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ABSTRACT
Objective Pancreatic ductal adenocarcinoma (PDAC) 
is a lethal malignancy. Differentiation from chronic 
pancreatitis (CP) is currently inaccurate in about one- 
third of cases. Misdiagnoses in both directions, however, 
have severe consequences for patients. We set out to 
identify molecular markers for a clear distinction between 
PDAC and CP.
Design Genome- wide variations of DNA- methylation, 
messenger RNA and microRNA level as well as 
combinations thereof were analysed in 345 tissue 
samples for marker identification. To improve diagnostic 
performance, we established a random- forest machine- 
learning approach. Results were validated on another 
48 samples and further corroborated in 16 liquid biopsy 
samples.
Results Machine- learning succeeded in defining 
markers to differentiate between patients with PDAC 
and CP, while low- dimensional embedding and cluster 
analysis failed to do so. DNA- methylation yielded the 
best diagnostic accuracy by far, dwarfing the importance 
of transcript levels. Identified changes were confirmed 
with data taken from public repositories and validated 
in independent sample sets. A signature of six DNA- 
methylation sites in a CpG- island of the protein kinase C 
beta type gene achieved a validated diagnostic accuracy 
of 100% in tissue and in circulating free DNA isolated 
from patient plasma.
Conclusion The success of machine- learning to 
identify an effective marker signature documents the 
power of this approach. The high diagnostic accuracy of 
discriminating PDAC from CP could have tremendous 
consequences for treatment success, once the result from 
still a limited number of liquid biopsy samples would be 
confirmed in a larger cohort of patients with suspected 
pancreatic cancer.

INTRODUCTION
The 5- year survival rate of patients with pancreatic 
ductal adenocarcinoma (PDAC) is approximately 
9%, dropping to 3% in metastatic PDAC.1 Reasons 
are late diagnosis, misdiagnosis and inherent therapy 
resistance. An important risk factor for PDAC 
is chronic pancreatitis (CP),2 a persisting fibro- 
inflammatory disorder of the exocrine pancreas.3 

About 5%–6% of patients with CP develop PDAC. 
Usually, initial diagnosis of PDAC and CP is done 
by imaging. Sensitivity and specificity in the diag-
nosis of pancreatic lesions have been reported as 
89% and 90% for CT, 89% and 89% for MRI, 91% 
and 72% for positron emission tomography/CT; 
for endoscopic ultrasonography- guided fine- needle 
aspiration they are 89% and 81%.4 Imaging- based 
diagnosis yields partially unclear differentiation, 
however, since focal pancreatic masses exist in both 
PDAC and CP.5 Sensitivity and specificity of distin-
guishing PDAC and CP are commonly around 65% 
only.6 In consequence, PDAC may be wrongly diag-
nosed as CP and an urgently needed treatment of 
patients, who face a very short survival period after 
diagnosis, may get delayed. Conversely, CP might be 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Distinction between patients with pancreatic 
ductal adenocarcinoma (PDAC) and chronic 
pancreatitis (CP) is currently incorrect for about 
one- third of patients.

 ⇒ Every misdiagnosis is likely to have severe 
consequences for a patient.

WHAT THIS STUDY ADDS
 ⇒ Using machine- learning, we were able to 
extract from genome- wide information on DNA- 
methylation and messenger RNA/microRNA 
expression in tissue a validated signature of six 
DNA- methylation features that allowed fully 
accurate diagnosis.

 ⇒ The methylation variations exhibit a diagnostic 
robustness that is likely to be critical for real- life 
application.

 ⇒ Discrimination worked with identical accuracy 
in plasma samples, suggesting potential for 
non- invasive diagnosis by liquid biopsy.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Once replicated on a larger number of patients 
with PDAC and CP and confirmed in a clinical 
trial, translation could substantially affect 
patient management and prognosis.
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misdiagnosed as PDAC, leading to unnecessary pancreas resec-
tion. Nearly 10% of patients who underwent surgical resection 
under the suspicion of pancreatic cancer have been reported to 
have CP instead.7 Processes are needed to differentiate between 
them more reliably; improved diagnosis will facilitate the selec-
tion of appropriate therapeutic options. Biomarkers in serum or 
plasma are an option. Carbohydrate antigen 19- 9 (CA19- 9) is 
the most widely used serum marker for the diagnosis of PDAC. 
However, elevated CA19- 9 levels were also detected in patients 
with CP, liver cirrhosis and cholangitis.8 Many other blood 
biomarkers have been described, but they are not yet reliable 
enough for routine diagnostics.9

In recent years, machine- learning techniques together with 
the advent of large- scale, whole- genome data have promoted 
the identification of accurate biomarkers for cancer diag-
nosis.10 11 Their application has been useful in the establishment 
of biomarker models for improved cancer diagnosis and therapy 
surveillance.12 Concerning PDAC, previous studies focused 
on the identification of cancer- specific biomarkers in compar-
ison with healthy, inflammation- free samples based on a single 
marker type.13–15 Here, we introduce a random- forest machine- 
learning approach that takes into account datasets of different 
‘omic’ types: messenger RNA (mRNA), microRNA (miRNA) and 
DNA- methylation profiles. They were compared and combined 
in order to select optimal biomarkers for a differential diagnosis 
of patients with PDAC and CP. The most promising biomarkers 
were substantiated and validated in independent sample cohorts, 
yielding a diagnostic panel of 100% accuracy in both tissue and 
plasma samples.

MATERIALS AND METHODS
Patient samples
Pancreatic tissue samples were collected during surgery. Initially, 
345 samples (238 PDAC; 64 CP; 43 healthy individuals) were 
studied; for validation, another 48 samples (24 PDAC; 24 CP) 
were analysed. All samples were collected at the Department of 
Surgery of Heidelberg University Hospital during the period 
February 2002 to October 2009. Details about individual patient 
groups and related clinical information are provided in online 
supplemental table S1. All samples had been evaluated a second 
time by experienced pathologists to check the initial diagnosis. 
No statistical methods were used to predetermine sample size. 
Different from other studies,13 16 all healthy control samples 
were pancreata obtained from organ donors, whose pancreas 
was eventually not used for transplantation. Intentionally, no 
tumour- adjacent non- tumour tissue was used as it has a molec-
ular profile that at the RNA level is similar to the tumour tissue 
to quite an extent, although looking normal pathologically.17 All 
samples were snap- frozen in liquid nitrogen directly after resec-
tion and stored at −80°C.

For validating diagnostic performance by liquid biopsy, 3 mL 
plasma were collected from eight patients with CP and eight 
with PDAC at the Department of Surgery of Heidelberg Univer-
sity Hospital during the period February 2019 to September 
2020; samples were snap- frozen in liquid nitrogen and stored 
at −80°C. There was no overlap with patients, whose tissues 
were studied. The respective disease condition was confirmed 
pathologically. The patients’ clinical details are listed in online 
supplemental table S1.

mRNA and miRNA expression profiling in tissue samples
mRNA isolation and expression profiling has been described 
in detail.17 Samples were analysed on the Sentrix Human- 6v3 

Whole Genome Expression BeadChip (Sentrix Human WG- 6; 
Illumina). The raw data were quantile normalised and log2- 
transformed. We performed differential expression analysis 
using the R package LIMMA (V.3.40.5) to detect differences of 
the PDAC sample group with the CP and healthy (N) sample 
groups, respectively.18 The data are accessible at the public data-
base ArrayExpress (ID: E- MTAB- 1791; password: rpqqrysi).

miRNA expression analysis has also been published previ-
ously.19 The Geniom Realtime Analyzer (febit biomed) with the 
Geniom Biochip miRNA homo sapiens was used. The data were 
processed as reported and deposited in the public database Gene 
Expression Omnibus (GEO; GSE24279).

DNA-methylation profiling in tissue samples
DNA was isolated as reported.17 Genome- wide DNA- methylation 
was analysed using the Illumina Infinium 450k DNA- methylation 
platform (Illumina). The raw data were preprocessed using the 
standard workflow of RnBeads.20 Normalisation was done 
using the subset- quantile within- array normalisation method 
(SWAN).21 Differences with a Benjamini- Hochberg adjusted 
p value <0.01 and |log2FC|>0.5 were considered significant 
when comparing sample groups. The data are accessible at 
ArrayExpress (DNA- methylation profiling ID: E- MTAB- 3855; 
password: pyzqdbii).

Low-dimensional embedding and visualisation
PDAC, N and CP data were visualised using the low- dimensional 
embedding by Uniform Manifold Approximation and Projec-
tion (UMAP); all mRNA transcripts, miRNAs and CpG probes 
were considered independent features. UMAP embeddings were 
calculated with the R (V.3.6.1) package UMAP (V.0.2.2.0) using 
default settings.22

Feature selection
Feature selection for random- forest modelling was performed 
once on the complete multi- omic dataset using the following 
strategy: for RNA data, all probe sets on the microarrays 
were annotated to RefSeq- IDs. For probe sets with identical 
RefSeq- ID, the arithmetic mean was used. For replicate exper-
iments, the arithmetic mean was calculated. For all datasets, 
missing feature values were substituted by the overall feature 
median. The top 1000 significantly differential features were 
determined by decreasing order of intergroup difference of 
significant features (mRNA and miRNA expression data: loga-
rithmic fold change; DNA- methylation data: mean group differ-
ence). For multi-‘omic’ datasets, the top 1000 features from each 
‘omic’ dataset were combined to generate a list of 2000 features. 
In all lists, correlated features were removed by applying a 
threshold on the calculated Pearson’s correlation coefficients. 
For DNA- methylation, a threshold of 0.9 was used; for mRNA 
and miRNA expression, a threshold of 0.7 was applied.

Cross-validated training of predictive models
Separate random- forest models were trained for differentiation 
of PDAC versus N and PDAC versus CP samples using the R 
(V.3.6.1) package caret (V.6.0- 81) as described below23: (i) we 
partitioned the data into 10 equal folds and performed 10 inde-
pendent training/test runs. In each run, seven folds were used 
for training; the remaining three were used for testing; (ii) 
multiple random- forest models were trained with the R package 
ranger (V.0.11.0) on the 10 training datasets separately.24 For 
each consecutive model, another uncorrelated feature was added 
from the filtered and ranked feature list; (iii) accuracy, sensitivity, 
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specificity and the area under the curve (AUC) were calculated. 
AUC calculation was conducted using the R package pROC 
(V.1.14.0).25 For final model scores, the metrics were averaged 
across all folds; (iv) the best model of each single-‘omic’ and 
multi-‘omic’ dataset was determined by comparing AUC values. 
Undersampling, oversampling and the Synthetic Minority Over- 
sampling Technique26 were conducted and their performance 
was compared with the original unbalanced datasets to evaluate 
the influence of class imbalance on the accuracy of classification.

Validation of PDAC and N differentiation using publicly 
available datasets
The predictive models of PDAC versus N were validated using 
datasets available at the public repositories GEO and The Cancer 
Genome Atlas (TCGA). Not all markers were present in the 
public datasets because of differences in the analysis platforms. 
For expression, dataset GSE62452 was downloaded from GEO, 
which contains data of 69 PDAC and 61 adjacent non- tumour 
tissue samples. It was processed using the oligo package27 and 
quantile normalised. For DNA- methylation, we used GSE49149 
with results from 155 PDAC and 19 adjacent non- tumour 
tissue samples. The raw data were preprocessed using the minfi 
package28 and SWAN.21 The best performing models were vali-
dated in the public datasets using the R package caret. Accu-
racy, sensitivity, specificity and AUC values were calculated, 
and receiver operating characteristic (ROC) curves were gener-
ated using the R package pROC. The predictive markers of the 
models were validated by performing two- sided t- tests.

Validation of DNA-methylation markers for PDAC and CP 
differentiation with independent sample set
For validating DNA- methylation markers that differentiate 
PDAC from CP samples, MethyLight qPCR was performed on 
samples from an independent patient cohort (online supple-
mental table S1). DNA from 24 PDAC and 24 CP tissue samples 
was bisulfite converted (EpiTect bisulfite kit; Qiagen). Pilot 
experiments were performed using calibration DNA of 100%, 
75%, 50%, 25%, 12.5% and 0% methylation (EpiTect PCR 
Control DNA Set; Qiagen). MethyLight qPCR was done in 10 
μL containing 5 μL 2× EpiTect MethyLight Master Mix (without 
ROX) (EpiTect MethyLight PCR kit; Qiagen), 400 nM forward 
and reverse primers, 200 nM probe and 3 μL bisulfite converted 
DNA template. Simultaneously, the C- LESS- C1 primer/probe set 
was used in each reaction as internal control for normalisation.29 
MethyLight qPCR was performed in triplicates on a LightCy-
cler 480 (Roche) with a pre- amplification incubation of 95°C for 
5 min, followed by 45 cycles of 95°C for 15 s and the primer/
probe set- specific annealing temperature (online supplemental 
table S2) for 30 s. Raw data were analysed using the LightCy-
cler software (Roche). To evaluate the DNA- methylation level 
of the region of interest, the methylation index was calculated. 
DNA- methylation index=log2[2

(−∆∆Ct)], ∆∆Ct =∆Ct sample (ROI- 

MIP)−∆Ct 100% methylation control sample (ROI- MIP); ROI stands for ‘region of 
interest primer/probe’, and MIP for ‘methylation independent 
primer/probe’, which is the C- LESS- C1 primer/probe set. DNA- 
methylation indices were scaled to a range from 0 to 1.

The statistical analyses of MethyLight qPCR results were 
performed using the GraphPad Prism V.6 software (GraphPad 
Software). Mean and SD are reported. Comparison of the 
normally distributed variable’s values in the two groups was 
performed using t- test. All p values were two- sided, and p<0.05 
was considered statistically significant. A predictive model was 
trained on the initial microarray data as outlined previously. To 

apply the model to the MethyLight qPCR data, we normalised 
them to the range of 0–1 to match the distribution of methyl-
ation microarray CpG level values. The predictive power was 
determined using the R package caret.

Co-methylation analysis of CpG islands
For visualising the overall DNA- methylation levels of genomic 
ROI and for estimating DNA- methylation correlation between 
different CpG sites within genomic regions, the R package 
coMET was applied.30 The DNA- methylation 450k array data 
from 26 PDAC samples and 12 CP samples were used. Gene 
tracks from ENSEMBL and CpG island tracks from UCSC 
based on GRCh37/hg19 were selected as genomic annotations. 
Spearman’s correlation coefficients of DNA- methylation levels 
and disease state were calculated for all CpG sites within the 
selected gene regions. We evaluated the diagnostic power of 
selected co- methylated CpG sites by a cross- validated prediction 
of patient disease states in the original DNA- methylation 450k 
array data.

Analysing DNA-methylation levels in healthy tissues
Whole- genome bisulfite sequencing data from breast, oesoph-
agus, heart, lung, muscle, pituitary, skin and thyroid tissues were 
available at the Genotype- Tissue Expression (GTEx) repository. 
Beta values of the CpG sites in the protein kinase C beta type 
gene (PRKCB) region chr16:23,836,004- 23,836,682 (GRCh38r/
hg38) were retrieved and visualised in the GTEx portal. Addi-
tionally, DNA- methylation data available at TCGA was explored. 
DNMIVD31 and MethyHC32 were used for analysing 23 or 33 
non- tumorous tissue types, respectively.

Validating diagnostic performance of cell-free DNA-
methylation changes in liquid biopsy
Cell- free DNA (cfDNA) was isolated from 1 to 2 mL of patient 
plasma using the QIAamp MinElute ccfDNA Mini Kit (Qiagen) 
according to the manufacturer’s instructions and recovered in 
60 μL ultra- clean water. DNA concentration was determined 
using the Qubit dsDNA HS Assay Kit (Invitrogen). For bisul-
fite conversion, cfDNA was treated with the EpTect Bisulfite Kit 
(Qiagen). Afterwards, 50–100 ng converted cfDNA were ampli-
fied with the EpiTect Whole Bisulfitome Kit (Qiagen).

For the preparation of next- generation sequencing libraries, 1 
µg amplified DNA was used for an end- repair reaction (NEBNext 
Ultra End Repair/dA- Tailing Module; New England Biolabs). 
Adapters were added (NEBNext Ultra II DNA Library Prep Kit 
for Illumina), and the DNA fragments then amplified with index 
primers (NEBNext Multiplex Oligos for Illumina). For library 
enrichment, the NEBNext Ultra II DNA Library Prep Kit for Illu-
mina was used. Each library was prepared and diluted to an equal 
molar concentration of 10 nM. Libraries were sequenced on an 
Illumina Novaseq 6000 S4 instrument using paired- end 150 bp 
reads. The data were processed with the nf- core/methylseq pipe-
line (V.2.3.0)33 using Nextflow (V.22.10.6).34 In the pipeline, we 
applied the BWAmeth aligner,35 the GRCh38 reference sequence 
and methyldackel quantification. DNA- methylation levels were 
quantified as M values.36 37

RESULTS
Clustering does not exhibit sufficient diagnostic power for 
discriminating PDAC and CP
Initially, we used tissue samples from 345 patients: 238 with 
PDAC; 64 with CP and 43 healthy individuals (N) (for more 
details see online supplemental table S1). All samples had been 
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evaluated a second time by experienced pathologists to check 
the initial diagnosis. Quality and utility of the material have been 
reported before.17 19 38 Genome- wide information about DNA- 
methylation, mRNA and miRNA expression was produced. 
Besides exploring each dataset individually, we combined mRNA 
and DNA- methylation data as well as mRNA and miRNA data 
to two multi-‘omic’ datasets. All CpG methylation sites, mRNA 
and miRNA transcripts were considered independent features. 
Patient data of the three single-‘omic’ and two multi-‘omic’ 
analyses were embedded in a low- dimensional space for visu-
alisation (figure 1) using UMAP dimensionality reduction.22 To 
detect confounding factors within our patient cohort, clustering 
of patients with equal co- variables, such as age, sex and tumour 
localisation, were evaluated. No bias by these factors could be 
detected (online supplemental figure S1). Since especially DNA- 
methylation has been reported to be associated with smoking, 
diabetic status and alcohol consumption, we additionally looked 
at these three factors, too. Again, there was no apparent bias 
(online supplemental figure S2 and S3).

Clustering according to medical condition (figure 1) indicated 
global differences over all ‘omic’ levels. Especially, N samples are 
distinct from PDAC in all five datasets. In contrast, CP tissues 
are embedded more closely to PDAC. For mRNA, miRNA and 
combined mRNA and miRNA data, CP samples fall in- between 
PDAC and N tissues; some CP samples are even embedded in 
the PDAC cluster. Similarly, several CP samples are located in 
the PDAC cluster in the DNA- methylation and combined mRNA 
and DNA- methylation data. However, PDAC and CP are clearly 
separated from the N cluster. The UMAP embeddings confirmed 
that CP and PDAC share greater similarities on a molecular level 
than PDAC and N do. This molecular resemblance represents a 
challenge for establishing reliable cancer- specific markers.39

To overcome this, we used a random- forest- based machine- 
learning approach for identifying molecular features that may 
unambiguously differentiate PDAC from CP. An overview of the 
entire process is presented in figure 2. First, a machine- learning 
procedure was set up and evaluated. Once established, it was 

used on tissues to evaluate the performance of different molec-
ular classifier types. The best classifier was pursued further by 
validation on an independent samples set and finally on material 
isolated from blood samples in order to demonstrate its wide 
applicability and accuracy.

Establishment of machine-learning workflow
While the study’s objective was differentiating PDAC from CP, 
we first used PDAC and N samples to establish the machine- 
learning workflow (figure 2). Random- forest models were 
trained separately on the single-‘omic’ and multi-‘omic’ datasets 
as described in the ‘Materials and methods’ section. No signifi-
cant effect of class size imbalances was observed (online supple-
mental figure S4). An ROC curve was calculated for each model, 
from which the AUC values were determined: they were used to 
define the best model of each dataset. The trained models for the 
differentiation of PDAC and N exhibited cross- validated AUCs 
between 0.85 and 0.98, when features of the respective dataset 
were added consecutively (figure 3A). A predictive model based 
on DNA- methylation showed the highest AUC value—0.980—
with the lowest number of features, namely cg02964172 (gene 
GCNT2, gene body) and cg17184704 (intergenic, chr. 10: 
11727286). The next best models were trained on combined 
DNA- methylation and mRNA data (AUC of 0.977, 5 features), 
the miRNA and mRNA data (AUC of 0.955, 4 features), the 
miRNA data (AUC of 0.980, 12 features) and the mRNA data 
(AUC of 0.946, 14 features) (online supplemental table S3).

We focused on the DNA- methylation marker panel, since it 
showed the best performance and required the lowest number 
of features. Unsupervised hierarchical clustering based on the 
model’s two features showed a clear separation of PDAC and 
N samples (figure 3B); clustering for the other models is shown 
in online supplemental figure S5A- D. To test the reliability of 
the DNA- methylation markers, the random- forest model was 
applied to the dataset GSE49149 that is available at the public 
GEO repository. It represents data generated from PDAC and 
normal controls and yielded a sensitivity of 0.981 and specificity 
of 0.579 in diagnosing the medical status of patients, with an 
AUC value of 0.810 (figure 3C). The low specificity was not 
surprising since the controls (N samples) in the GEO dataset 
were adjacent non- tumour tissues of patients with PDAC, while 
the markers had been defined in our dataset with controls that 
all were pancreata from healthy donors. It is known that they 
differ substantially.17 Individually, the DNA- methylation level of 
cg02964172 in PDAC was significantly higher than in N samples, 
while the opposite was true for cg17184704 (figure 3D). The 
results of validating other ‘omic’ models with public data can be 
found in online supplemental table S4 and online supplemental 
figure S6. The results confirmed the potential of random- forest 
modelling for biomarker identification.

Differentiating PDAC and CP tissue samples
For the classification of PDAC and CP, we employed the estab-
lished machine- learning workflow. The five different ‘omic’ 
datasets were used to construct predictive models. A model 
consisting of four DNA- methylation features—cg15506157 
(killer cell lectin like receptor G2 (KLRG2), TSS200 (0–200 bases 
upstream of transcription start site)), cg03306374 (PRKCB, first 
exon/5’-untranslated region (UTR)), cg21294301 (intergenic, 
chr. 1: 8120055) and cg27341866 (C19orf35, gene body)—
was the most accurate for differentiating PDAC and CP with an 
AUC value of 1.00 (figure 4A). The best model of the combined 
mRNA and DNA- methylation dataset also yielded an AUC of 

Figure 1 Low- dimensional embedding of cohort samples using UMAP 
dimensionality reduction of different ‘omic’ datasets. Results are shown 
that were obtained by applying DNA- methylation, mRNA expression 
or miRNA expression data, respectively, or by using combined mRNA 
expression and DNA- methylation or combined mRNA and miRNA 
expression data. Individual tissue samples are colour- coded as indicated: 
PDAC, red; CP, blue; N, green. CP, chronic pancreatitis; mRNA, messenger 
RNA; miRNA, microRNA; N, healthy individuals; PDAC, pancreatic 
ductal adenocarcinoma; UMAP, Uniform Manifold Approximation and 
Projection.
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1.00. However, 11 features were required: the DNA- methylation 
features cg15506157 (KLRG2, TSS200), cg21294301 (inter-
genic, chr. 1: 8120055), cg27341866 (C19orf35, gene body), 
cg11141652 (GSTTP1, TSS1500), cg11792281 (NLK, gene 
body), cg15138289 (HLA- DPB1, gene body), cg05137263 
(NR0B1, TSS200), cg13686615 (intergenic, chr. 2: 71503742) 
and cg05795005 (LIN7C/BDNFOS, TSS200/gene body) 
as well as the mRNA features NM_005980.2 (S100P), and 
NM_001008218.1 (AMY1B). The best models from the mRNA 
dataset (AUC of 0.962 with 54 features), the combined mRNA 
and miRNA dataset (AUC of 0.953 with 13 features) and the 
miRNA dataset (AUC of 0.783 with 23 features) performed worse 
than the DNA- methylation and combined DNA- methylation and 
mRNA models. The features of the best model for each dataset 
can be found in online supplemental table S5.

The highest AUC value with the smallest feature number was 
achieved by the model trained on DNA- methylation. Also the 
second- best model, based on mRNA and DNA- methylation, was 
dominated by methylation markers. It has been shown that DNA- 
methylation profiling is highly robust and stable even in DNA 
isolated from poor- quality material.40 Therefore, we selected 
five DNA- methylation biomarkers with high performance from 
these two models for independent validation: cg03306374 
(in gene PRKCB), cg05795005 (LIN7C), cg11792281 (NLK), 
cg15506157 (KLRG2) and cg27341866 (C19orf35) (online 
supplemental figure S7A). They exhibited the lowest p values 

and SD in differential PDAC versus CP analysis. Unsupervised 
hierarchical clustering revealed that the five markers separated 
PDAC from CP accurately (figure 4B). Clustering results based 
on the other ‘omic’ models are shown in online supplemental 
figure S7B- E.

Validation of DNA-methylation features for discriminating 
PDAC from CP
Since no public DNA- methylation profiling datasets were avail-
able for PDAC versus CP differentiation, we validated the five 
DNA- methylation markers by MethyLight qPCR on DNA from 
an independent cohort of 24 patients with PDAC and 24 patients 
with CP (online supplemental table S1). Besides employing 
another technology in order to check for methodological bias, 
using an entirely independent set of samples should compensate 
for any potential overestimation of accuracy during the initial 
analysis. DNA- methylation levels of cg03306374 (PRKCB) 
and cg15506157 (KLRG2) were significantly higher in PDAC 
compared with CP samples (p<0.0001), while the other markers 
did not show a significant difference (figure 4C). For the two 
significantly different CpG sites, we observed several outliers 
in the PDAC and CP sample groups. We revisited the histology 
evaluation of these patients. For cg15506157, for example, the 
six outliers in the PDAC sample group did not exhibit clear- cut 
cancer in the second pathological evaluation and the three CP 

Figure 2 Schematic workflow of biomarker selection process. Single-‘omic’ and multi-‘omic’ data from PDAC, CP and N tissue samples were 
collected and analysed. The workflow consists of four main steps: feature selection, model training, internal validation and validation on independent 
datasets. AUC, area under the curve; cfDNA, cell- free DNA; CP, chronic pancreatitis; mRNA, messenger RNA; miRNA, microRNA; N, healthy individuals; 
PDAC, pancreatic ductal adenocarcinoma.
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outliers did not show a distinct but only a moderate CP pathology. 
Irrespective of this, however, the power of cg03306374 and 
cg15506157 was evaluated with models trained on the original 
DNA- methylation profiling data. The sites could differentiate 
PDAC from CP samples individually with an AUC of 0.695 and 
0.838, respectively (figure 4D). The combined model of both 
methylation markers discriminated PDAC from CP with an AUC 
of 0.905.

Regional co-methylation around cg03306374 enables fully 
accurate diagnostics
Site cg03306374 represents a CpG in the first exon/5’-UTR of 
the PRKCB; cg15506157 is a site in the 200 bp region upstream 
of the transcription start of gene KLRG2. Analysing clusters of 
co- methylated CpGs could be more comprehensive and robust 
than analysing individual CpG sites. We used the 450k DNA- 
methylation data to study the correlation between methylation 
levels of multiple CpG sites within the genomic ROI and the 
association between their methylation levels and the disease 
state. The correlation matrix in figure 5A shows co- methyla-
tion patterns between 38 CpGs within the genomic region of 
PRKCB. Sites located in the CpG island at the 5’-end were posi-
tively correlated with PDAC- hypermethylated cg03306374 rela-
tive to CP samples. More distant CpG sites outside of the CpG 

island showed predominantly negative correlation. Five posi-
tively correlated CpG sites were significantly associated with the 
PDAC phenotype. Co- methylation patterns were also observed 
at 17 CpG sites in the KLRG2 gene region (figure 5B). The sites 
located in the CpG island at the 5’-end of KLRG2 were posi-
tively correlated with the PDAC- hypermethylated cg15506157 
relative to CP samples. Three were significantly associated with 
the PDAC disease status.

Methylation of a particular CpG may vary in individual patients, 
even if it exhibits a significant diagnostic performance overall. We 
therefore investigated whether combining cg03306374 and the 
five co- methylated CpGs in PRKCB (cg03156893, cg03217795, 
cg05436658, cg09507526, cg21370856) as well as cg15506157 
and the three highly correlated CpGs in KLRG2 (cg00699934, 
cg00919016, cg05224190) into a panel of 10 methylation sites 
may improve the robustness of classifying individual patients. 
Using 24 PDAC and 24 CP samples, the classifiers of these DNA- 
methylation markers could differentiate PDAC from CP with 
absolute accuracy (figure 6). We observed an AUC value of 1.00 
with the 10 CpG sites instead of 0.905 with only cg03306374 
and cg15506157. As a matter of fact, already the six sites in 
PRKCB produced an AUC of 1.00 if used on their own, while 
the four CpGs in KLRG2 yielded an AUC of 0.934 on their 
own. This documents that the six PRKCB methylation sites are 

Figure 3 Evaluating the machine- learning performance on PDAC 
and N samples. (A) Comparison of 10- fold cross- validated model 
performances. For each ‘omic’ dataset, the relationship between the 
model performance measured by AUC value and the feature number 
is indicated. For each analysis, the highest AUC value achieved with 
the smallest possible number of features is marked by a rectangle. 
(B) Unsupervised hierarchical clustering of the two CpG marker sites 
cg02964172 and cg17184704 as defined by the best performing 
DNA- methylation model. (C) Left, the ROC curve of the diagnostic 
prediction model is shown as calculated with the two CpG sites in 
the public validation dataset GSE49149. On the right, the methylation 
levels of the two CpGs are shown as determined in PDAC and N 
samples from the public validation dataset. Mean methylation values 
are indicated by horizontal lines. Differential analysis was performed 
by t- test (***p<0.001, ****p<0.0001). AUC, area under the curve; 
mRNA, messenger RNA; miRNA, microRNA; N, healthy individuals; 
PDAC, pancreatic ductal adenocarcinoma; ROC, receiver operating 
characteristic.

Figure 4 Identification and validation of biomarkers for the 
differentiation of PDAC and CP. (A) Comparison of 10- fold cross- 
validated model performances. For each ‘omic’ dataset, the relationship 
between the model performance measured by AUC value and the 
feature number is indicated. The highest AUC value with the smallest 
possible number of features is marked by a rectangle. (B) Unsupervised 
hierarchical clustering of five methylation markers selected from the 
best predictive models in the DNA- methylation and the combined DNA- 
methylation and mRNA expression datasets. (C) Left, the normalised 
methylation index is shown of five selected methylation markers in 24 
PDAC and 24 CP samples. Experimental validation was by MethyLight 
qPCR. The mean values of normalised methylation indexes are indicated 
by horizontal lines. Differential analysis was performed by t- test 
(****p<0.0001; ns, not significant). In the right panel, ROC curves are 
shown of single and combined (red) predictive markers cg03306374 
(green) and cg15506157 (blue) as calculated from the independent 
validation dataset. AUC, area under the curve; CP, chronic pancreatitis; 
mRNA, messenger RNA; miRNA, microRNA; PDAC, pancreatic ductal 
adenocarcinoma.
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sufficiently accurate. Furthermore, they represent a marker panel 
that is robust enough in its diagnostic performance to compen-
sate for other, less accurate diagnostic information, such as the 
one resulting from the KLRG2 CpGs, and may therefore well be 
suited for clinical diagnostics.

Diagnosis in liquid biopsy samples
To evaluate the performance of the methylation signature in 
liquid biopsy, we performed whole- genome bisulfite sequencing 
of cfDNA that was isolated from plasma samples collected from 
patients with PDAC and CP (online supplemental table S1). On 
purpose, the samples were from patients, who had not been 
studied as part of the tissue sample analyses so as to assure inde-
pendent confirmation. We did initial analyses by pyrosequencing, 
droplet- PCR and targeted next- generation sequencing. They all 
required PCR amplification of particular regions on bisulfite- 
converted cfDNA templates. This proved to be technically chal-
lenging because of the limited amount of initial material as well 
as its fragmentation, which was further exacerbated on bisul-
fite treatment. We therefore performed whole- genome bisulfite 
sequencing eventually. The rationale was to avoid bias introduced 
by PCR- based enrichment of particular target regions. In accor-
dance with the results of the tissue analysis, the comparison of 
PDAC and CP samples (online supplemental table S6) produced 
clear differences in methylation level for all six CpG sites of the 
PRKCB gene individually (figure 7); only cg21370856 was not 
quite significant after false discovery rate adjustment. Also for 
the CpG sites in KLRG2, the degree of DNA- methylation was 
higher in PDAC than CP samples. For all four of them, however, 
the increase was not significant. These results are consistent with 

Figure 5 Regional plot of an epigenome- wide association analysis of cg03306374 and cg15506157 in PDAC and CP tissues. Co- methylation 
patterns were found in the PRKCB (A) and KLRG2 gene regions (B), respectively. At the very top, the gene position within the respective chromosome 
is shown. Below, each dot stands for a particular CpG site. Its genomic position is indicated along the X- axis. The negative log- transformed p value 
reflects the association of a CpG site with the disease status. The panels in the middle show the ENSEMBL annotation tracks including genes/
transcripts and the direction of transcription. Also, the positions of the CpG sites (vertical lines) are indicated. The lower panels present Spearman’s 
correlation coefficients of DNA- methylation levels between selected CpG sites in the two genomic regions. The colour scheme of the heatmap 
is reflected also in the association panel at the top with respect to correlation to the reference CpG sites cg03306374 and cg15506157. Blue 
colouring of a dot stands for low correlation values; red colouring indicates high correlation values. CP, chronic pancreatitis; PDAC, pancreatic ductal 
adenocarcinoma.

Figure 6 Differentiation between PDAC and CP based on DNA- 
methylation. ROC curves are shown that were calculated on the basis 
of differential DNA- methylation at cg15506157 and the three other 
CpGs in the KLRG2 gene region (red line), cg03306374 and the five 
surrounding DNA- methylation sites in the PRKCB gene region (green 
line) or a combination of all 10 sites (blue line). AUC, area under the 
curve; CP, chronic pancreatitis; PDAC, pancreatic ductal adenocarcinoma.
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the diagnostic performance in tissue, in which the PRKCB CpGs 
clearly outperformed the KLRG2 sites.

Already most individual CpGs would have made discrimina-
tion possible between PDAC and CP, although not with abso-
lute accuracy. For improving accuracy and robustness further 
so that it could potentially be sufficient for clinical application, 
we used the methylation values of the six PRKCB CpG sites to 
train a support vector machine (SVM) classifier.41 The data were 
randomly split into training and validation sets (each made of 
4× PDAC and 4× CP). During the training process, a combina-
tion of three parameters (cost, gamma, epsilon) was optimised 
to avoid overfitting and underfitting. The classifier with fixed 
parameter settings was subsequently assessed on the validation 
data. This process was performed repeatedly. With SVM param-
eters of cost=0.1, gamma=0.03 and epsilon=0.9, an AUC value 
of 100% for discriminating PDAC from CP was obtained from 
an ROC curve analysis.

Whole- genome bisulfite sequencing data were analysed that 
had been generated from healthy tissues (breast, oesophagus, 
heart, lung, muscle, pituitary, skin and thyroid) and depos-
ited at the public repository GTEx. Beta values of the PRKCB 
CpG sites ranged from 0.00 to 0.06, indicating that there is no 
significant DNA- methylation in normal tissues. Additionally, 
DNA- methylation data from 20 healthy tissue types available at 
TCGA was explored; there was no record for cg05436658. No 
beta value >0.1 was found for the PRKCB CpGs, again demon-
strating low methylation of the CpGs. In comparison, mean beta 
values >0.6 were found in PDAC tissues. These results suggest 
that the DNA- methylation variation found in cfDNA of PDAC 
patients is tumour- specific.

DISCUSSION
CP is a long- term inflammation of the pancreas that alters the 
organ’s normal structure and functionality and has long been 
recognised as a risk factor for PDAC.2 Some pseudo- tumours 
are not due to CP but areas of focal lobulocentric atrophy 
with nearby PanIN. However, because of its predominance, we 
focused on CP. Because of molecular similarities, it complicates 
the diagnosis of PDAC. This has implications on the survival of 
patients with PDAC, who face a very short mean survival period 
of few months after initial diagnosis. Sensitivity and specificity 
in the differentiation of pancreatic cancer and CP are commonly 

about 60%–65%.6 Even ultrasonography- guided fine- needle 
aspiration does not perform better than imaging.4 Visualisation 
of the mRNA, miRNA and DNA- methylation profiles by UMAP 
embedding corroborates the difficulty of distinguishing between 
PDAC and CP. While it showed a clear difference between PDAC 
and N samples, a joint cluster of PDAC and CP samples was 
produced with all ‘omic’ datasets. This is probably due to many 
dysregulated pathways that are common to CP and PDAC.42

With the help of machine- learning methods, one can analyse 
molecular characteristics in a comprehensive manner and reveal 
underlying phenotype- genotype relationships,12 43 thus facili-
tating marker identification. We evaluated the diagnostic power 
of different ‘omic’ datasets. Advanced integration methods are 
available, such as correlation- based,44 association- based,45 prior 
knowledge- based46 and model- based47 integration. Since we 
aimed at identifying multi-‘omic’ features independent of their 
potential connection to features of other datasets, we applied 
a simple concatenation of the multi-‘omic’ feature spaces. This 
enabled us to treat them as independent features during the 
subsequent machine learning. As opposed to low- dimensional 
embedding, the machine- learning identified potential biomarker 
panels for the differentiation of PDAC and CP.

Two DNA- methylation markers—cg03306374 (PRKCB) and 
cg15506157 (KLRG2)—yielded an AUC of 0.905 on validation. 
These markers have already been reported in the list of top 20 
differentially methylated CpG sites when comparing PDAC with 
N tissue data from TCGA.48 Here, we could show that a predic-
tive model containing these two DNA- methylation markers is 
able to classify correctly PDAC and CP tissue samples, which is 
a more demanding challenge. Taking into account the two CpGs 
and the differentially methylated region (DMR) around them, 
we improved diagnostic performance to 100% accuracy, a level 
that was also obtained with only the six methylations sites in gene 
PRKCB. The not entirely accurate distinction of the four CpGs 
in gene KLRG2 did not affect accuracy on combination with 
the six PRKCB sites. This documents a degree of information 
redundancy of the PRKCB CpGs that is likely to warrant assay 
robustness in real- life applications. Furthermore, the six PRKCB 
CpGs were found to be equally informative in liquid biopsy 
samples. There was no apparent difference between treatment- 
naïve patients and others. However, the sample number is too 
small for identification of more subtle effects. The result suggests 
a diagnostic approach that is potentially superior to imaging 
and based on an essentially non- invasive process. However, the 
sample number in our study is clearly not sufficient for a proof 
of clinical utility. Towards this end, a clinical trial in a multi-
centric set- up has to be performed with a substantially larger 
number of samples.

The DMR around cg03306374 is a CpG island in the first 
exon/5'-UTR region of PRKCB. The protein kinase C (PKC) 
family has come to the focus of cancer research, since the 
receptor plays a role for tumour- promoting phorbol esters.49 A 
recent mouse model study revealed that not the inactivation of 
PKC but its activation suppresses tumour growth.50 PRKCB regu-
lates the expression of PKCB, PRKCB1 and PRKCB2.51 Interest-
ingly, the expression of PRKCB1 was upregulated in PDAC and 
CP compared with N tissue samples, while it did not significantly 
differ between PDAC and CP. The biological effect of the DMR 
in the PRKCB promoter remains elusive. A recent pilot study on 
pancreatic juice also identified hypermethylation in the PRKCB 
gene region to be associated with differentiation of PDAC and 
CP, although with an AUC of only 0.77.52

In conclusion, the identified DNA- methylation signature 
may significantly improve the quality of tumour diagnostics in 

Figure 7 Diagnostic accuracy of DNA- methylation in liquid biopsy 
samples. Variation in DNA- methylation in cell- free DNA isolated from 
patient plasma is presented as box plot for the six CPG sites in gene 
PRKCB and the four CpG sites in KLRG2. The M- value was chosen as 
a measure of methylation.54 At the top, the respective false discovery 
rate adjusted p values are given. Only the first three numbers of the 
CpG identifiers are indicated: cg033: cg03306374; cg031: cg03156893; 
cg032: cg03217795; cg054: cg05436658; cg095: cg09507526; 
cg213: cg21370856; cg155: cg15506157; cg006: cg00699934; cg009: 
cg00919016; cg052: cg05224190. CP, chronic pancreatitis; PDAC, 
pancreatic ductal adenocarcinoma.
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patients with suspected pancreatic cancer. However, two major 
points still need to be met towards clinical application. Other 
analysis platforms but sequencing exist that yield good results.53 
However, whole- genome bisulfite sequencing was required in 
our analysis, since processes that need PCR- amplification of the 
region of interest did not perform well. Most likely, this was 
due to a combination of limiting factors: the number of cfDNA 
copies that can be isolated from blood samples of patients with 
PDAC is very small; the bisulfite treatment further breaks the 
already fragmented cfDNA; and finally, representing a CpG 
island, the DNA of interest is A:T- rich after bisulfite conversion 
and does not yield good results with respect to PCR- based ampli-
fication. Alternative amplification processes could overcome this 
problem or bisulfite sequencing could be automated further 
and thus become cheap enough for routine diagnostics. Second, 
translation to clinical routine could be achieved only after a 
successful multicentre evaluation of the results on a substantially 
larger patient cohort and a clinical trial.

The results add to the growing body of evidence that DNA- 
methylation by its epigenetic nature may be better suited to act 
as disease- specific marker than the more stable genetic factors on 
the one hand or the more complexly regulated transcriptional 
variations on the other hand. The machine- learning algorithm 
used for selecting the biomarkers could be applied to many other 
diseases, for which relevant data exist.
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