7 s to regain movement versus 39.1
s for the sham animals (t4 = 6.413, p < 0.0001; Fig. 1E).
Following the recovery of movement, the mTBI animals
averaged 4.3 episodes of movement whereas the sham-
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treated animals averaged 32 episodes (f15 = 9.46, p <
0.0001; Fig. 1F). This behavior resembled the acute dis-
orientation symptoms of human mTBI, and led us to ask if
this behavior was dependent on the severity of the im-
pact. In a separate cohort, animals were impacted at 2
m/s instead of 4 m/s with all the other parameters main-
tained. Animals that were impacted at 2 m/s did not
display the initial period of immobility (sham = 15.4 s vs 2
m/s = 14.06 s; t44, = 0.31, p = 0.762; Fig. 1H) and had
similar episodes of movement (sham = 40.2 vs 2 m/s =
51.3; tqq = 0.734, p = 0.475; shamn = 8; 2 m/s impact
n = 8; Fig. 1/). Representative heat maps indicate similar
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patterns movement between groups in the acute behavior
following a 2-m/s impact (Fig. 1G).

A single mTBI does not result in significant deficits
in long-term behavior, gait, or learning and memory

To assess behavior on a longer time scale we used a
home cage photobeam system to monitor animal move-
ment continuously for multiple hours and days. We were
able to confirm our previous open field studies, by show-
ing that the mTBI group had on average 2.5 beam breaks
in the first 5 min compared to 15.2 in the sham treated
(Fig. 2A). The mTBI animals were more active 1 h after the
impact relative to the sham-treated animals, but post hoc
analysis did not show any statistically significantly differ-
ence between the groups (F(; 14 = 0.081, p = 0.781; Fig.
2A; Table 1). Furthermore, the active and sleep cycles
were nearly identical in both treatment groups for five
consecutive days (F 2016y = 0.788, p = 0.375; Fig. 2B;
Table 1). In a separate cohort of animals, we tested for
activity and general anxiety using the open field task 24 h
post-treatment. There was no statistical difference be-
tween the sham or mTBI animals in total distance traveled
(tqq = 1.051, p = 0.311), in the duration spent in either the
center (t44 = 0.704, p = 0.493), or duration in the border
regions (t44 = 0.704, p = 0.493; Fig. 2C-E). To test for
learning and memory we used the novel object recogni-
tion task 48 h post-treatment. Both treatment groups
investigated the novel object significantly more than the
familiar object (F(; 25y = 5.741, p = 0.023) and there was
no statistical difference between treatment groups (F(4 2g
= 0.0001, p = 0.991; Fig. 2F). One common deficit among
mTBI models is the presence of gait abnormalities. To test
for gait abnormalities 72 h post-treatment, we used the
CatWalk automated system. We investigated the footprint
area, swing duration, and stride length (Fig. 2G-/), which
have been previously been shown to have deficits in a
similar mTBI model (Mountney et al., 2017; Neumann
et al., 2009). We were unable to detect any significant
differences between the sham and mTBI animals
(Table 1). In another cohort, we used the contextual fear-
based task as a more sensitive measure for learning and
memory. Animals were conditioned to the tone 24 h post-
mTBI and then tested 24 h post-conditioning for freezing
behavior in a different context. Animals were placed in a
modified cage and given the associated tone with no foot
shock. Both treatment groups had equivalent freezing
during the tone (f14) = 0.095, p = 0.925; Fig. 2G) and the
delay period (t44 = 0.688, p = 0.502; Fig. 2H). Twenty-
four hours later, the animals were placed in the original
context and total freezing was assessed. There was no
statistical difference between the treatment groups in the
total degree of freezing (t14 = 1.523, p = 0.151; Fig. 2I).
Together, these data suggest that the mTBIs do not result
in long-term deficits in mobility, sleep wake cycles, gait, or
learning and memory.

mTBI model does not produce significant tissue
damage or astrocyte activation

Histologic and immunohistochemical analyses were
used to determine whether our mTBI model resulted in
tissue damage and/or astrocyte activation. Previous stud-
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ies have shown pathologic damage 24 h post-mTBI (McA-
teer et al.,, 2016; Tagge et al., 2018). Therefore, we
sacrificed and perfused sham and mTBI animals 24 h
post-treatment. To assess for gross tissue damage, we
used Nissl staining to label the rough endoplasmic retic-
ulum of all cells. We were unable to detect any significant
gross tissue damage directly beneath the impactor (stri-
atal section) or in more caudal sections (hippocampal
sections) located on the perimeter of the impact zone in
either the 2 m/s (sham n = 8; impacted n = 8; Fig. 3A) or
4 m/s (sham n = 8, mTBI n = 8; Fig. 3B) animals. We also
used Prussian Blue staining to assess microbleeds and
TUNEL staining to identify possible activated cell death.
We used three to four sections that were physically sep-
arated (rostral to caudal) by ~1-2 mm to span the entire
brain. Microbleeds were very rare, with only two microb-
leeds in two separate animals observed. No microbleeds
were observed in the other 18 sections from the remaining
six mTBI animals, or from sham-treated animals (Fig. 3C).
Likewise, TUNEL-positive neurons were extremely rare,
with significant cell death being observed in only one of
our mTBI animals (Fig. 3D). To more broadly test for cell
death, we used FluoroJade-C staining in sham and mTBI
(4 m/s) animals. We were unable to find a significant
difference in the FluoroJade fluorescence between sham
and mTBI animals (t4s = 0.812, p = 0.428; Fig. 3E,G;
sham n = 8; mTBI n = 8). However, it is worth noting that
the animal that did show positive TUNEL staining did have
higher fluorescence in the FluoroJade-C stain. Another
common feature of injury is neuroinflammation denoted
by an increase in the expression levels of GFAP in astro-
cytes (Jones and Jarvis, 2017; Mountney et al., 2017). To
assess this in our model we stained for GFAP 24 h post-
mTBl. Representative images are shown in Figure 3F. We
normalized the fluorescence intensity within the medial
corpus collosum to that of the lateral somatosensory
cortex in sham and mTBI animals. Again, we were unable
to detect a difference in GFAP fluorescence (t¢ = 1.295,
p = 0.214; sham n = 8; mTBI n = 8; Fig. 3H). Due to the
lack of histologic evidence of significant injury in the mTBI
(i.e., 4 m/s) animals we did not extensively investigate
damage in the 2-m/s impacted animals.

mTBI impacts initiate SDs

To investigate the presence of SDs in mTBIs, we used
LSCI and electrophysiology to monitor the CBF and the
electrophysiological characteristics of SDs. A skin flap
was generated to allow for LSCI but was placed over the
skull during the impact. The skin flap did not negatively
influence the impact, and the head deflected away from
the impact, similar to impacts observed with the skin
intact.

To monitor for hemodynamic responses associated
with SDs we used LSCI. Following the sham or impact
treatment the animal was immediately placed beneath the
LSCI system within ~3-5 s. In sham-treated animals (n =
11) the CBF remained consistent throughout the cortical
surface during the 5 min of imaging (Fig. 4A,B). However,
animals that received a 4 m/s impact displayed a propa-
gating wave of hypoperfusion that slowly spread through-
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Figure 2. mTBIs do not produce long-term deficits in ambulatory activity, gait, or learning and memory. Ambulatory activity was
assessed with a photobeam home cage monitoring system immediately following the 4-m/s impact for 5 d continuously. Activity was
assessed for 4 h immediately after the treatment in 5-min bins (A). To assess sleep wake cycles, the activity was monitored 24 h before
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continued

treatment and continuously for 6 d in 1-h bins (B). The dashed line indicates the time of treatment (sham vs impact). Open field
behavior was assessed 24 h post-sham or mTBI (4 m/s) treatment to test for overall activity and anxiety. There was no significant
difference in total distance traveled (C), time spent in the center (D), and time spent in the border regions (E). Novel object recognition
was used to test for short-term learning and memory 48 h post-treatment. Animals were placed into the open field arena containing
two objects and allowed to explore the objects for 5 min. Animals were removed and the arena, objects were cleaned, one identical
object and one novel object were placed back into the arena, and the same animals was allowed to explore the objects for another
5 min. The time spent with each object was quantified (F). Using the Noldus CatWalk gait analysis system we quantified the footprint
area (G), swing duration (H), and stride length (/) for each individual foot 72 h post-treatment. Contextual trace fear conditioning was
also used to assess for hippocampal dysfunction. 24 h post-treatment animals were placed within the behavioral box and given a 30-s
tone followed by a 20-s delay and a 0.6-mA foot shock for 2 s. This was repeated five times to learn the association. On day 2, the
animals were put into a modified chamber and given the 30-s tone without the foot shock. Freezing was assessed during the 30-s
tone (J) and the 20-s delay (K). On day 3, the animals were placed into the original context for 8 min. The percentage of the time
freezing during that 8-min trial was quantified (L).

out the cortical surface. Representative images and
corresponding ROIs are shown in Figure 4C,D (mTBI n =
12). The propagating waves of hypoperfusion have long
been associated with SDs in mice (Tschirgi et al., 1957;

lighted in the CBF trace (Fig. 4D). We further tested
whether the slower impacts at 2 m/s produced similar
propagating waves of hypoperfusion that are associated
with SDs. Animals that were impacted at 2 m/s had a

Hansen et al., 1980; Paschen, 1984). The propagating
wave of hypoperfusion (Phase 1) was quickly followed by
a brief increase in CBF (Phase ll) that was then followed
by a further reduction of CBF that resulted in longer term
post-SD oligemia (Phase lll). All of these phases are high-

stable CBF with no indications of a propagating wave (2
m/s n = 4; Fig. 4E,F). Using the LSCI data we were able
to calculate the propagation rate of the SDs by defining
the wave front position over time. The impact induced
SDs on average propagated at 3.5 mm/min (Fig. 4M),

A 2m/
Sham m/s _ 4m/s/
B 4 m/s
Sham mTBI
N 4 m/s/ mTBI
mTBI
CSham
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S FluoroJade g&

g L5 @
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Z <

L > o o

8 I

> £ E
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Figure 3. Impacts at 4 m/s (mTBI) do not produce significant tissue damage or astrocyte activation. Representative Niss| stains
indicating no gross structural damage 24 h post-impact for 2 m/s (A) or 4 m/s (B). Prussian blue stain was used to identify microbleeds
and the tissue was counter stained with NucRed. Three to four sections per animal were stained, and we only identified the two
microbleeds shown in C from two separate mTBI animals. No other microbleeds were present in the sham or the other six mTBI
animals. Representative images for sham-treated animals and the two microbleed sections taken at 4X and 40X magnification
images of the microbleed themselves (C). The TUNEL stain was used to identify cells undergoing programed cell death. We only
identified one mTBI animal that had detectable staining. Representative images are shown for sham-treated animals and the one mTBI
animal that had TUNEL-positive cells shown by the arrow heads (D). Cell death was also assessed using FluoroJade-C. We were
unable to detect a difference in overall fluorescent or individual cell bodies with positive staining. Representative images are shown
(E). Neuroinflammation was assessed by GFAP staining. Representative images are shown (F). Again, we were unable to detect a
difference in the overall fluorescence between the sham or mTBI (4 m/s) animals. Quantified fluorescence was measured by averaging
the pixel intensity of the dorsal motor cortex to the lateral somatosensory cortex for sham and mTBI animals for FluoroJade (G) and
GFAP staining (H). Scale bars = 500 wm (for the overview images) and 50 um (for the increased magnification).
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Figure 4. Impacts associated with mTBI-like behavior produce SD. LSCI was used to assess CBF before and immediately after
treatment. Representative LSCI images from a sham (A), 2 m/s (C), and mTBI (4 m/s; E) animals are shown. Warmer colors indicate
more blood flow and the white boxes indicate the ROIs used to create the time plots. Scale bars = 500 um (in the LSCI images).
Dotted lines indicate the leading edge of the propagation wave. Graphical representations of the CBF from the indicated ROls are
shown for sham (B), 2 m/s (D), and mTBI (F) animals. The two ROIs from the mTBI animals indicate the propagation of the
hemodynamic response. Representative electrophysiological recordings of the extracellular field potential, high-frequency activity,
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and the total power (V2) of the high frequency from a sham (G) and mTBI animal (H). Cumulative data of the propagation rate (I), the
SD extracellular field potential DC shift peak amplitude (J) and duration (K), and the duration of high-frequency suppression (L).
Ketamine (120 mg/kg) was given systemically 30-min before impact and the presence of an SD was assessed using LSCI (M).

which is well within the published range of 2-6 mm/min
across tissue and species (Gorelova and Bures, 1983;
Guedes and Barreto, 1992; Martin et al., 1994; Aitken
et al., 1998; Oliveira-Ferreira et al., 2010; Santos et al.,
2016).

To confirm the presence of a SD we used electrophys-
iological recordings in sham and mTBI animals. Immedi-
ately following an impact, a glass electrode was inserted
through a burr hole located over the visual cortex within 5
s of the impact (burr hole location shown in Fig. 1B). LSCI
was simultaneously used to confirm that the electrode
placement did not generate a SD. We were able to directly
record the extracellular field potential shift and the sup-
pression of high-frequency cortical activity, both of which
are considered to be the gold-standard identifiers of SDs
(mTBI n = 6; Fig. 4H). In sham-treated animals, we did not
detect any shift in extracellular potential or suppression of
high-frequency activity (Fig. 4G). The average peak am-
plitude of the SDs was 12.97 mV (Fig. 4/) with a duration
of 1.06 min (Fig. 4J). These data are consistent with
previously published properties of SDs evoked by other
methods (i.e., KCI, application, or electrical stimulation) in
C57/B6 mice (Takano et al., 2007; von Baumgarten et al.,
2008; Lindquist and Shuttleworth, 2014, 2017; Enger
et al., 2015; Ebine et al., 2016; Chen et al., 2017; Kucharz
and Lauritzen, 2018). To measure the duration of suppres-
sion of the high-frequency activity, we plotted the total
power (V2) of the high-frequency activity (Fig. 4G,H; Dreier
et al., 2017). Recovery of the high frequency was consid-
ered to be the first spike in the total power above back-
ground (Dreier et al., 2017). The impact-induced SD
resulted in an average of 6.88 min of high-frequency
suppression (Fig. 4K).

Overall, we impacted 22 animals for these studies; 12
animals in our LSCI experiments (eight animals for the
reperfusion and four animals for the multi-day recovery)
and 10 animals in our electrophysiological studies. Of the
22 animals, SDs were detected in 18 animals (~82%).
Interestingly, the four animals that did not display a SD
were all in the electrophysiology group. We did not mon-
itor for SDs during the burr hole surgery required for
electrophysiological recordings, and it is possible that a
SD or other damage was introduced before the impact
and impaired the ability to generate an SD with the im-
pact. In the 18 animals that did have a confirmed SD, 16
of the 18 animals (89%) had a propagating SD in both
hemispheres. The remaining two animals had a SD in one
hemisphere only (one animal had a SD in the left hemi-
sphere and the other in the right hemisphere). In these
cases, the hemisphere that had an SD was used for
subsequent analysis.

SD propagation is known to be sensitive to the non-selective
NMDA receptor antagonist ketamine (Hernandéz-Céaceres
et al., 1987; Kaube and Goadsby, 1994; Carlson et al., 2019).
Ketamine was given systemically at least 30 min before
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the impact. Animals that were given saline alone dis-
played an impact-induced SDs in all seven animals (Fig.
4M). However, ketamine reduced the incidence of the
impact-induced SDs (only two out of eight animals had an
SD). These data suggest that the impact-induced SDs
propagate via similar mechanisms to the SDs described in
more severe injuries and in other models (Rashidy-Pour
et al.,, 1995; Sakowitz et al., 2009; Hertle et al., 2012;
Reinhart and Shuttleworth, 2018; Carlson et al., 2019).

Impact-induced SDs produce prolonged deficits in
CBF

CBF responses to SDs are complex, and can be de-
pendent on species and metabolic status before the SD
(for review, see Ayata and Lauritzen, 2015). We used LSCI
to investigate the long-term CBF changes after an impact-
induced SDs. The CBF in sham-treated animals remained
relatively stable throughout the 120-min recording period
(Fig. 5A). Baseline LSCI images were taken before impact
and SDs were confirmed by the propagating wave of
hypoperfusion (Fig. 4E). Images were then acquired every
15 min to monitor CBF recovery. Representative images
are shown in Figure 5A. CBF was reduced ~20-30% at
30 min and did not fully recover to baseline levels until
~90 min post-impact in both venous and tissue regions
(sham n = 8; mTBI n = 8; Fig. 5B,C; Table 1). The venous
blood flow dropped to ~20% of the baseline levels com-
pared to the 30% reduction in the tissue flow, but recov-
ered in a similar time course. The time course of the CBF
recovery shown here is similar to what has been previ-
ously reported from SDs initiated by other means (von
Baumgarten et al., 2008; Piilgaard and Lauritzen, 2009;
Leung et al., 2013) and other closed skull impact models
by Bouley and colleagues (Bouley et al., 2019).

In another cohort of animals, we investigated the sta-
bility of CBF recovery by monitoring the CBF every 24 h
for 3 d. Impact-induced SDs were confirmed immediately
after the mTBI and the degree of oligemia was determined
at 30 min post-mTBI. For these experiments we used
isoflurane as the anesthetic due to the speed of onset and
recovery. Isoflurane is known to reduce the frequency of
SDs (Takagaki et al., 2014; Balanga et al., 2017). However,
we detected a SD following each impact in all four ani-
mals. A representative trace is shown in Figure 5E. Iso-
flurane did not significantly alter the hemodynamic
response (Fig. 5E) or propagation rate of the SDs (Fig. 5G).
However, the CBF at 30 min was significantly lower in the
mTBIl animals compared to the sham-treated animals
(Fla,a0) = 13.38, p < 0.0001; Fig. 5F). Interestingly, the
CBF was slightly lower in the isoflurane-treated animals
relative to the urethane-treated animals at 30 min post-
mTBI (~70% in urethane vs ~50% in isoflurane). In the
mTBI animals the CBF at 24, 48, and 72 h was similar to
pre-mTBI levels (Fig. 5D,F).
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Figure 5. Impact-induced SDs are associated with long-term oligemia. Representative LSCI images of CBF from sham and mTBI
animals (A). Representative ROIs indicate the location of repeated measures of CBF in the tissue. CBF was quantified over the
120-min period and plotted over time for sham and mTBI animals in both tissue (B) and venous (C) regions. Modified cranial windows
were generated to allow for repeated measures of CBF immediately after the impact and for subsequent days. Representative images
before the impact, 30 min post-impact, and subsequent days are shown (D). Representative ROIs indicate where the CBF was
quantified. Animals were anesthetized with isoflurane rather than urethane. Representative trace of the hemodynamic responses that
are associated with the propagating SD in the presence of isoflurane anesthesia (E). CBF was quantified and normalized to pre-impact
baseline. Using LSCI were able to confirm the SD and the peak reduction of CBF and subsequent days following the impact (F). The
propagation rate was also quantified in the presence of isoflurane anesthesia (G). Scale bars = 500 um.
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Discussion

Our studies are the first to directly record the electro-
physiological properties of SDs in a closed skull model of
mTBIs and to correlate the presence of a SD with mTBI-
like behavior. The mTBI-like behavior was not long-lasting
and did not result in significant long-term behavioral or
cognitive deficits. The injury did not produce gross tissue
damage, cell death, or astrocyte activation. The impact-
induced SDs were associated with long-term reductions
in CBF. Interestingly, slower impacts did not result in SDs
and were not associated mTBI-like behavior. Overall our
data suggest that SDs may play a critical role in mTBls.

Our data suggest that immediately following impact, the
mTBI animals took longer to regain movement and had
fewer episodes of movement in a 10-min trial. However,
this reduced mobility is not long-lasting. There were no
significant differences between the movement of sham or
mTBIl animals in the following hours and days. This is
similar to previous studies using closed skull impacts
(Shen et al., 2011). Shen and colleagues showed no dif-
ference in the total distance traveled or time of movement
in the hours following a closed skull weight drop model
(Shen et al., 2011). However, McAteer and colleagues
found that animals that had a single closed skull injury
displayed fewer traveled squares six weeks post-injury
(McAteer et al., 2016). This discrepancy may be due to
species differences (rat vs mouse), but the injuries were
similar. Behavioral and cognitive deficits are common in
more severe penetrating type injuries. However, the be-
havioral and cognitive deficits are subtler in closed skull
injuries. Using a similar closed skull impactor model, Prins
and colleagues found significant deficits the novel object
recognition task 24 h post-injury (Prins et al., 2013). How-
ever, we were unable to detect a deficit in our paradigm.
This may be due to the difference in delay period before
the novel object presentation. Prins and colleagues used
a 24-h delay for their study and ours was only 5 min. The
24-h delay requires memory consolidation and recall.
With a similar mTBI model, Marschner and colleagues
found mTBI animals had a stronger freezing response in
the contextual fear paradigm (Marschner et al., 2019).
Again, we were unable to detect a difference in our model.
However, the timing of the fear-based task was slightly
different between the two studies (3 d vs 24 h for our
study). The exacerbated fear response that they found
was resolved by five weeks post-mTBI. Similar to the
novel object task, the increased delay between testing
periods increases the difficulty of the task. Gait abnormal-
ities are much more common in more severe penetrating
injuries, especially when the motor cortex is involved
(Neumann et al., 2009; Mulherkar et al., 2017; Ouyang
et al., 2017; Pottker et al., 2017; Baker et al., 2019; Kinder
et al., 2019). Using a slightly more aggressive closed skull
model, Mountney and colleagues could detect slight ab-
normalities in gait using the CatWalk analysis system, but
we were unable to detect differences in our model
(Mountney et al., 2017). Overall, mTBIs can have a myriad
of deficits in behavior, cognition, and learning and mem-
ory, but it is clear that the deficits are graded on the
severity of the injury.
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SDs have long been associated with moderate and
severe TBIs in rodents and more recently in humans
(Hermann et al., 1999; Strong et al., 2002; Rogatsky et al.,
2003; Fabricius et al., 2006; Hartings et al., 2008, 2009,
2011; von Baumgarten et al., 2008; Sakowitz et al., 2009;
Leung et al.,, 2013; Sword et al., 2013; Balanca et al.,
2017; Hosseini-Zare et al., 2017; Carlson et al., 2019).
Some rodent models of mTBIs have shown the presence
of SDs. However, prior studies have used more invasive
techniques which often result in significant tissue swelling
and/or bleeding, both of which can cause SDs (Sunami
and Nakamura, 1989; Nilsson et al., 1993; Rogatsky et al.,
2003; Sword et al., 2013). Recent data from Bouley and
colleagues have shown propagating waves of hypoperfu-
sion that are associated with SDs in a closed skull weight
drop model (Bouley et al., 2019). In that study they used a
unilateral weight drop model that consisted of a 50-g
weight being dropped from a height of 15 cm (Bouley
et al., 2019). This means that at the site of impact the tip
was traveling at ~1.72 m/s. This is significantly slower
than our model, but the experimental setup was much
different. In their study the impact was centered over one
hemisphere and it is unclear if the head was restricted.
Our model seems to be less severe in that we did not
detect significant neurodegeneration or seizures. In our
hands, we detected SDs in 18 of the 22 animals that were
impacted (82%). The incidence of SDs in the weight drop
model published by Bouley and colleagues was closer to
60% (Bouley et al., 2019). Nonetheless, in both cases the
presence of SDs was associated with concussion-like
behavior. Bouley and colleagues showed increased neu-
ronal cell death and microbleeds in the injured hemi-
sphere. In our model, we were able to detect a single
microbleed in two of our eight mTBI animals and TUNEL-
positive nuclei in only one of mTBI animals. This is signif-
icantly fewer than what is reported by Bouley and
colleagues. This suggests that our model is less severe
than that of the weight drop model, but somewhat more
efficient in generating SDs. This difference may be due to
the surface area of the injury. Our studies use a larger
5-mm diameter tip that distributes the force over both
hemispheres, whereas Bouley and colleagues used a
2-mm Delrin tip to transmit the weight drop energy to a
single hemisphere. Another difference between the stud-
ies is when the histology was done. Bouley and others
looked for apoptotic cells 48 h post-injury, whereas ours
were done 24 h post-injury.

Our studies indicate that the impact-induced SDs are
sensitive to ketamine inhibition. This demonstrates that
the SDs generated in our model propagate via similar
mechanisms to SDs in more severe injuries when there is
tissue damage and bleeding. This also provides a critical
starting point for the development of pharmacological
interventions that target SDs directly. One caveat within
our experimental design is that the behavioral data were
gathered using isoflurane to allow for rapid recovery and
detection of acute behavioral that may be due to the SD
event itself. Isoflurane is known to reduce the frequency of
SDs (Takagaki et al., 2014; Balancga et al., 2017), and may
confound our behavioral data. However, our extended
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CBF measurements across days did use isoflurane and all
four impacts induced an SD. Furthermore, isoflurane did
not alter the hemodynamic response or propagation rate.
However, isoflurane did affect the peak reduction of CBF
at 30 min post-impact (50% in isoflurane vs 30% in
urethane).

In the original manuscript describing SDs, Leao noted
that these events could be initiated with a light touch to
the cortical surface with a glass rod (Leao, 1944). Ex vivo
and in vitro studies have supported the idea of mechanical
compression and/or stretch of neuronal tissue as one
possible initiator of SDs (Geddes-Klein et al., 2006; Cater
et al., 2007). There is likely a critical volume of brain tissue
that must depolarize in order for SD initiation (Matsura
and Bures, 1971; Tang et al., 2014). In our studies, the
rapid acceleration of the head could result in the com-
pression of the entire cortex against the skull. Our LSCI
data showing that SDs originate near the impact site imply
a focal region of activation sufficient to reach threshold for
SD initiation under the impact site. The direct mechanism
that links cortical compression to neuronal depolarization
is still unresolved. However, the presence of mechanical
transducing ion channels is an intriguing possibility
(Sachs, 2015). Ischemia itself is thought to be a critical
initiator of SDs in different injury models, and is well
supported by in vivo (Hartings et al., 2003; Oliveira-
Ferreira et al., 2010, 2019; von Bornstadt et al., 2015) and
ex vivo (Luhmann and Kral, 1997; Aitken et al., 1998;
Andrew, 2005; Takano et al., 2007) reports. Bouley and
colleagues showed that the presence of a SD was asso-
ciated with increased numbers of microbleeds under-
neath the injury site in their concussion model (Bouley
et al., 2019). The microbleeds could be a potential initiator
of the SDs in that model, although this remains to be
directly tested. In our studies, microbleeds were very rare,
and SDs were usually generated in cortex without detect-
able blood brain barrier disruption.

Our data indicate that the impact-induced SDs are
associated with a prolonged reduction in CBF that re-
cover within 90 min. This recovery remains relatively sta-
ble in the subsequent days. The peak reduction and
recovery phase in our studies are very similar to those
presented by Bouley and colleagues (Bouley et al., 2019).
The link between long-term reduction in CBF (oligemia)
and SDs has been well established in mice. However, the
hemodynamic responses associated with SDs can vary
widely within a given species and especially across spe-
cies. In higher order animals and in humans, SDs most
often trigger a propagating wave of increased CBF (hy-
peremia). However, both hemodynamic response can re-
sult in long-term post-SD oligemia (Hinzman et al., 2014;
Ayata and Lauritzen, 2015). During this period of post-SD
oligemia, there is an uncoupling between the vascular
supply and the neuronal demand (Takano et al., 2007;
Piilgaard and Lauritzen, 2009; Piilgaard et al., 2011; Ayata,
2013; Koide et al., 2013; Hinzman et al., 2014; Ayata and
Lauritzen, 2015; Toth et al., 2016). In the wake of an SD
there is a period of persistent vasoconstriction due to
elevated levels of extracellular K™ and a decrease in nitric
oxide (Ayata and Lauritzen, 2015). Altered CBF has long
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been associated with concussions and can be a useful
readout for long-term recovery (Len and Neary, 2011;
Giza and Hovda, 2014; Keightley et al., 2014; Sours et al.,
2015; Barlow et al., 2017). The use of CBF as a readout for
mTBls has been limited due to the variability between
individuals. Another limitation of using CBF as a diagnos-
tic tool has traditionally been the cost and access to
MRI-based imaging in a time frame that is relevant to the
acute mechanisms described in the present study. How-
ever, advancement of near-infrared spectroscopy (NIRS)
approaches could provide some significant advantages,
and has already shown some promise as a diagnostic tool
for concussions (Urban et al., 2015; Bishop and Neary,
2018; Forcione et al., 2018).

Overall, our data demonstrate the presence of SDs in
mTBIs and suggest that SDs may play a role in
concussion-like behavior. These data provide significant
insight into the cellular and physiologic mechanism that
may underlie concussions.
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