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Simple Summary: Somatic mutations are one of the most important causal factors of cancers. In this
study, we show that certain mutations, when occurring simultaneously, have a stronger biological
effect than their single counterpart. These effects include prognosis and drug sensitivity.

Abstract: Somatic mutations are one of the most important factors in tumorigenesis and are the
focus of most cancer-sequencing efforts. The co-occurrence of multiple mutations in one tumor
has gained increasing attention as a means of identifying cooperating mutations or pathways that
contribute to cancer. Using multi-omics, phenotypical, and clinical data from 29,559 cancer subjects
and 1747 cancer cell lines covering 78 distinct cancer types, we show that co-mutations are associated
with prognosis, drug sensitivity, and disparities in sex, age, and race. Some co-mutation combinations
displayed stronger effects than their corresponding single mutations. For example, co-mutation
TP53:KRAS in pancreatic adenocarcinoma is significantly associated with disease specific survival
(hazard ratio = 2.87, adjusted p-value = 0.0003) and its prognostic predictive power is greater than
either TP53 or KRAS as individually mutated genes. Functional analyses revealed that co-mutations
with higher prognostic values have higher potential impact and cause greater dysregulation of gene
expression. Furthermore, many of the prognostically significant co-mutations caused gains or losses
of binding sequences of RNA binding proteins or micro RNAs with known cancer associations. Thus,
detailed analyses of co-mutations can identify mechanisms that cooperate in tumorigenesis.

Keywords: cancer; mutation; co-mutation; prognosis; drug sensitivity

1. Introduction

Tumors acquire somatic mutations in oncogenes and tumor suppressors that lead
to tumorigenesis [1]. While most studies of somatic mutations focus on the impact of
single mutations, researchers have started to appreciate the cooperative effects induced
by multiple mutations arising simultaneously in one tumor. The event of multiple mu-
tations emerging concurrently is referred to as co-mutation or mutation co-occurrence.
Because genes are the basic genomic unit that bears a more-or-less self-contained function,
researchers usually identify mutated genes and study the co-mutations between two (or
multiple) distinct genes. Many studies have suggested that co-mutation is a core deter-
minant of oncogene-driven cancers. For example, co-mutations have been shown to be
associated with pathogenesis, immune microenvironment, therapeutic vulnerabilities of
cancer, and drug sensitivity in non-small-cell lung cancer (NSCLC) [2]. Lung cancer patients
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with co-mutation of EGFR, TP53, and RB1 have a higher risk of histologic transformation [3].
Co-mutation is also a major determinant of the molecular diversity of KRAS-mutant lung
adenocarcinomas [4]. TET2–SRSF2 co-mutation has a strong association with the chronic
myelomonocytic leukemia phenotype—the larger the TET2–SRSF2 co-mutated clone, the
more prominent the monocytosis [5]. ARID1A:PIK3CA co-mutation in the endometrial
epithelium promotes an invasive phenotype [6].

A number of studies have revealed associations between co-mutations and clinical
outcomes. For example, TP53:KRAS co-mutation in NSCLC was found to confer clinical
benefit to PD-1 inhibitors [7]. CREBBP:STAT6 co-mutation supports the diagnosis of the dif-
fuse variant of follicular lymphoma [8]. NSCLC patients with EGFR:TP53 or EGFR:PIK3CA
co-mutation are more likely to be resistant to the first-generation EGFR tyrosine kinase
inhibitors [9]. In general, co-mutation demonstrates a prognostic value in vulvar squamous
cell carcinoma (VSCC) [10], NSCLC [11], acute myeloid leukemia (AML) [12], and lung
adenocarcinoma (LUAD) [13].

Previous co-mutation studies were generally conducted focusing on individual cancer
types and have not systematically interrogated all combinations of protein-coding genes
and non-coding genes. In the present work, we performed a comprehensive pan-cancer
co-mutation study that integrated multi-omics data from ~30,000 subjects of over 50 cancer
types from diverse cancer consortiums. We set our analysis perspective both at nucleotide
base level and gene level, and extended the co-mutation search scope to the full domain
of protein-coding genes and non-coding genes. Functional associations of co-mutation
instances with cancer prognosis, cis-regulatory elements, and transcription dysregulations
were also thoroughly examined. The results support previous models of oncogene cooper-
ativity and the multi-hit hypothesis, but also identify new types of cooperation between
important genes involved in tumorigenesis.

2. Results
2.1. Overall Single Mutation Description

The three major data sources underlying our study, TCGA, ICGC, and DepMap, were
organized in terms of cancer types, cohorts, and tissue sites. Before we moved on to the
central topic of co-mutation, we first gave the data a comprehensive description from
the perspective of single mutations. For each subject, we counted the number of genes
bearing at least one mutation; the numbers of mutated genes per subject were displayed to
reveal disparity across cancers (Figure 1). Because DNA mismatch repair genes (MLH1,
MLH3, MSH3, MSH6, PMS1, PMS2, and PMS2L3) and POLE are frequently associated with
hypermutation [14], we distinguished subjects bearing mutations in these genes. Several
interesting phenomena came to our attention. First, as expected, cancer types with higher
mutational loads also included more subjects having mutations in DNA mismatch repair
genes or POLE. This observation reiterates the effect of mutations of DNA mismatch repair
genes or POLE on the overall mutational burden. Additionally, evident hypermutation
groups were observed in several cancer types. The most conspicuous hypermutation group
existed in TCGA’s uterine corpus endometrial carcinoma (UCEC) cohort (Figure 1A), which
seemed to be predominated by subjects having both mutated DNA mismatch repair genes
and mutated POLE. A similar hypermutation group can be seen in the counterpart cohort in
ICGC, UCEC-US (Figure 1B). The hypermutation phenomenon is closely related to several
characteristics we observed for co-mutations in the UCEC cohort.
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Figure 1. Number of mutated genes per subject of each cancer cohort. Results are reported for three 
cancer data consortiums separately: (A) The Cancer Genome Atlas (TCGA). (B) International 
Cancer Genome Consortium (ICGC). (C) Cancer Dependency Map (DepMap). Only cohorts with 
sample size ≥ 50 were drawn. Each data-point represents one genome sample (subject or cell line). 
Dot color signifies mutation in a specific category of genes: blue, DNA mismatch repair genes; red, 
gene POLE; black, DNA mismatch repair genes as well as gene POLE; gray, all other genes. 

Certain cancer types showed a distinctive bimodality in the distribution of 
per-subject mutated genes. Using Hartigan’s Dip Test of Unimodality, five TCGA co-

Figure 1. Number of mutated genes per subject of each cancer cohort. Results are reported for three
cancer data consortiums separately: (A) The Cancer Genome Atlas (TCGA). (B) International Cancer
Genome Consortium (ICGC). (C) Cancer Dependency Map (DepMap). Only cohorts with sample
size ≥ 50 were drawn. Each data-point represents one genome sample (subject or cell line). Dot color
signifies mutation in a specific category of genes: blue, DNA mismatch repair genes; red, gene POLE;
black, DNA mismatch repair genes as well as gene POLE; gray, all other genes.
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Certain cancer types showed a distinctive bimodality in the distribution of per-subject
mutated genes. Using Hartigan’s Dip Test of Unimodality, five TCGA cohorts, colon
adenocarcinoma (COAD), acute myeloid leukemia (LAML), pheochromocytoma and para-
ganglioma (PCPG), thyroid carcinoma (THCA), and UCEC were found with significant
multimodality (FDR-adjusted p-value < 0.05). For example, among the 404 patients of
TCGA’s COAD cohort, where 80% of the patients had less than 300 mutated genes, 18% of
patients had more than 700 mutated genes, leaving a visible gap between the groups. The bi-
modality in the mutated gene quantity distribution suggests multiple different mechanisms
are likely to be responsible for cancer formation and development. Somatic mutations may
be the primary tumorigenesis cause amongst patients with a large number of mutated
genes; for patients with a low number of mutated genes other genomic aberrations such as
copy number variation or post transcriptional modification may have a major impact [15].

The three sources of data did not use the same technology to capture mutations.
TCGA used exome sequencing, ICGC used whole genome sequencing, DepMap used
whole genome sequencing but released only exonic mutations as of this writing. The
numbers of mutations generated from each consortium were rather different. The average
numbers of mutations per subject/cell line were 276, 170, and 507 for TCGA, ICGC, and
DepMap, respectively. Noticeably, DepMap had a much greater number of mutations per
sample than either TCGA or ICGC, which may be a reflection of the distinct nature of
cell lines. Tumor samples are usually the combination of tumor and normal cells, while
the tumor cell lines are a pure clone originating from a single origin tumor cell. Thus,
mutations are easier to detect in cell lines than in tumors. In addition, cell lines have been
selected for growth in culture, which could select for additional mutations. In DepMap,
the tissue site with the greatest number of mutated genes is colon, where a bimodality
distribution was noticeable as in the colon cancer cohorts in TCGA and ICGC (Figure 1C).

We calculated the mutation frequency for each gene within each cancer type, and
highlighted the top 20 mutated genes according to the average mutation frequency across all
cancer cohorts (Supplementary Figure S1). In TCGA, the 20 most frequently mutated genes
are protein-coding genes. TP53 was the most conspicuous gene, with an average mutation
frequency of 37.80%, followed by TTN (33.32%) and MUC16 (19.95%). Gene length can
positively affect the mutation rate within a gene. Thus, we labeled the gene length and its
rank among all human genes. A few of these prioritized genes may have stood out partly
due to a large gene length. For example, LRP1B ranked number eight in overall mutation
frequency (12.88%) and number nine in gene length; CSMD1 ranked number 18 in overall
all mutation frequency (9.47%) and number six in gene length. Eighteen subjects in TCGA
had mutations in all the prioritized genes (Supplementary Figure S1A).

The 20 most frequently mutated genes in ICGC presented a similar picture as in
TCGA (Supplementary Figure S1B). TP53 again was crowned with the greatest average
mutation frequency at 29.04%. One noticeable difference between ICGC and TCGA is
TCGC included two non-coding genes in its priority list: TTN-AS1 (22.06%) and FLG-AS1
(10.81%). Both non-coding RNAs are the antisense of their respective sense genes. This
could be a byproduct of ICGC’s unique vehicle of whole genome sequencing platform,
as compared to TCGA’s exome sequencing. Ten subjects in ICGC had mutations in all
the prioritized genes (Supplementary Figure S1B). For DepMap, the 20 most frequently
mutated genes were all protein-coding genes. TTN had the greatest average mutation
frequency at 65.31%, followed by TP53 (61.82%) MUC16 (44.88%). Seven cell lines had
mutations in all the prioritized genes (Supplementary Figure S1C).

2.2. Overall Co-Mutation Description

As expounded in Methods, we sought to identify two levels of co-mutation pairs:
co-mutated mutation pairs and co-mutated gene pairs. For the three consortiums (TCGA,
ICGC, CCLE) we identified 30,841, 563,168, 1,286,266 co-mutations at gene level, respec-
tively (Figure 2A). The large difference in the numbers of co-mutation identified among
the three consortiums may reflect the difference in the total number of subjects and meth-
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ods related to sequencing and mutation calling. The most frequent genes appearing in
co-mutation pairs were identified (Figure 2B). For TCGA, the top genes were known can-
cer genes such as TTN, MUC15, and PTEN. For ICGC, the top gene was the non-coding
gene TTN-AS1, followed by MUC4 and NBPF20. For DepMap, the top genes were TTN,
MUC16 and SYNE1. Compared with the gene-level findings, co-mutations at position level
have much lower frequencies, and accordingly, we identified 0, 17, 63 co-mutations for
TCGA, ICGC, and DepMap, respectively (Figure 2C). All of the position level co-mutations
with frequency ≥ 10% were contributed by ICGC’s thyroid carcinoma China (THCA-CN)
and DepMap’s colon cohorts. The complete list of co-mutation pairs can be found in
Supplementary Tables S1 and S2 for the gene level and the position level, respectively.
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Figure 2. Overall co-mutation description. (A) Amounts of co-mutation gene pairs identified
from each cohort of three separate cancer consortiums. TCGA, The Cancer Genome Atlas. ICGC,
International Cancer Genome Consortium. DepMap, Cancer Dependency Map. As indicated in the
legend, three types of co-mutation pairs were distinguished: coding vs. coding, coding vs. non-
coding, and non-coding vs. non-coding. (B) Top ten genes most frequently appearing in co-mutation
pairs. (C) A total of 80 co-mutation position pairs were discovered, and they were indicated as the
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colored cells in the triangle heatmap identified by the row axis and column axis. Color scale is
proportional to the frequency of a co-mutation pair. Red, originating from ICGC’s THCA-CN cohort;
blue, originating from DepMap’s Colon cohort. Square, inter-chromosomal co-mutations; triangle,
intra-chromosomal co-mutations. All genomic positions in panel C are based on GRCh37 human
reference genome. (D) The top 30 co-mutation gene pairs commonly shared across TCGA/ICGC
cohorts. Co-mutation pairs involving a non-coding genes were distinguished in red font. (E) The top
30 co-mutation gene pairs commonly shared across DepMap cell lines.

Next, we examined co-mutation across multiple cancer types by computing the most
commonly shared co-mutations. Because TCGA and ICGC were both based on cancer
subjects and they shared a large portion of cancer types, these two data sources were
combined into one round of analysis. The top 30 co-mutation gene pairs commonly shared
across TCGA/ICGC cohorts are depicted in Figure 2D. Three co-mutations were intra-
chromosome, and 27 were inter-chromosome. The top intra-chromosome co-mutation
was TTN:LRP1B, which occurred in 16 of 39 cancer types. For inter-chromosome co-
mutations, TP53:MUC16 took the lead, which occurred in 25 of 39 cancer types. All
of the top 30 commonly shared DepMap mutations are inter-chromosome co-mutations
(Figure 2E), where TP53:RYR1 stood out by occurring in 20 of 26 tissue types.

2.3. Co-Mutation Disparity with Age, Sex, and Race

Regression analyses were conducted to determine if co-mutations have associations
with age, sex, and race (Supplementary Table S3). For age, 14,896 significant co-mutation
associations were identified. Mutations are the natural products of aging, as evidenced
by the fact that healthy senior subjects tend to accumulate more mutations than young
controls [16]. An intuitive expectation might be that co-mutations in cancer patients are pos-
itively correlated with age. However, the association results between age and co-mutation
status illustrated a rather striking image (Figure 3A). The majority of the significant associ-
ations were located in the UCEC cohorts of TCGA and ICGC. The association directions
were very much cancer dependent, with UCEC showing predominant negative associations
(TCGA UCEC 99.99% negative, ICGC UCEC 99.97% negative). Other cancer types had a
few sporadic results with associations from both directions. Here, we demonstrate the age
association with the co-mutation TP53:IDH1 in TCGA’s low grade glioma (LGG) which had
an adjusted p-value of 4.07 × 10−9 (Figure 3B). The subjects with wildtypes of co-mutation
TP53:IDH1 mostly had an older age than subjects with co-mutation TP53:IDH1. The same
trend held for both TP53 and IDH1 when we examined the mutation in only one gene.

For sex, we found significant associations for 6600 co-mutation gene pairs, most
of which arose in the SKCM cohorts (Figure 3C). All significant co-mutations in SKCM
showed a positive association in both TCGA and ICGC regardless of statistical significance,
indicating males generally have a greater amount of co-mutation instances than females.
If we ignore the statistical significance and examine the direction of associations for all
co-mutations in skin-related cancers, we found that 98.9% of the 10,584 co-mutations in
TCGA’s SKCM cohort had a positive association with sex; 99.1% of the 13,943 co-mutations
in ICGC’s SKCM-US cohort had a positive association with sex; 98.3% of the 16,799 co-
mutations in melanoma Australia cohort (MELA-AU); 81.1% of the 4160 co-mutations in
skin adenocarcinoma Brazil cohort (SKCA-BR) had a positive association with sex. These
results suggest strong sex disparity for co-mutation and single mutation for skin cancer
in general. Interestingly, significant associations between co-mutation and sex found in
other cancer types (12 from ICGC’s STAD-US, LUSC-KR, and 2 from TCGA’s STAD, KIRC)
indicated an opposite association trend, i.e., females having more co-mutations than males.
Using the co-mutation LRP1B:RYR1 as an example, the wildtype group consisted entirely
of males, and the mutant group consisted of 16.67% female. The deciding factor was the
LRP1B gene with LRP1B mutant group contained 30.99% female and ZNF831 wildtype
group contained no female (Figure 3D). A few previous studies [17,18] have shown the
gender difference, with males showing higher mutations than females, as well as worse
survival in male patients. They suggest that female melanoma patients have a statistically
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significantly higher frequency of tumor-associated, antigen-specific CD4+ T-cells than their
male counterparts. This may lead to a more robust anti-tumor immune response in female
patients that eliminates cancer cells even when they only have a small number of mutations
and they cannot accumulate high mutations. As a result, female patients may have fewer
mutations on average and better survival.

Cancers 2022, 14, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Association between co-mutation gene pairs and three phenotypic variables: (A) associa-
tion with age; (C) association with sex; (E) association with race. Each data-point in (A,C,E) repre-
sents the regressed coefficient of one co-mutation with respect to a phenotypic variable. Only sta-
tistically significant co-mutations were plotted. The color of the dot represents the type of the 
co-mutation (coding:coding, coding:non-coding, and non-coding:non-coding). (B) co-mutation pair 
TP53:IDH1 demonstrated significant association with age in TCGA’s LGG cohort. (D) co-mutation 
pair LR1B:ZNF831 demonstrated significant association with sex in TCGA’s SKCM cohort. (F) 
co-mutation pair TP53:ARID1A demonstrated significant association with race in TCGA’s BLCA 
cohort. (G) Composition of co-mutation pairs in terms of significant associations for age, sex, and 
race relative to single-mutation power. (H) Mutational burden in TCGA’s UCEC cohort by age 
group and race. (I,J) Scatter plots of mutational burden vs. age in TCGA’s UCEC cohort for Cau-
casian and Black. Pearson correlation coefficients and p-values were labeled on the scatter plots. 

For sex, we found significant associations for 6600 co-mutation gene pairs, most of 
which arose in the SKCM cohorts (Figure 3C). All significant co-mutations in SKCM 
showed a positive association in both TCGA and ICGC regardless of statistical signifi-
cance, indicating males generally have a greater amount of co-mutation instances than 
females. If we ignore the statistical significance and examine the direction of associations 
for all co-mutations in skin-related cancers, we found that 98.9% of the 10,584 
co-mutations in TCGA’s SKCM cohort had a positive association with sex; 99.1% of the 
13,943 co-mutations in ICGC’s SKCM-US cohort had a positive association with sex; 
98.3% of the 16,799 co-mutations in melanoma Australia cohort (MELA-AU); 81.1% of the 
4160 co-mutations in skin adenocarcinoma Brazil cohort (SKCA-BR) had a positive asso-
ciation with sex. These results suggest strong sex disparity for co-mutation and single 
mutation for skin cancer in general. Interestingly, significant associations between 
co-mutation and sex found in other cancer types (12 from ICGC’s STAD-US, LUSC-KR, 
and 2 from TCGA’s STAD, KIRC) indicated an opposite association trend, i.e., females 
having more co-mutations than males. Using the co-mutation LRP1B:RYR1 as an exam-

Figure 3. Association between co-mutation gene pairs and three phenotypic variables: (A) associ-
ation with age; (C) association with sex; (E) association with race. Each data-point in (A,C,E) rep-
resents the regressed coefficient of one co-mutation with respect to a phenotypic variable. Only
statistically significant co-mutations were plotted. The color of the dot represents the type of the
co-mutation (coding:coding, coding:non-coding, and non-coding:non-coding). (B) co-mutation pair
TP53:IDH1 demonstrated significant association with age in TCGA’s LGG cohort. (D) co-mutation
pair LR1B:ZNF831 demonstrated significant association with sex in TCGA’s SKCM cohort. (F) co-
mutation pair TP53:ARID1A demonstrated significant association with race in TCGA’s BLCA cohort.
(G) Composition of co-mutation pairs in terms of significant associations for age, sex, and race relative
to single-mutation power. (H) Mutational burden in TCGA’s UCEC cohort by age group and race.
(I,J) Scatter plots of mutational burden vs. age in TCGA’s UCEC cohort for Caucasian and Black.
Pearson correlation coefficients and p-values were labeled on the scatter plots.

Finally, for race, 27,726 significant associations were detected, with a majority found
in TCGA’s UCEC and SKCM cohorts (Figure 3E). We demonstrate the race disparity with
the co-mutation TP53:ARID1A from TCGA’s BLCA cohort as an example. This co-mutation
had a 13.19% frequency in Caucasian, 4.35% in Black, and 0.00% in Asian (Figure 3F). For
Asian subjects, TP53 had a frequency of 20.45% and ARID1A had a frequency of 9.09%. Yet,
the two mutant groups did not overlap on a single subject. Furthermore, of the significant
associations for age, sex, and race, 52.5%, 41.3%, and 5.0%, respectively, had stronger effects
for co-mutation than their corresponding single mutations (Figure 3G).
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The above results suggest that age, sex, and race play significant roles in co-mutation
and possibly single mutation as well. TCGA’s UCEC cohort is a unique example. Dividing
UCEC subjects into age and race groups, younger subjects tend to have higher mutational
burdens (Figure 3H). The negative correlation between mutational burden and age is
marginally significant for Caucasian (Figure 3I), significant for Black (Figure 3J) and not
significant for Asian, which may be due to limited sample size.

2.4. Survival Analysis

At position level, we identified 17 co-mutations from ICGC data and none from TCGA
data with frequency ≥ 10%. All 17 position-level co-mutations came from ICGC’s THCA-
CN cohort, where no events were recorded at the time of data collection. Thus we were
unable to conduct any survival analysis at position level. At gene level, after multiple-test
correction, eight co-mutations were found to be significantly associated with survival
(adjusted p-value < 0.05, Figure 4A). Five of the eight were from TCGA and three were
from ICGC. The most significant was the co-mutation TP53:KRAS in ICGC’s pancreatic
cancer cohort (PAAD-US) (HR = 2.87, 95% CI 1.71–4.84). The second most significant
co-mutation, TP53:TTN-AS1, involves a non-coding gene, and it was mined from ICGC’s
ovarian cancer Australia cohort (OV-AU) (HR = 2.16, 95% CI 1.22–3.85). The co-mutation
TP53:KRAS in TCGA’s PAAD cohort also achieved a significant association (HR = 1.91,
95% CI 1.21–3.05), ranked in the sixth place overall by adjusted p-value. To demonstrate
that some co-mutations can have a better prognosis value than their corresponding single
mutations, we conducted single mutation survival analyses, where the subjects were
divided based on mutation status of a single gene. Of the eight significant co-mutations,
three had a more significant p-value than both of their corresponding single mutations.
These three included TP53:ATRX in TCGA’s LGG cohort, TP53:KRAS in ICGC’s PAAD
cohort, and KMT2D:BCL2 in ICGC’s German malignant lymphoma cohort (MALY-DE).

Furthermore, 14,440 co-mutations were found to be marginally significant
(0.05 < adjusted p-value < 0.1) (Supplementary Table S4, Figure 4B). Of the 14,440 marginally
significant co-mutations, 87 were from ICGC, including 82 from the SKCA-BR. Of the
14,353 marginally significant co-mutations from TCGA, only one (TP53:DNAH5, HR = 2.00,
95% CI 1.26–3.17) was from the head and neck squamous cell carcinoma (HNSC) cohort,
and all the rest came from UCEC. Similar to the sex disparity of co-mutation association
observed earlier, the direction of survival prediction was remarkably cancer dependent. In
SKCA-BR cohort, all 82 co-mutations had HR greater than one, indicating better prognosis
for the wildtype groups. In TCGA’s UCEC cohort, of the 14,352 marginally significant
co-mutations, 14,350 (99.9%) had HR less than one, indicating better prognosis for the
mutant groups.

When conducting the Cox proportional hazard regression model, there is a scenario
that either the mutant or the wildtype group did not have any event. As explained in the
Methods section, we termed this group of co-mutation as significant due to imbalanced
events. A total of 246 such co-mutations were identified, 226 were from TCGA’s UCEC
cohort (Supplementary Table S5). All of these 246 co-mutations favored better prognosis,
meaning that the co-mutation mutant groups did not report any death event, and the
wildtype group had at least 10 death events. To demonstrate whether co-mutations can
provide a better prognosis than single mutations, we counted the survival events within
single-gene-mutant groups. If single-gene-mutant groups for both constituent genes of the
pair had non-zero death events, we concluded that the co-mutation provided additional
prognostic value than both corresponding single mutations. Of the 246 co-mutations,
216 had improved prognostic value compared to single mutations (Figure 4C). In other
words, if we had divided the subjects into mutant and wildtype groups based on single
mutations, the scenarios of imbalanced event distribution would not have occurred. This
demonstrated that additional prognostic power was offered by the co-mutation gene pair
as compared to the corresponding single gene mutations. Kaplan–Meier curves for four
example co-mutations from these 246 are displayed in Figure 4D. Because no event occurred
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for the mutant group, the mutant probability trends came out as flat lines. Since sex
disparity in co-mutation frequency was demonstrated earlier, we also conducted survival
analysis based on sex. TCGA’s glioblastoma (GBM) cohort had the most significant result
(HR:1.44), but it did not pass multiple test correction.
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of eight prognostic co-mutation gene pairs as inferred from the Cox proportional hazard regression
model. Unadjusted p-values for the co-mutation analysis and the two single-gene analyses, all
using the Cox proportional hazard regression model, were labelled in each Kaplan–Meier plot. A
p-values in red font highlights the scenario where the co-mutation p-value was more significant
than the respective single-gene analysis p-values. (B) Directional analysis of marginally significant
co-mutations (0.05 < adjusted p-value < 0.1). In ICGC SKCA-BR cohort, all 82 marginally significant
co-mutations had an HR great than one. In TCGA’s UCEC cohort, 14,350 of 14,352 marginally
significant co-mutations had an HR less than one. (C) Composition of prognostic co-mutation pairs in
terms of improvement of prognosis power relative to single-mutation power. (D) Four representative
prognostic co-mutations ascertained due to imbalanced events. All death events occurred in the
wildtype groups.

2.5. Functional Analysis

Survival association may be an indication of functional variants. The eight prognos-
tic co-mutations with adjusted p-value < 0.05 and the 254 prognostic co-mutations with
empirical significance due to imbalanced events involved 144 distinct genes altogether.
Using the mutations in these 144 genes, we conducted somatic binding sequence analysis
to determine if these mutations caused any alteration in TF, RBP, miRNA seed, and miRNA-
matching 3′-UTR binding sequences. The analyses revealed 13,192 gains and 12,969 losses
in RBP binding sequences (Figure 5A, Supplementary Table S6) and 5830 alterations in
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miRNA-matching 3′-UTR binding sequences (Supplementary Table S7). In total, we found
mutations of 131 genes resided in RBP binding sequences, and mutations of 121 genes
resided in miRNA-matching 3′-UTR binding sequences. For example, TP53, one gene
frequently appearing in co-mutation pairs, had a mutation (C→T) at chromosome 17 po-
sition 7,676,273 (GRCh38 coordinate) in TCGA’s rectum adenocarcinoma cohort (READ).
This mutation caused losses of binding sequences for RBPs SRSF1 and SRSF2, but also
rendered gains of binding sequences for two RBPs RBMX and SRSF3. The SRSF gene
family encodes for the serine and arginine rich splicing factors. Genes of this family have
been frequently associated with cancers [19–21]. RBMX is a chromosome-x-linked RNA
binding motif protein, which has also been associated with bladder cancer [22] and kidney
cancer [23]. A good example for altered miRNA-matching 3′-UTR binding sequences is
the TP53 mutation (C→T) at chromosome 17 position 7,673,780, which altered the binding
sequence to miR-150-5p in TCGA’s LGG cohort. The miRNA miR-150-5p has been found to
suppress tumor progression by targeting VEGFA in colon cancer [24]. This altered binding
sequence can potentially disrupt the normal regulation between TP53 and miR-150-5p.
From these two example mutations in TP53, we show the intricate consequences of muta-
tions. The combinatorial effect arising from concurrent mutations will further complicate
the disruption of binding sequences.

We also conducted several functional predictive analyses using eight established
prediction algorithms. A total of 30,600 associations were obtained after conducting the
Cox proportional hazard regression model for TCGA. Based on the p-value out of the
Cox model analysis, all associations were sorted in ascending order. This paper extracts
the smallest, medium and largest 1000 associations as top, medium and bottom groups,
respectively. The three groups represented co-mutations at the top, medium and bottom
level, respectively. The median impact scores for these three groups were plotted (Figure 5B).
All eight mutation impact prediction scores produced consistent results, co-mutations that
were more significantly associated with survival tend to have stronger impact scores.

In addition to the theoretical prediction analyses, we also conducted empirical data
based impact analysis. We conducted differential gene expression analysis between co-
mutation mutant and wildtype groups. Across the bottom, medium, and top survival
association groups, we compared the numbers of differentially expressed genes (adjusted
p-value < 0.05). As demonstrated in Figure 5C, for co-mutations, the number of differen-
tially expressed genes increased with the survival significance level.

Furthermore, we computed co-mutation’s association with drug sensitivity using data
from DepMap consortium. We tested 23,486 co-mutations and sensitivity from 4686 drugs.
Overall, we detected 72,639,066 significant associations (adjusted p-value < 0.05) (Figure 5D,
Supplementary Table S8). The majority of the co-mutations of significant drug sensitivity
were contributed by the colon cancer cell lines. The three co-mutations most frequently
involved in significant drug sensitivity associations were TP53:TNN, MUC16:TP53, and
MUC16:TNN which had 35,621, 33,012, and 28,871 significant drug sensitivity associations,
respectively (Figure 5E).

Moreover, we used the co-mutation TP53:KRAS as an example to prove that a co-
mutation may provide additional information than the single mutations entailed therein.
This co-mutation was found to be significantly associated with survival in both PAAD
cohorts in TCGA and ICGC. Drug sensitivity analysis found 4684 significant associations
for co-mutation TP53:KRAS, of which 83 had co-mutation p-values more significant than
the corresponding single mutations’ p-values (Figure 5F).
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terations in RBP binding sequences were attributed to the prognostic concurrent mutations (significant
co-mutations resulting from the survival analyses). Using ≥1% as the threshold, we further filtered
6 gains (red) and 965 losses (blue) of RBP binding sequences to plot. The ends of lines in the middle
circle represent the position of mutation and its affected RBP. The green bars in the inner ring rep-
resent the frequency of the mutation. (B) Average mutation impact scores of three prognostic-level
co-mutation groups. Mutation impact scores were predicted by eight algorithms that were specified in
the legend. (C) Amounts of significantly differentially expressed genes between the mutant subjects
and the wildtype subjects, as determined by the co-mutation status. Like in (B), three prognostic-level
co-mutation groups were analyzed separately and compared between each other. (D) A donut plot to
show the (log2-scaled) numbers of significant associations between co-mutation and drug sensitivity.
(E) The top three co-mutations with the most significant drug sensitivity associations. (F) Compo-
sition of drug-sensitivity associations for co-mutation pair TP53:KRAS in terms of improvement of
co-mutation significance over the single-mutation significance.
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2.6. Comparisons with Clinical Cancer Gene Panels

Currently, a majority of hospitals test cancer patient biopsy with an established cancer
gene panel to guide the treatment strategy. The four panels, namely, Agilent SureSelect,
University of California San Francisco UCSF500, FoundationOne CDx, and Ashion Genomic
Enabled Medicine, contained a total of 898 distinct cancer genes. We compared these four
panels with our survival significant co-mutation genes. Ignoring marginally significant
prognostic co-mutations, we considered the eight rigorously significant co-mutations
and the 246 significant co-mutation due to imbalanced events, which involved a total
of 144 genes. An intersection examination found that there is a large disagreement among
the cancer panels (Supplementary Figure S2). There are 72 common genes across the four
cancer panels. Of the 144 co-mutation genes, 38 are covered by the four cancer panels,
106 are not covered in any of the four panels. Our analysis results have shown that many
of these 144 co-mutation genes have potential functional impact and prognostic value.
Adding these co-mutation genes to the cancer panel may be beneficial to cancer patients
because they help to provide a more accurate description of impactable mutations, and
offer potential alternative treatment plans.

3. Discussion

Accumulation of somatic mutations, especially driver mutations, throughout life can
lead to tumorigenesis. While the majority of the somatic mutation studies have been focused
on single mutations, gradually, the importance of co-mutations has been established.
Utilizing 29,559 cancer subjects and 1747 cancer cell lines covering 78 distinct cancer types,
we conducted the most comprehensive co-mutation study to date, uncovering several novel
co-mutation related findings. The mutation data from the three consortiums provided an
excellent overview of the landscape of co-mutations in cancer. The mutation spectrums can
be different among the three consortiums due to the nature of the sample, sequencing type,
and mutation calling method. The most noticeable difference is the number of mutations
detected, which is much higher for DepMap. We speculate that this is because cell lines
were cultured from a single cell of tumor which allows for easier identification of mutations.
Even with the difference, some patterns were blatantly visible across all three consortiums.
For example, the bimodality of mutated genes for colon cancer can be seen across all
three consortiums.

One of the interesting findings is related to the sex disparity of co-mutation in skin
cancers. The sex disparity of single mutation for skin cancer has been discussed by a
previous study [17], in which the authors also demonstrated sex disparity in TCGA’s SKCM
cohort. The author mentioned that one of the limitations of the TCGA data is the exome
sequencing which only allowed the detection of sex disparity in exome regions. In our
analysis, ICGC’s MELA-AU and SKCA-BR cohorts were with whole genome sequencing
and also displayed a strong disparity favoring more co-mutations for males. Our results
reinforced the finding of single mutation sex disparity in skin cancer and demonstrated
that such disparity can be expanded to co-mutations.

One of the major goals of our study is to show that co-mutations provide additional
information compared to their corresponding single mutations. The advantage of co-
mutation was primarily demonstrated through our survival analysis, in which we identified
eight co-mutation that were significantly associated with survival. Additionally, three of
the eight co-mutations provided better prognostic prediction than their corresponding
single mutations. The same concept was then again demonstrated in 216 of 246 significant
co-mutations that did not have events in the mutant groups. More strikingly, our results
uncover cancer dependent survival association directionality. For ICGC’s SKCA-BR cohort,
all 82 marginally significant co-mutations had HR greater than one, suggesting better
prognosis for the wildtype groups. In contrast, TCGA’s UCEC cohort had 14,352 marginally
significant co-mutations, and 99.9% had HR smaller than one, indicating poor prognosis
for the wildtype groups. The phenomenon of higher mutational burden is beneficial
for survival has been observed in metastatic melanoma [17] and patients with higher



Cancers 2022, 14, 415 13 of 18

mutational burden responded better in a trial of Ipilimumab [25]. However, the same
phenomenon has not been reported in uterine cancer. The survival association for TCGA
UCEC’s mutational burden was marginally significant (HR: 0.9998, 95% CI (0.9997–1),
p-value = 0.05). The direction of HR indicates higher mutational burden is better for
survival. This may suggest a similar mechanism between melanoma and uterine cancer.

Certain mutations when occurring simultaneously can produce stronger tumorige-
nesis or protective effect, which can translate to better prognostic prediction. In certain
cancers, the directions of co-mutation survival are remarkably consistent, which suggests
cancer dependent mutation mechanisms. From our analysis, skin cancer and uterine en-
dometrial cancers frequently showed up as cancer types with extreme results. Our analysis
demonstrated that the uterine endometrial cancer subject’s mutational burden is negatively
correlated with age. This is consistent with uterine cancer’s etiology which can be classified
into two categories by age: (1) for younger pre-menstrual women, endometrial cancer
usually occurs with excessive endometrial growth, and the secretion of excess estrogen
cannot be balanced with progesterone; (2) for older post-menstrual women, cancers are
not caused by the high level of estrogen secretion [26]. We speculate that this may be due
to the hypermutated subjects within these cancer types. Additionally, these co-mutations
may be representing overall cancer specific mechanisms because of the consistencies of
observation for all co-mutations in these cancer types.

After determining co-mutation’s prognostic value, we examined the potential func-
tional impact of co-mutations theoretically and empirically. Theoretically, we used eight
mutational impact prediction tools to predict co-mutation’s overall impact. This anal-
ysis showed that co-mutations with more significant survival associations had higher
impact predictions, suggesting the survival associations have potentially resulted from
the functional impacts. Empirically, we examined co-mutation-related gene expression
dysregulation and drug sensitivity alteration. The importance of non-coding genes has been
increasingly acknowledged. For example, a recent study found that the overall prognostic
power increases with the addition of non-coding gene expression [27]. Our study focused
on protein-coding genes mostly due to the limitation of data. However, a small percent-
age of relevant coding:non-coding and non-coding:non-coding co-mutations were also
detected. For example, non-coding RNA TNN-AS1 was detected in two co-mutations that
were significantly associated with survival. With additional whole genome sequence data
release in the future, we expect more impactful non-coding co-mutations can be identified.

From the clinical aspect, we showed that current cancer gene panels disagree and are
missing many co-mutation genes we have discovered in this study. While we encourage
the addition of the co-mutation genes into the cancer panels, we also acknowledge that
whether each co-mutation is actionable requires further mechanistic study.

The results from our co-mutation analyses also reflect the concept of epistasis. Epis-
tasis describes any relationship of non-additive interaction between two or more genes
in their combined effects on a phenotype. Epistasis is only defined in the context of ge-
netic variation at multiple loci. In tumors, random mutations are sequentially selected if
they confer a fitness advantage over the existing genomic landscape. Co-mutations with
positive epistasis result in a stronger fitness than the additive effects of the individual
mutations. Consequently, such mutations are more likely to occur together within the same
tumor. On the contrary, negative epistasis indicates that co-mutation has weak fitness than
individual effect.

4. Materials and Methods
4.1. Data Acquisition

Somatic mutation data and gene expression data (RNA-Seq FPKM) of 10,147 TCGA
subjects were downloaded from the Genomic Data Commons. We used TCGA Pan-Cancer
Clinical Data Resource [28] to acquire disease specific survival information. ICGC mutation
and clinical data of 19,412 subjects were downloaded from ICGC data portal. Mutation
and gene expression of 1747 cancer cell lines were downloaded from DepMap, previ-
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ously known as the Cancer Cell Line Encyclopedia (CCLE). The drug sensitivity data
of 4686 drugs were also downloaded from DepMap. Some phenotypical variables were
available and downloaded (TCGA: age, sex, and race; ICGC: age and sex). TCGA is a
consortium that originated in the US, all subjects were recruited in US. ICGC in an inter-
national consortium, it contains 57 cancer types from 81 cohorts. Some cohorts share the
same cancer type. There may be a small portion of overlapping data between the ICGC and
TCGA. Because we performed separate analyses of ICGC and TCGA, we did not attempt
to identify the overlapping subjects. The numerous subjects or cell lines were grouped by
cancer type (TCGA), cohort (ICGC), or tissue site (DepMap), and we excluded any dataset
with sample size ≤ 50.

4.2. Mutation Annotation

All types of mutations, including single-nucleotide substitutions, insertions, and dele-
tions, were covered in our analysis. We used ANNOVAR [29] to characterize regional
and functional categories for each genomic mutation that was located to an accurate chro-
mosome coordinate position. Gene types (protein-coding and non-coding) were derived
from the latest GENCODE gene transfer format (GTF) file v34. As a common practice,
we dropped the synonymous mutations from the protein-coding mutation set because
of their negligible influence on protein sequences. When a quantity of gene length was
necessary for analysis, we calculated the distance between the transcription start site and
the transcription end site. In describing the circumstances of single mutations (as opposed
to co-mutations), we defined a mutation frequency with respect to a cohort as the fraction of
subjects carrying the mutation in question. At times, we may talk about mutation frequency
at the gene level, in which context we referred to the fraction of subjects having at least one
mutation in the concerned gene.

4.3. Co-Mutation Definition

Co-mutation was classified at two different levels: gene level and position level. At
position level, the exact genomic position displaying a mutation was considered a unique
entity and two positions bearing mutations in the same genome (same subject) formed a co-
mutation pair. At gene level, two genes were deemed as a co-mutation pair as long as any
cross-gene concurrent mutations appeared; the actual number of cross-gene co-mutation
instances were not taken into account. For example, if one sample harbors two mutations in
gene A and three mutations in gene B, we consider only one co-mutation pair (Gene A:Gene
B) at the gene level, but six (i.e., 2 × 3) co-mutation pairs at position level. A co-mutation
pair was supported by a quantitative metric of frequency, defined as the fraction of subjects
harboring concurrent mutations in the concerned entity pair. Throughout this work, we
only analyzed co-mutation pairs of frequencies ≥ 10%. Because genes can be divided into
a protein-coding set and a non-coding set, we studied three types of co-mutation gene
pairs: coding:coding, coding:non-coding, and non-coding:non-coding. Finally, based on
the discrete chromosomes, we differentiated co-mutation pairs into inter-chromosome
ones and intra-chromosome ones. Co-mutated gene pairs that were located on one same
chromosome were designated as intra-chromosome pairs, and the co-mutated gene pairs
that each involved two distinct chromosomes were designated as inter-chromosome pairs.

4.4. Phenotypic Variable Association Analysis

We conducted association analysis between each co-mutation gene pair and each
phenotypic variable. Each subject was assigned a binary value (0 or 1) for the co-mutation
variable, which designated whether or not the two genes were both mutated in the subject.
Additionally, each subject was assigned a binary, multi-nominal, or continuous value for
the phenotypic variable, depending on its nature. Within the scope of a subject group
(cohort, cancer type, or tissue site), multiple subjects contributed values for the dependent
variable (co-mutation) and the response variable (phenotype), thereby allowing us to screen
for co-mutation gene pairs that were significantly associated with a phenotypic variable.
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Because of the varied natures, the age variable used linear regression, the sex variable used
logistic regression, and the race variable used multi-nominal regression. In the analysis for
the sex variable, we coded 1 for male and 0 for female, and did not analyze gender-specific
cancers such as breast cancer and prostate cancer.

4.5. Survival Analysis

We conducted survival analysis for each co-mutation gene pair within each cancer
cohort, in largely the same way as we did in the phenotype association analyses. The
binary co-mutation variable denoted if a subject harbored the concurrent mutations or
not, and the prognosis prediction ability of the co-mutation was assessed with Cox pro-
portional hazard regression model. Prognosis information came in the form of disease
specific survival for TCGA and overall survival for ICGC. Multiple test correction was
performed with the Benjamini–Hochberg method. An adjusted p-value less than 0.05 was
considered statistically significant, and an adjusted p-value in the interval of [0.05, 0.1]
was considered marginally significant. During survival analysis, there is a chance that all
events were allocated to either the mutant or the wildtype group. In such a scenario, the
Cox proportional hazard model will not converge, the hazard ratio (HR) reported would
be infinity. Thus, in the scenario where one of the groups (mutant and wildtype) did not
receive any events, we simply asserted the co-mutation as significantly associated with
survival due to imbalanced events. As a result, the returned prognostic co-mutations were
ascertained with three different levels of significance: (1) empirical significance due to
imbalanced events; (2) significance with adjusted p-value < 0.05; (3) marginal significance
with adjusted p-value falling in [0.05, 0.1].

Mutational burden generally refers to the total amount of mutations across a single hu-
man genome, which is found an informative aggregate index in cancer biology. Henceforth,
we also conducted survival analyses with mutational burden of a single mutation or a
co-mutation as the dependent variable. Adjusted p-value < 0.05 was used as the significant
threshold. To demonstrate that co-mutation’s prognostic value is not a byproduct of single
mutations, we performed survival between mutant and wildtype groups based on single
mutations and compared the results between single mutation and co-mutation.

4.6. Regulatory Element Analysis

When mutation takes place in cis-regulatory elements, regulation of gene expression
may be affected and the impact of a mutation may be propagated to a large number of
regulatory targets [30]. We leveraged Somatic Binding Sequence Analyzer [31] to iden-
tify cis-regulatory elements affected by each mutation of a co-mutation pair. Technically,
we screened three classes of cis-regulatory elements, namely RNA-binding protein (RBP)
binding sequences, miRNA seed sequences, and miRNA-matching 3′-UTR sequences.
RBP binding sequences numbered 3524 and were downloaded from four databases: AT-
tRACT [32], ORNAment [33], RBPDB [34], and RBPmap [35]. MiRNA seed sequences
numbered 2879 and were downloaded from mirBase [36]. MiRNA-matching 3′-UTR se-
quences numbered 2,055,403 and were downloaded from starBase 2.0 [37]. Circos plot [38]
was used to manifest a genome-wide view of affected cis-regulatory elements.

4.7. Mutation Impact Analysis

A series of methods are available to assess the functional impact resulting from a
mutation at a particular genomic position. These methods are generally based on mul-
tiple sequence alignment within a protein family, presuming that positions with a low
conservation rate are likely to tolerate a mutation while positions with a high conversion
rate are likely to be intolerant to a mutation. In light of such a conversational perspec-
tive, mutation impact was predicted for each genomic position of each co-mutation gene
pair, using eight algorithms: SIFT [39], Polyphen2 (including both HDIV and HVAR) [40],
LRT [41], FATHMM [42], CADD [43], VEST3 [44], and MetaSVM [45]. The scores out of
distinct algorithms were normalized to a common scale between 0 and 1, where a higher
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value signified a stronger impact. To summarize the position-level impact scores to the
gene level, an average impact score was obtained across all mutated positions for the
co-mutation gene pair in question. For each gene level co-mutation, the mutation impact is
the average prediction algorithm score of all point mutations within the two genes from
this co-mutation.

In addition to these theory-based methods, we also utilized several empirical data
based methods. Drug sensitivity differences between co-mutation mutant and wildtype
groups were conducted using t-test, where an adjusted p-value < 0.05 was considered sta-
tistically significant. Furthermore, a previous study [46] showed that mutations with high
impact tend to cause more gene expression dysregulation. Based on this concept, we exam-
ined the differential gene expression between co-mutation mutant and wildtype groups.

4.8. Clinical Cancer Gene Panels

Four panels of clinically relevant cancer genes were commonly leveraged in cancer
researches, namely Agilent SureSelect (98 genes), University of California San Francisco
UCSF500 (529 genes), FoundationOne CDx (309 genes), and Ashion Genomic Enabled
Medicine (540 genes). Genes harboring prognostic co-mutations were compared against
these four clinical cancer gene panels using R package UpSetR [47].

5. Conclusions

In this study, we presented the largest pan-cancer meta-analysis of co-mutation. The re-
sults from this study show overwhelming evidence that somatic mutations, when occurring
in tandem with each other, can produce a substantial biological impact. In many scenarios,
the biological impact can translate into stronger predictions of prognosis, drug sensitivity.
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