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Abstract The development of spatial transcriptomics (ST) technologies has transformed genetic

research from a single-cell data level to a two-dimensional spatial coordinate system and facilitated

the study of the composition and function of various cell subsets in different environments and

organs. The large-scale data generated by these ST technologies, which contain spatial gene expres-

sion information, have elicited the need for spatially resolved approaches to meet the requirements

of computational and biological data interpretation. These requirements include dealing with the

explosive growth of data to determine the cell-level and gene-level expression, correcting the inner

batch effect and loss of expression to improve the data quality, conducting efficient interpretation

and in-depth knowledge mining both at the single-cell and tissue-wide levels, and conducting

multi-omics integration analysis to provide an extensible framework toward the in-depth under-

standing of biological processes. However, algorithms designed specifically for ST technologies to

meet these requirements are still in their infancy. Here, we review computational approaches to these

problems in light of corresponding issues and challenges, and present forward-looking insights into

algorithm development.
Introduction

The cellular and molecular characteristics of multicellular
organisms are influenced by the surrounding cell and tissue envi-
ronments. Therefore, determining the spatial location of cells is

important for the study of cell differentiation, cell communica-
tion, tissue structure, and tissue microenvironment. Break-
throughs in a number of new spatial transcriptomics (ST)
technologies have made it possible to accurately locate cells. In
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situ hybridization (ISH)-based technologies (e.g., smFISH [1],
MERFISH [2], and seqFISH [3,4]) hybridize the targeted
RNA sequences with pre-designed probes and use spectral bar-

codes or sequential imaging technologies to capture fluorescent
signals for transcript identification.However, these technologies
lack the capacity to discover new transcriptomes and isoforms.

In situ sequencing (ISS)-based technologies (e.g., FISSEQ [5]
and STARmap [6]) use micron- or nanometer-sized DNA balls
to enhance RNA signals to achieve ISS, but can only capture a

limited number of genes. In addition, ISH-based and ISS-
based technologies require a highly sensitive single-molecule flu-
orescence imaging system, complex repeated imaging, and fur-
ther complex image analysis processes. Recently, barcode-

based ST technologies have been used to label spatial locations
by capturing sequences in situ and performing transcriptomics
sequencing after elution to overcome the limitations of direct

imaging. 10X Visium (spatial resolution: 55 lm), Slide-seq (spa-
tial resolution: 10 lm) [7], and high-definition ST (HDST; spa-
tial resolution: 2 lm) [8] measure RNA expression at the

capture location (referred to as the spot) with improved spatial
resolution. DBiT-seq [9] uses parallel microfluidic channels to
crossflow two sets of barcodes to the tissue surface and ligate

them in situ to obtain their two-dimensional (2D) coordinates.
Digital Spatial Profiling (DSP) [10] uses light photocleaving to
release photocleavable oligonucleotides in multiple regions of
interest to achieve in situ detection of protein and gene informa-

tion on frozen or paraffin-embedded tissue sections by sequenc-
ing. Seq-Scope [11] uses solid-phase amplification to improve the
capture efficiency with dramatically improved spatial resolu-

tion. The new DNA nanoball (DNB)-based technology,
Stereo-seq [12], can achieve a higher resolution and a larger field
of view than all the methods mentioned above and profile sam-

ples at the size of whole late-stage mouse embryos. For a more
comprehensive review of ST technologies, we refer readers to
references [13–17]. The long-term development goals of ST tech-

nology are to achieve finer detail at the single-cell level, higher
resolution, higher sensitivity, a larger field of view at the micro-
scopic level, and more extensive spatial multi-omics
applications.

The development of ST has produced a large amount of
valuable spatial data, which have greatly improved the feasibil-
ity of interpreting biological mechanisms through omics data,

and thus, ST has been applied in many research fields. For
example, various methods have been applied to assess the
homeostasis and development of healthy tissue. Chen et al.

generated the first panoramic transcriptomic atlas of mouse
organogenesis and obtained insights into the molecular basis
of regional specification, neuronal migration, and differentia-
tion in the developing brain [12]. Crosse et al. spatially charac-

terized the developing hematopoietic stem cell (HSC) niche
and identified factors secreted in early human HSC develop-
ment [18]. ST technologies have also been applied to study tis-

sue composition and function. Hildebrandt et al. delineated a
wide range of spatial gene expression patterns in the liver,
identifying important effects on liver function, development,

and regeneration as well as the potential of these expression
patterns for clinical applications [19]. Baccin et al. discovered
the bone marrow niche organization at the molecular, cellular,

and spatial levels [20]. Investigating the immune microenviron-
ment of cancer and other diseases is another important appli-
cation of ST technologies. Berglund et al. obtained new
insights into gene expression differences between the prostate
cancer core and periphery, and these researchers uncovered
an ‘‘unexplored landscape of heterogeneity” for prostate can-
cer [21]. Chen et al. untangled the dysregulated cellular net-

work in the vicinity of pathogenic hallmarks of Alzheimer’s
disease and other brain diseases [22]. With the increasing num-
ber of these kinds of studies being published, the application of

ST technologies has expanded substantially.
The data generated by ST are an entirely new type and

amount of data requiring specialized solutions. The increase

in the resolution and the scope of barcode-based ST technolo-
gies as well as the throughput of ISH- and ISS-based technolo-
gies has led to dramatic increases in data, which brings
challenges for data storage and computing. Additionally, the

significant differences that exist in the throughput, coverage,
and spatial resolution of different technologies make it difficult
to develop generalizable algorithms. ST-specific algorithms that

utilize spatial information and histology images need to be
developed to investigate and interpret data from a spatial per-
spective. Furthermore, the analysis of ST data is performed at

the RNA level and therefore requires a comprehensive knowl-
edge of cell biology, biochemistry, and immunology. To sum-
marize, the explosion in data volume, the utilization of new

data features, and the integration of multi-omics knowledge
all introduce higher requirements and challenges that must be
addressed to analyze ST data effectively. This review focuses
on five critical topics related to ST data analysis and interpreta-

tion (Figure 1): (1) ST data exploration with regard to data
acquiring, visualization, storage, and access; (2) ST data quality
control and preprocessing, including data quality assessment,

filtering, and quality improvement; (3) single cell- and tissue-
level annotations in ST data; (4) tissue-wide ST data interpreta-
tion with single or multiple slices in multi-dimensional space;

and (5) prospective insights into single-cell and spatial multi-
omics. We introduce these topics in the context of current
research being done, with consideration of how data files pro-

cessing pipelines work in general, and while noting the distinc-
tions among the various analysis modules. We also summarize
the widely used algorithms and tools (Table 1) and discuss the
future development of computing approaches, which might

shed light on the advancement of ST data interpretation.

ST data exploration

ST brings new challenges to big data computing, visualization,
and storage due to the generation of multiplexed and high-

dimensional data that contain multicellular-, cellular-, or
subcellular-level in situ gene expression information. For spa-
tial barcode-based technologies, using Stereo-seq as an exam-
ple, tens of terabytes of raw sequencing data can be

generated from one tissue slice using ST technologies with high
resolution and a large field of view; the results can include as
many as tens of billions of capture units. For ISS-based and

ISH-based technologies, the medium for spatial gene expres-
sion data is a series of images, which require image segmenta-
tion and recognition to extract the gene expression information

and spatial locations. Generating a gene expression matrix,
visualizing tens of billions of probes and storing, and accessing
trillions of megabytes of data have propelled the use of big
data in bioinformatics to a new level. Novel bioinformatics

tools and databases are required to handle these new types
of data.



Figure 1 The main sections in ST data analysis

Schematic of the five critical sections involved in ST data analysis, including (1) big data acquisition, visualization, storage, and access; (2)

data quality control; (3) single cell-level and tissue-level definition; (4) tissue-wide data interpretation; and (5) spatial multi-omics

integration. ST, spatial transcriptomics; ISH, in situ hybridization; ISS, in situ sequencing; SVG, spatial variable gene; CCI, cell–cell

interaction; 3D, three-dimensional.
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Table 1 Summary of the widely used subset of methods applied in ST data analysis

Method Category Description Advantage Disadvantage ST-specific URL Language Released year Ref.

stLearn-SME Data

normalization

A method for normalization using

neighborhood information and

morphological distance

Utilize spatial

neighborhood

information and

morphological

distance

Require histology

images

Yes https://github.com/

BiomedicalMachineLearning/stLearn

Python 2020 [48]

SCTransform Data

normalization

An R package for normalization and

variance stabilization of scRNA-seq

data using regularized negative

binomial regression

Construct a

generalized linear

model for each

gene instead of a

same constant

factor

Cannot

incorporate spatial

and histology

information

No https://github.com/ChristophH/

sctransform

R 2019 [54]

gimVI Data imputation A method for the imputation of

missing genes in ST from scRNA-seq

data

Make use of all the

genes expressed in

scRNA-seq data

Cannot locate

important genes in

prediction tasks

Yes https://github.com/YosefLab/scvi-

tools

Python 2019 [58]

SpaGE Data imputation A method for spatial gene

enhancement using scRNA-seq

Predict whole

transcriptome

expression in their

spatial

configuration

Use only a certain

fraction of the

features and

cannot take full

advantage of the

reference

Yes https://github.com/tabdelaal/SpaGE Python 2020 [59]

stPlus Data imputation A reference-based method for the

accurate enhancement of ST

Robust and

scalable to

datasets of diverse

gene detection

sensitivity levels

and sample sizes

Impute gene

expression

constrained by the

reference (scRNA-

seq data)

Yes https://github.com/xy-chen16/stPlus Python 2021 [60]

BayesSpace Spatial clustering;

resolution

enhancement

A Bayesian statistical model for

clustering and resolution

enhancement of spatial gene

expression experiments

Apply clustering

simultaneously

with or without

resolution

enhancement

Cannot

incorporate

histology

information

Yes https://github.com/edward130603/

BayesSpace

R 2020 [62]

SpaGCN Spatial clustering;

SVG

A graph convolutional network to

identify spatial domains with coherent

gene expression and histology

Incorporate

histology

information;

provide biological

interpretations of

the identified

spatial domains

Cannot account

for cell type

variations in

spatially variable

gene detection

Yes https://github.com/jianhuupenn/

SpaGCN

Python 2020 [73]

SEDR Spatial clustering;

trajectory analysis

A deep autoencoder network to

generate a low dimensional

representation of gene expression by

employing unsupervised deep

clustering

Generate cell

embedding for

subsequent tasks

Cannot

incorporate

histology

information

Yes https://github.com/HzFu/SEDR Python 2021 [74]

(continued on next page)
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Table 1 (continued)

Method Category Description Advantage Disadvantage ST-specific URL Language Released year Ref.

MUSE Spatial clustering A multi-view autoencoder neural

network to characterize cells and

tissue regions by integrating

morphological and spatially resolved

transcriptional data

Incorporate

histology

information;

discover tissue

subpopulations

missed by either

modality

Require histology

information

Yes https://github.com/AltschulerWu-Lab/MUSE Python 2022 [71]

BANKSY Spatial clustering An algorithm to unify cell type

clustering and domain segmentation

by constructing a product space of cell

and neighborhood transcriptomes

Avoid the pitfall of

assuming that cells

of the same type or

subtype are

physically

proximal

Cannot

incorporate

histology

information

Yes https://github.com/prabhakarlab/Banksy_py Python 2022 [72]

RCTD Cell-type

deconvolution

A statistical model to annotate cell

types based on scRNA-seq reference

Normalize ST data

and scRNA-seq

reference before

deconvolution

Ignore the physical

distance and the

spatial dependency

of gene expression

Yes https://github.com/dmcable/RCTD R 2020 [75]

SPOTlight Cell-type

deconvolution

A seeded non-negative matrix

factorization regression algorithm to

infer cell types by integrating scRNA-

seq datasets

Achieve high

sensitivity and

robustness

Infer cell types

constrained by the

prior information

Yes https://github.com/MarcElosua/SPOTlight R 2021 [76]

SpatialDWLS Cell-type

deconvolution

A method to identify the cell types at

each location with Giotto and

determine the cell type composition

using dampened weighted least

squares

Enhance specificity

for the most likely

cell types with a

specific location

Cannot account

for spatial

dependency of

gene expression in

deconvolution

Yes https://github.com/rdong08/spatialDWLS_dataset R 2021 [77]

Cell2location Cell-type mapping A Bayesian model that can identifies

cell types in ST data and create

cellular maps of diverse tissues

Resolve fine-

grained cell types

in ST data

Cannot account

for differences in

the noise

characteristics

Yes https://github.com/BayraktarLab/cell2location/ Python 2022 [63]

pciSeq Cell-type mapping A probabilistic cell typing algorithm

for ST

Utilize probilistic

assignment for cell

typing to provide a

confidence score

Require scRNA-

seq data of the

tissue of interest

Yes https://github.com/acycliq/pciSeq Python 2020 [65]

Baysor Cell-type mapping A tool for Bayesian segmentation of

ST by considering both cell

transcripts and morphological

information

Segment cells

using molecular

position alone or

incorporate

additional staining

information

Require manual

processing for

better performance

on difficult cases

Yes https://github.com/kharchenkolab/Baysor Julia 2020 [78]

JSTA Cell-type mapping A computational framework to

iteratively update cell segmentation

by adding cell type probabilities to

pixels

Improve the

assignment

accuracy at pixel

level by using

existing cell type

information

Can only apply to

RNA

hybridization-

based ST

Yes https://github.com/wollmanlab/JSTA Python 2021 [66]
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Table 1 (continued)

Method Category Description Advantage Disadvantage ST-specific URL Language Released year Ref.

SSAM Cell-type mapping A cell segmentation-free framework

to assign cell types to pixels by using

mRNA signals

Scalable to 3D;

possible to identify

rare cell types

Calculating each

gene’s density

could be a

performance

concern on non-

FISH techniques

Yes https://github.com/HiDiHlabs/ssam Python 2019 [64]

CellTrek Cell-type mapping A computational method to achieve

single-cell spatial mapping through

coembedding and metric learning

approaches

Achieve single-cell

spatial mapping

Require ST spots

with relative high

cell purities

Yes https://github.com/navinlabcode/

CellTrek

R 2022 [79]

GCNG CCI A graph convolutional network to

propose novel pairs of extracellular

interactions

Incorporate

spatial context;

identify

interactions that

are limited to a

specific area or

specific cell types,

or that are related

to more complex

patterns

Infer CCIs

constrained by the

prior information

Yes https://github.com/xiaoyeye/GCNG Python 2020 [89]

CellPhoneDB CCI A novel repository of ligands,

receptors, and their interactions which

integrates with a statistical framework

that predicts enriched cellular

interactions

Take multi-

subunit protein

complexes into

consideration

Cannot

incorporate spatial

context;

constrained by the

prior information

No https://github.com/

Teichlab/cellphonedb

Python 2020 [90]

CellChat CCI A tool to quantitatively infer and

analyze intercellular communication

networks from scRNA-seq data

Take multi-

subunit protein

complexes into

consideration, as

well as other

important

signaling cofactors

Cannot

incorporate spatial

context;

constrained by the

prior information

No https://www.cellchat.org/ R 2021 [91]

NicheNet CCI A method to predict ligand–target

links between interacting cells by

combining their expression data with

prior knowledge on signaling and

gene regulatory networks

Incorporate both

ligand–receptor

interactions and

intracellular

signaling into

prior model

Neglect multi-

subunit protein

complexes

No https://github.com/saeyslab/nichenetr R 2020 [92]

Giotto CCI; SVG;

clustering

A toolkit for characterizing cell-type

distribution, spatially coherent gene

expression patterns, and CCIs

Incorporate

spatial context

Focus on

unsupervised

correlation-based

analysis

Yes https://github.com/RubD/Giotto R 2021 [31]

Trendsceek SVG A method to identify significant gene

expression gradients and hot spots in

low-dimensional projections based on

marked point processes

Incorporate both

spatial and

expression-level

information

Analyze on

normalized

expression rather

than count data

Yes https://github.com/edsgard/

trendsceek

R 2018 [81]
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Table 1 (continued)

Method Category Description Advantage Disadvantage ST-specific URL Language Released year Ref.

SpatialDE SVG A statistical test to identify genes with

spatial patterns of expression

variation from multiplexed imaging

or spatial RNA-seq data

Relate tissue

structure and cell

type composition

using the

expression

patterns of marker

genes;

computationally

efficient

Analyze on

normalized

expression rather

than count data

Yes https://github.com/Teichlab/

SpatialDE

Python 2018 [82]

SPARK SVG A method based on linear spatial

models for identifying genes that

display spatial expression patterns

Construct model

based on count

data directly;

produce well

calibrated P values

for type I error

control

Relying on pre-

specified spatial

kernels may limit

its detection of

genes not captured

by them

Yes https://github.com/xzhoulab/

SPARK-Analysis/

R 2020 [83]

SpatialDE2 SVG An integrated software framework

which can unify the mapping of tissue

zones and SVG detection

Deal with raw

mRNA counts;

offer superior

computational

speed

Require that the

size of kernel and

distance matrices

scales with the

square of the

number of spatial

locations

Yes https://github.com/PMBio/SpatialDE [84]

HRG SVG A method proposed to find the

informative genes

Deal with both

single-cell data

and spatial data

Require

comprehensively

evaluation of

performance on

ST data

No https://lifeome.net/software/hrg R 2022 [85]

stLearn-PST Trajectory analysis A method to reconstruct the

evolutionary trajectories based on

transcriptome profiles and the spatial

context of cells within a tissue

Incorporate

spatial context

Analyze based on

PAGA method

Yes https://stlearn.readthedocs.io/ Python 2020 [48]

Monocle Trajectory analysis An unsupervised algorithm to

increase the temporal resolution of

transcriptome dynamics using

scRNA-seq data collected at multiple

time points

Infer more

complex

topologies

Cannot infer

graph trajectory

topology; time

consuming

No https://monocle-bio.sourceforge.net/ R 2014 [96]

PAGA Trajectory analysis An interpretable graph-like map of

the rising data manifold to reconcile

clustering with trajectory inference

Perform better on

datasets with trees

or more complex

trajectories

Require prior

information

No https://github.com/theislab/paga Python 2019 [97]

Slingshot Trajectory analysis A method for inferring cell lineages

and pseudotime from single-cell gene

expression data

Perform better on

datasets

containing more

simple topologies;

user-friendly

Cannot infer

graph trajectory

topology

No https://github.com/kstreet13/

slingshot

R 2018 [98]
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Table 1 (continued)

Method Category Description Advantage Disadvantage ST-specific URL Language Released year Ref.

SCORPIUS Trajectory analysis A trajectory inference method for

inferring trajectories in a purely data-

driven manner

Produce slightly

more stable results

Can only infer

linear trajectory

topology

No https://github.com/rcannood/

SCORPIUS

R 2016 [99]

SIRV RNA velocity A method to derive cellular

differentiation dynamics in a spatial

context at the single-cell resolution

Incorporate

spatial context

Cannot perform

RNA velocity

without spatial

context

Yes https://github.com/tabdelaal/SIRV Python 2021 [103]

Velocyto RNA velocity A package for the analysis of

expression dynamics in scRNA-seq

data

Propose RNA

velocity at the first

time

Cannot

incorporate spatial

context; difficult to

be applied to most

transcription

factors

No https://velocyto.org Python 2018 [104]

scVelo RNA velocity A likelihood-based dynamic model to

generalize RNA velocity estimates for

transient systems and systems with

heterogeneous subpopulation kinetics

Infer RNA

velocity in near-

linear runtime

Cannot

incorporate spatial

context; difficult to

be applied to most

transcription

factors

No https://scvelo.org Python 2020 [105]

Dynamo RNA velocity A computational framework to infer

absolute RNA velocity, predict cell

fates, extract underlying regulations,

and predict optimal reprogramming

paths and perturbation outcomes

Overcome the

fundamental

limitations of

conventional

splicing-based

RNA velocity

analyses

Cannot

incorporate spatial

context; require

the steady-state

assumption

No https://github.com/

aristoteleo/dynamo-release

Python 2022 [106]

Note: ST, spatial transcriptomics; scRNA-seq, single-cell RNA sequencing; RNA-seq, RNA sequencing; SVG, spatial variable gene; CCI, cell–cell interaction; 3D, three-dimensional; HRG, Highly

Regional Genes.
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Data acquisition

Typically, similar to single-cell RNA sequencing (scRNA-seq)
data processing, obtaining the gene expression matrix from the
raw sequencing data generated by barcode-based ST technolo-

gies is a standard analysis strategy that involves barcode map-
ping, alignment or assignment of reads, quality control, and
unique molecular identifier (UMI) counting of RNA transcrip-
tomes (Figure 2). Two classes of algorithms and tools have

been developed to quantify gene expression. Full-alignment
methods like Space Ranger (https://support.10xge-
nomics.com/spatial-gene-expression/software/pipelines/latest/

what-is-space-ranger) use standard RNA sequencing (RNA-
seq) aligners such as STAR [23] to align reads to a reference
genome; this is a widely used standard solution for scRNA-

seq or ST technologies. Pseudo/transcriptome alignment meth-
ods, including Alevin [24] and kallito|bustools [25–27], apply
k-mer-based counting algorithms [27] or quasi-mapping [28]

to boost the alignment efficiency by an order of magnitude,
but the quantification accuracy is questionable [29]. Compre-
hensive benchmarks are needed to evaluate these methods
under the ST context. Spatial barcode mapping of tens of
Figure 2 Data computing to obtain gene expression information from

The raw sequencing data generated from spatial barcode-based transc

barcodes and RNA sequences. The barcodes are mapped back to the sp

a genome reference. UMI counting is performed to count the numb

expression profile is generated. The imaging data generated using ISS

containing RNA signals by alignment or decoding. Image segmentatio

each spot or cell afterwards. Gene expression information with spatia
billions of spatial locations is difficult and time-consuming,
especially if sequencing errors and the collision rate are taken
into consideration. The larger the number of spatial capture

units is, the more likely it is that collisions will occur during
the barcode mapping process. One way to solve this problem
is to increase the length of the barcode sequence. Unfortu-

nately, doing so also increases the error rate for the barcode
sequence and further complicates the error correction proce-
dure. Compared with the barcode mapping methods used in

scRNA-seq, spatial barcoding is more complex and requires
more efficient computational solutions.

Images generated by ISS-based and ISH-based technologies
should be processed to obtain the cell-level matrix as well as

the corresponding spatial location (Figure 2). Watershed algo-
rithms and many deep learning methods can be applied to dis-
tinguish cell borders according to RNA density. Therefore, the

identification of cell borders depends on the performance of
the algorithms and the image quality, which suggests that the
predicted cell boundaries may not be the actual physical

boundaries, making it more difficult to assign each mRNA
to the correct cell. Although data errors are inevitably
retained, these images are eventually transformed into spatial

expression matrices.
raw sequencing or image data

riptomics technologies contain two kinds of sequence information,

atial location, and corresponding RNA sequences are aligned with

er of aligned genes belonging to each cell or spot, and the gene

-based or ISH-based technologies can be transformed into images

n is used to isolate the RNA signals and each RNA is assigned to

l locations is obtained. UMI, unique molecular identifier.

https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/what-is-space-ranger
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/what-is-space-ranger
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/what-is-space-ranger
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Data visualization

An interactive and editable visualization interface is a practical
solution for understanding and analyzing complex spatial
data, as it turns pale granular data into easily understood

and visually compelling information without the need for cod-
ing skills. However, the spatial gene expression interface has a
high resolution, involves a large amount of data, and is cum-
bersome to operate. A more efficient visualization framework

is therefore required to display tens of billions of data points
and handle computationally intensive tasks.

With the rapid development of ST technologies, companies

and teams involved in this area have put effort into developing
interactive visualization and analysis tools. Desktop software,
such as ST viewer [30] developed by SciLifeLab in Sweden and

the 10X Genomics Loupe Browser (https://www.10xge-
nomics.com/products/loupe-browser), include a user-friendly
real-time visualization interface for basic analysis and visual-

ization. Loupe Brower also contains functionalities for more
advanced clustering analysis, differential gene expression anal-
ysis, and spot–tissue image alignment. Giotto [31] is a web-
based visualization tool that uses a Google Map-like algorithm

to present and navigate ST data interactively. Its analysis mod-
ule contains advanced real-time analysis functions such as
exploring spatial patterns and cell-to-cell interactions. Stereo-

Map (https://stereomap.cngb.org) is a web-based visualization
interface designed by BGI Research to visualize subcellular
resolved transcriptomic and tissue morphological data in a

responsive and interactive manner. It employs a multi-
resolution visualization system to efficiently navigate an exten-
sive amount of data and provides utilities to select a subset of
regions of interest for further advanced analysis. These visual-

ization and analysis tools can visualize the arrangement of spa-
tial locations or project the dimensionally-reduced data into
2D space. The gene expression value, cell cluster, and meta

information of each cell or spot can be used to define the color
and size of the scatter. However, these systems don’t support
visualization of data features calculated by advanced analysis,

such as that for the cell differentiation trajectory. In addition,
these tools do not include three-dimensional (3D) visualization
of multiple tissue sections due to the complexity. 3D visualiza-

tion involves many steps, and it has a lot of problems that need
to be settled. For example, tissue segmentation and registra-
tion, which is needed to achieve 3D visualization, are steps that
can be improved with technological advances. This topic is

explained in detail in the ‘‘3D reconstruction” section under
the heading ‘‘Tissue-wide ST data interpretation”.

Data storage and access

Storage challenges are encountered with three types of data:
images, sequencing data, and their corresponding gene expres-

sion matrices. Images are commonly compressed and stored,
which is a technically mature approach. Compared with
whole-genome sequencing, the sequencing data volume for

ST may be up to two orders of magnitude larger [12]. How-
ever, only a few existing sequence compression algorithms
[32,33] are tailored for transcriptomics data, and the location
information for genes is incompatible with algorithms for data

streams in FASTQ. Moreover, the gene expression informa-
tion for adjacent locations has potential reference value for
eliminating redundancy. Thus, customized algorithms are
required to reduce the high cost of data storage. In terms of
gene expression arrays, even though some tools have been

developed for visualization and analysis as mentioned above,
they are still unfit for prospective utilization with ST. Without
a standard data format for gene expression arrays, various bin-

ary files with similar content would be created by different
tools, which hinders the combination of tools and results in
the waste of storage and calculation resources. To ensure high

performance and a low cost of usage and updates, the data for-
mat needs to support a high input/output (I/O) speed, high
compression ratio, and high scalability. Some application pro-
gramming interfaces (APIs) are also required for specific usage

scenarios, e.g., real-time interactions for visualization. To date,
a unified data format accompanied by a set of visualization
and analysis tools is still unavailable.

Databases are necessary to collect, dispose of, integrate, and
display ST data. SpatialDB [34] is reported to be the first manu-
ally curated database for spatially resolved transcriptomics tech-

niques and datasets. It contains 24 datasets (305 sub-datasets)
from five species (human, mouse, zebrafish, Drosophila, and
Caenorhabditis elegans) generated using eight spatially resolved

transcriptomics techniques. Besides SpatialDB, only a few cellu-
lar or molecular atlases for specific tissues are available for data
acquisition [35–38]. In contrast, databases developed for single-
cell datasets are more comprehensive and each has different lim-

itations. PanglaoDB [39], single-cell studies database [40], and
scRNASeqDB [41] utilize single-cell datasets with the corre-
sponding experiment information and display the gene expres-

sion. The EMBL-EBI Single Cell Expression Atlas (https://
www.ebi.ac.uk/gxa/sc/home) and Single Cell Portal
(https://portals.broadinstitute.org/single_cell) provide data files

after reprocessing using predefined processing pipelines. Cell
BLAST [42] and CellAtlasSearch [43] apply trained cell-type
classification models using the collected data to predict the cell

type of a query cell. The recently released hECA [44] database
assembles the collected data into a unified data repository for
overall screening, computing, and datamining. Based on its col-
lected single-cell datasets, the newly publishedDISCO [45] data-

base constructs one global atlas and 27 sub-atlases for different
tissues, diseases, and cell types.

Databases such as those listed above, which were created

for data collection, sorting, reprocessing, integration, and pro-
viding retrieval and query services, should be established for
ST technologies as well. Compared to single-cell data, cells

or spots with spatial locations from the same tissues pose the
problem of integration at the tissue level. As has been shown,
it takes 190 s to screen 210,000 cells from 1,093,299 cells in
hECA using a logic expression [44]. Data screening of all stud-

ies, meaning all tissues and all cells have been screened within
an acceptable time frame, is the first challenge for big data
storage. Fast calculation for data reprocessing and data simi-

larity is the second challenge for big data computing. These
two challenges require database creators to focus on the com-
prehensive design of databases.

ST data quality control and preprocessing

Due to the limitations of the current experimental methods,

the number of genes effectively captured by barcode-based
ST technologies is substantially lower than that for

https://www.10xgenomics.com/products/loupe-browser
https://www.10xgenomics.com/products/loupe-browser
https://stereomap.cngb.org
https://www.ebi.ac.uk/gxa/sc/home
https://www.ebi.ac.uk/gxa/sc/home
https://portals.broadinstitute.org/single_cell
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scRNA-seq. Specifically, the gene expression value extracted
with sequencing technology is lower than the real expression
level. Moreover, some genes known to be present in the sample

may be missing entirely [46]. In addition, gene diffusion caused
by the experiment and the inner batch effect is a common
problem in ST data generated by barcode-based ST technolo-

gies. The quality of images generated by all ST technologies is
highly dependent on the imaging system; therefore, images
should be assessed before used for data collection. In sum-

mary, it is necessary to perform data quality assessment, data
filtering, normalization, and data imputation to improve the
data quality for subsequent analysis (Figure 3).

Data quality assessment

Data quality is influenced by the experiment workflow, manual
operator, sequenator, and imaging system. All of the data are

mainly generated by the sequencer or imaging system and can
be divided into two types: sequencing data and images. Sequenc-
ing data are processed to determine the gene expression, similar

to the common RNA-seq data or scRNA-seq data, with the
slight difference being that ST data contain spatial location
information. Data quality assessment of sequencing data and

data generated during subsequent processing are mainly
Figure 3 Data preprocessing for ST data quality control

Data quality assessment is the first step to evaluate and determine whe

resolution and expression data with enough supported reads, includ

reads), clean reads, unique mapping reads, and the total gene numb

contain cells/bins and genes, is further screened to eliminate low-ex

data imputation are applied to improve the data quality.
focused on four indicators: (1) the valid reads orUMIs orRNAs
that can be mapped to the tissue-covered region, (2) the amount
of clean reads without an adapter and barcode sequence, (3) the

unique mapping reads that can be mapped back to the unique
locations of the reference genome, and (4) the amount of unique
reads that can be successfully annotated.

Images generated by the imaging system can be divided into
two types according to their usage: the fluorescence imaging
data used by ISH-based and ISS-based technologies that con-

tain molecular signals, and the stained images that present the
details and contours of the tissue slice. The image quality is
highly dependent on the resolution and stability of the micro-
scope and its manual operation. The strategy used for the

microscope will first generate several sub-images and subse-
quently combine them to obtain the full image. Reference
coordinates are pre-generated by ST technologies and image

stitching is an essential step to obtain a complete and correct
view of the tissue slice. The Visium platform generates fiducial
spots of each area in Visium slides to determine the location of

the captured region and assist in image stitching. The Stereo
platform uses the track line built into the chip for the same
purpose. Therefore, the image clarity and resolution of the

focal plane of sub-images are mainly evaluated for image qual-
ity assessment.
ther the data are ready for the next analysis. Image data with high

ing valid reads mapped to the tissue-covered region (valid tissue

er, are checked. Then, the data after tissue segmentation, which

pression cells/spots and genes. Finally, data normalization and
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Data filtering

It is necessary to determine which spots are covered by tissues
and contain real transcripts for the data generated by barcode-
based ST technologies. In ST experiments, the transcripts may

become diffused during permeabilization and subsequent bio-
chemical reactions, finally spreading to areas not initially cov-
ered by tissues. Some arbitrary screening can be performed to
filter these areas, e.g., by screening the number of UMIs to fil-

ter out spots with a low capture rate. However, such global fil-
tering does not take into consideration the prior tissue shape.
On the contrary, a more reasonable approach is to segment the

tissue area according to the stained image. Space Ranger,
which is designed to process 10X Visium spatial gene expres-
sion data, trains a statistical classifier to separate fiducial spot

patterns covered by tissue from the background area. Tis-
sueCut (https://github.com/BGIResearch/TissueCut) devel-
oped for Stereo-seq technology also provides a deep neural

network-based method for cutting out the tissue area, either
from registered stained images or directly from the gene
expression profiles. However, the unique appearance of each
tissue sample and the variable scale, size, and quality of the

stained image make the problem challenging to solve. There-
fore, when automatic organization segmentation algorithms
cannot provide an optimal solution, manual correction may

be necessary. The gene expression information generated by
ISH-based and ISS-based technologies may also require tissue
segmentation when noise exists outside the tissue region asso-

ciated with the probe binding.
The gene expression metrics are measured on the spot by

most barcode-based ST technologies. For subcellular resolu-
tion data, data binning is performed to combine the genes in

multiple spots or bins to achieve gene expression at the
single-cell level. For low-resolution data, the spot is the mini-
mum unit for measuring gene expression. The spatial gene

expression should undergo some preprocessing operations
before subsequent data correction and analysis. Low-quality
cells or spots should be filtered according to the quality control

metrics, such as the number of genes contained in each cell or
spot (low-quality cells or empty droplets contain very few
genes) and the percentage of mitochondrial genes (low-

quality or dying cells often exhibit extensive mitochondrial
contamination) [47]. Genes with few cells or spots detected
(usually less than three cells) will also be screened. However,
the filtering threshold needs to be adjusted based on the objec-

tives of the study.

Data normalization

The purpose of normalization is to counteract technical noise
or bias in sequencing depth. Spatial morphology and gene
expression measuring, combined in stLearn [48], is the first

method that uses neighborhood information (spatial location)
and morphological distance to normalize gene expression data.
However, evaluation metrics to measure its performance are

lacking.
Data normalization tools that are currently widely used in

research are customized for scRNA-seq data and can be
divided into two groups according to related principles. The

first type of normalization method is log-normalization. A size
factor representing the relative deviation of each cell is
estimated to eliminate bias and generate the normalized gene
expression. Scran [49] uses the size factor to deal with the drop-
out and zero count of scRNA-seq data. BASiCS [50] infers

cell-specific size factors based on spike-ins to distinguish tech-
nical noise from biological cell-to-cell variability. However,
high-abundance genes may not be effectively normalized using

this normalization method [51]. The other approach is based
on a probability model and represents a relatively new and
complex strategy. It simulates the counting of small molecules

by fitting distributions and uses model fitting residuals as a
standardized quantification of gene expression. Some methods
such as ZINB-WaVE [52], scVI [53], and SCTransform [54]
(wrapped in Seurat) were developed based on the aforemen-

tioned idea. SCTransform, recommended by Seurat, fits a reg-
ularized negative binomial model to raw count data. The
residuals of this model can be used as normalized and

variance-stable values.
Due to the widespread confusion in single-cell experiments

and the lack of uniform optimal standardization among data-

sets, sometimes a single method may not be enough to normal-
ize a dataset. It is a good strategy to use multiple statistical
indicators to guide the selection of appropriate methods for

a given dataset [55]. Besides, the distribution and sparsity of
ST data differ from those of single-cell data, and the validity
of single-cell data normalization algorithms applied to ST data
needs to be verified. Spatial location and imaging information

can also effectively assist with the smooth normalization of
spatial expression and reduce the real differential expression.
Furthermore, a positional batch effect may be present, that

is, genes expressed in different locations in the same tissue
can be significantly different in some cases. However, existing
normalization methods do not address these issues. Taking

these data characteristics and issues into account, the require-
ments for new algorithms for normalization should include the
ability to obtain more realistic spatial gene expression, and to

differentiate ST data from single-cell data.

Data imputation

Imputation aims to accurately predict the expression of

unmeasured genes and effectively identify cell populations with
low gene detection sensitivity [11]. Data imputation is not
always necessary for ST data analysis. Usually, it is required

for data generated by barcode-based ST technologies because
the data are relatively sparse compared to the data generated
by other ST technologies. Some techniques apply data imputa-

tion by integrating ST data and single-cell data. Linked infer-
ence of genomic experimental relationships (LIGER) [56] and

Seurat [57] are joint embedding-based methods, which com-
bine dimensionality reduction for single-cell data and ST data

and then impute the unmeasured genes of ST data based on the
connection between cells in the two datasets. gimVI [58], a
deep generative model, aims to solve the problem with imput-

ing missing genes in ST data based on single-cell data from the
same biological tissue. This model can use all the genes
expressed in single-cell data for imputation, but which genes

contribute to the imputation task is not clear in the prediction
task. SpaGE [59] only uses the genes shared by the spatial and
single-cell data to perform linear joint embedding and then

predicts spatial gene expression through the k-nearest neighbor
(k-NN) method, which can predict the whole transcriptome

https://github.com/BGIResearch/TissueCut
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expression in the corresponding spatial configuration. Instead
of only using genes shared with ST data, stPlus [60] builds an
autoencoder to leverage overall information from reference

scRNA-seq data. Additionally, stPlus predicts the gene expres-
sion in ST via a weighted k-NN approach by learning cell
embeddings. The methods described use scRNA-seq data as

the reference to predict ST data; however, they do not fully uti-
lize the association between genes and the gene features that
appear only in ST data. Furthermore, these methods neglect

to take advantage of spatial and histology information, which
have critical complementary functions for gene imputation. It
is important to note that the majority of imputation methods
do not improve performance in downstream analysis com-

pared to no imputation, especially for clustering and trajectory
analysis according to evaluations at the single-cell level [61].
Therefore, imputation should be used with caution. To

improve the value of imputation, a comprehensive evaluation
of these methods applied to ST data is urgently needed.

Single cell- and tissue-level annotations in ST data

One of the key advantages of ST techniques over scRNA-seq is
the ability to associate spatial information to gene expression
Figure 4 Cell- and tissue-level annotations for high- or low-resolution

There are mainly two solutions for cell annotation of the ST data: mark

gene-based annotation includes cell region definition, cell clustering,

subcellular resolution are used to perform cell identification. This is im

the cell boundaries and to identify the areas with relatively concentrate

approaches can be applied to enhance the resolution. Clustering and an

comprehensive definitions of the cells. Reference-based annotation

composition by deconvolution for low-resolution ST data or by d

annotation can be further applied to obtain the tissue architecture b

sequencing; DEG, differentially expressed gene; HR, high resolution.
patterns. The introduction of spatial information facilitates
single cell-level annotation and the study of tissue architecture
and function. There are mainly two solutions for cell annota-

tion of the ST data: marker gene-based annotation and
reference-based annotation (Figure 4). The marker gene-
based annotation involves multiple steps including cell identi-

fication and reads assignment, followed by clustering and then
marker gene-based annotation. The reference-based annota-
tion makes use of databases or references generated by other

techniques, specifically scRNA-seq, to guide automatic cell
annotation. Tissue structure annotation is further applied to
identify biologically heterogeneous regions and may support
the study of biological and disease development.

Cell-level marker gene-based annotation

Cell annotation, cell typing, or cell-type mapping provides the

foundation for subsequent in-depth analysis, including the
study of tissue function and cell–cell interactions (CCIs) in
the microenvironment. This perspective considers the conven-

tional cell annotation, which is a multi-step procedure: cell def-
inition by allocating mRNA reads and optional cell
segmentation, clustering analysis on gene expression features,
data

er gene-based annotation and reference-based annotation. Marker

and cell cluster annotation. With this solution, the ST data with

plemented by cell segmentation based on stained images to obtain

d gene expression signals. For low-resolution data, computational

notation based on marker genes are then applied to provide more

integrates scRNA-seq data to annotate cell types or cell-type

irect mapping for high-resolution ST data. Tissue architecture
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and finally cell-type annotation by identifying marker genes
that match prior biological knowledge.

There are different ways to define a cell region in ST data.

For low-resolution ST techniques such as 10X Visium, mRNA
reads are captured within patterned spots. Therefore, the min-
imum processing unit is a spot, which is considered a pseudo

cell, even though each spot contains multiple cells. In order
to cope with low resolution, resolution enhancement methods
have been proposed. BayesSpace [62] splits the Visium spots

into subspots and estimates the gene expression level at each
subspot by leveraging the spatial neighborhood structure.
XFuse [63] uses a generative network to produce a high-
resolution expression map by integrating spatial gene profiles

with histology images. As a preprocessing step, resolution
enhancement can reveal cell composition in detail as well as
the tissue’s finer anatomical structures. On the contrary, for

high-resolution ST techniques, in order to properly assign
mRNA reads to each cell region, one approach is to ‘‘bin”
the reads with a proper radius. This can be done by simply

considering the region within a square or circular area as a cell,
or by estimating the cell span with a probabilistic model that
estimates the gene expression distribution [64]. Although spa-

tial binning divides cell regions without the need of additional
information, the grid or regular patterns of the bins only give
an approximation of the cell shape, while the probabilistic
model-based estimation produces irregular cell boundaries,

which significantly affects downstream analysis, including
interpretations of CCIs. For ST technologies that come with
fluorescence imaging, cell segmentation methods can be

applied to obtain cell boundaries. Qian et al. [65] used tradi-
tional watershed segmentation, and Littman et al. [66] incorpo-
rated Cellpose [67] to detect the cell nuclei in 4,6-diamino-2-

phenyl indole (DAPI)-stained images. HDST [8] performs
nuclei segmentation on hematoxylin and eosin (H&E) images
by combining Ilastik [68] and CellProfiler [69]. Segmentation

algorithms have been widely investigated in the area of histo-
logical and fluorescence images, and hence can be easily
adjusted to meet the needs of ST data. However, the accurate
delineation of cell nucleus boundaries remains challenging due

to problems such as touching or overlapping cells and defocus-
ing aberrations. Most importantly, the nucleus segmentation is
just an estimation of the whole-cell region, and it is better to

correct the assigned mRNA reads to reveal the true nature
of the cell.

Once the genes are assigned to corresponding cells, cluster-

ing analysis is then performed to provide a general overview of
the morphological structure of the tissue. The clustering work-
flows proposed for scRNA-seq analysis, such as in Seurat V3
[47] and SCANPY [70], are commonly used in ST analysis,

where traditional Leiden or Louvain clustering is often applied
on a feature set generated by performing dimensionality reduc-
tion with methods such as principal component analysis

(PCA), t-distributed stochastic neighbor embedding (t-SNE),
and uniform manifold approximation and projection (UMAP)
on gene expression data. However, these approaches only

employ gene expression information and ignore the strength
of ST datasets. Recently, several spatial clustering and feature
extraction algorithms were developed to combine spatial dis-

tance information or tissue morphological information with
gene expression profiles. For example, BayesSpace [62] imple-
ments a fully Bayesian model with a Markov random field
before encouraging neighboring spots to join the same cluster.
MUSE [71] constructs a multi-view autoencoder to combine
multi-modal information to identify high-resolution latent
subpopulations. It can discover tissue subpopulations missed

by either modality as well as compensate for modality-
specific noise. BANKSY [72] combines cell expression with
the weighted average of the expression of neighboring cells

within its microenvironment as augmented features for spatial
clustering. SpaGCN [73] and structural elements detection and
reconstruction (SEDR) [74] use deep autoencoder networks to

integrate the spatial distance and gene expression to generate a
low-dimension representation for clustering. The embedding
generated by a deep autoencoder model can then be used for
subsequent tasks. Although most methods present reasonable

results, prior biological knowledge and, if possible, proper
ground truths are needed to evaluate the clustering results.
Methods that require the tuning of hyper-parameters suffer

from subjective assessment, where a perturbation in parame-
ters could result in distinct spatial patterns. Methods that
incorporate spatial information sometimes introduce excessive

spatial influence, producing spatially lumpy clusters, which
deviate from the true biological structures. With regard to
the importance of clustering, the selection of a proper method-

ology should be determined with caution.
Cells of the same cluster have similar gene expression levels,

and thus are considered to be the same cell type. The topmost
differentially expressed genes (DEGs) are usually used to char-

acterize the biological functions of the cells, which is the basis
of naming a cell type by biologists. Therefore, one can manu-
ally associate cell types to clusters by matching the marker

genes to existing knowledge. However, as straightforward as
it seems, manual annotation is laborious and prone to error.
Marker gene detection is not always exclusive, meaning a gene

which defines a cell type can exist in more than one cluster,
therefore leading to similar rankings between clusters. Some-
times a cell type is determined by the coexistence of several

genes, but not all of them are ranked at the top in any clusters,
which complicates the decision. Moreover, conflicts occur in

prior knowledge, as the annotation standards vary among
studies. Therefore, it is important that researchers have rele-

vant background knowledge and experience in order to per-
form these analyses with good judgement.

Cell-level reference-based annotation

Thanks to the extensive research in scRNA-seq, numerous cell-
type databases have been introduced for various types of spe-

cies and tissues, which make annotating ST data with existing
references possible. Based on resolution differences among
various ST techniques, cell annotations with references can
be further divided into two categories: deconvolution and

direct mapping.
Due to technical limitations, ST technologies such as 10X

Visium, which has spots with a minimum diameter of 55 lm,

are not able to achieve single-cell resolution. In order to prop-
erly annotate cell identities, deconvolution algorithms have
been proposed to estimate the composition of cells within each

physical spot by transferring cell-type signatures defined by
scRNA-seq. Robust cell-type decomposition (RCTD) [75] fits
each pixel as a linear combination of individual cell types

and estimates the cell-type proportion by fitting a statistical
model to the assumed Poisson-distributed gene expression
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levels. SPOTlight [76] focuses on a seeded non-negative matrix
factorization regression to deconvolute ST spots using prede-
fined cell-type marker genes. SpatialDWLS [77] uses an enrich-

ment analysis to find potential cell types at each location, and
then a dampened weighted least squares method is used to
infer the cell-type composition. Cell2location [63] first esti-

mates the scRNA-seq reference cell-type signatures by a nega-
tive binomial regression model, and then the hierarchical
Bayesian model is used to decompose the mRNA counts in

the multi-cell ST data to obtain accurate cell-type subpopula-
tions. Although a deconvolution strategy can predict the cell-
type composition, each spot is still a mixture of several differ-
ent cells, thus making a high resolution-ready ST technology

exceedingly compelling.
For ST techniques that achieve cellular or subcellular res-

olution, cell annotation is performed by first assigning gene

expression to each predicted cell location, followed by direct
scRNA-seq cell-type mapping. pciSeq [65] first detects the cell
nuclei in DAPI-stained images using traditional watershed

segmentation, then uses Bayesian modeling to estimate the
probability for allocating each read to each cell, and eventu-
ally assign each cell to its proper cell class. Baysor [78] com-

bines the spatial density, position, and gene identity to
estimate neighborhood composition vectors for each mole-
cule, and utilizes the Markov random field to assign neigh-
boring molecules to the same cell, which can be annotated

according to scRNA-seq data. Joint cell segmentation and
cell-type annotation (JSTA) [66] first performs watershed-
based segmentation on DAPI-stained images to extract cell

nuclei and their corresponding RNA signals in MERFISH
data. A deep neural network is then trained on scRNA-seq
data to assign cell types to each segmented cell. The cell clas-

sification result is iteratively updated by reassigning pixels to
new labels according to the estimated probabilities. Spot-
based spatial cell-type analysis by multidimensional mRNA

density estimation (SSAM) [64] first creates a gene expression
vector field by calculating and stacking the mRNA intensity
distribution of each gene in fluorescence in situ hybridization
(FISH). A cell-type map is then generated by labeling each

pixel in the image according to the computed gene expression
signatures. The aforementioned methods are applied on ISH-
or ISS-based technologies, while CellTrek [79] is applied on

barcode-based technologies. CellTrek combines ST and
scRNA-seq data into a shared latent space and trains a ran-
dom forest model to map spatial coordinates to single cells

which are close in distance to their corresponding co-
embedded ST counterparts. However, CellTrek maps cells
to their most similar spots based on a sparse graph, which
requires ST spots with relatively high cell purities.

With the help of the available scRNA-seq annotation data-
base, cell-type knowledge can be transferred to ST data by
matching the closest features defined and extracted by the pro-

posed methods to existing reference profiles. The annotations
of cell types have high confidence as the scRNA-seq database
has been proven to be credible. However, it is difficult to find

new cell types that are not present in the database. Moreover,
since the gene expression information obtained with scRNA-
seq has rather distinct characteristics compared with that of

the current ST data, normalization and correction of the trans-
ferred data are required.
Tissue architecture annotation

The aforementioned methods are mainly focused on predicting
or decomposing cell types; however, not all of them seek accu-
rate tissue composition. Algorithms such as SpaGCN [73] and

BANKSY [72] have the ability to perform spatial domain seg-
mentation, providing insights into a tissue’s anatomical struc-
ture, while other methods can distinguish the spatial
composition of cells without determining the actual biological

outlines. The recently proposed RESEPT [80] framework aims
to accurately segment the tissue architecture. Gene expression
is first encoded to a three-channel representation with a graph

autoencoder, and then a convolutional neural network-based
image segmentation model is used to obtain the spatial func-
tional regions. The pathway enrichment analysis is further

used to confirm the biological validity of the segmented tissues.
Tissue architecture is the key element necessary to understand
the function of organs; therefore, it is crucial to identify the

biologically heterogeneous regions within a tissue. The
anatomical information contained in images is essential for tis-
sue architecture annotation tasks. With accurate functional
zonation, knowledge such as the pathogenesis of human dis-

eases as well as development-related functional evolution can
be further attained.

Tissue-wide ST data interpretation

ST technologies allow researchers to identify the characteris-

tics of cells at the single-cell level and study the spatial associ-
ations of cells and genes in multi-dimensional spaces in
combination with spatial locations and tissue images. This
includes detection of spatial variable genes (SVGs) in spatial

tissue domains, uncovering the CCIs and gene–gene interac-
tions involved in cellular communications and collaboration,
inferring the dynamics of cell-state transitions and cell fate

through trajectory and RNA velocity analyses, and discover-
ing new insights in the 3D space. Tissue serial slices and
time-series slices place higher demands on data interpretation

in terms of space and time dimensions.

SVGs

Identification of SVGs that display spatial expression patterns

is critical for characterizing the ST landscape in tissues. Trend-
sceek [81] applies marked point processes to reveal significant
gene expression gradients and hot spots in low-dimensional

projections. SpatialDE [82] and SPARK [83] identify SVGs
based on non-parametric Gaussian process (GP) regression,
with SPARK additionally offering a count-based likelihood

and a more powerful statistical test. Trendsceek and SpatialDE
use normalized expression values for analysis, which can be
suboptimal compared to count data used by SPARK [83]. Spa-

tialDE2 [84] is an integrated software framework released
recently, which can unify the mapping of tissue zones and
SVG detection. Extended features of SpatialDE are that it
can manage raw mRNA counts and offer superior computa-

tional speed over previous methods [84]. These described meth-
ods treat the spatial distribution of gene expression as image
patterns, and the gene analysis focuses more on comprehensive
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information rather than neighborhood expression patterns.
The biological significance of the findings using these methods
needs to be further examined. Identifying Highly Regional

Genes (HRG) [85] is a newly published method designed to
detect informative genes with expression levels regionally dis-
tributed in adjacent cells. The cell–cell network is constructed

by the cell–cell distances in low-dimensional space for scRNA-
seq datasets or constructed by spatial distance for ST datasets.

SVGs are similar to ‘‘highly variable genes” proposed in

single-cell datasets. The major difference is that the detection
of SVGs takes spatial information into consideration. Thus,
the informative genes are detected within the continuous spa-
tial tissue regions, which makes the variable genes more reli-

able and significant. SVGs are detected to study the spatial
expression patterns in spatial tissue zones, while DEGs are cal-
culated to define the specificity of a certain cluster compared to

other clusters. DEGs can be easily identified by performing a
statistical testing, including the t-test and Wilcoxon rank-
sum test, which are wrapped in several tools, such as Seurat

[57] and SCANPY [70]. Combining the studies of SVGs and
DEGs may lead to a more comprehensive interpretation of
the microenvironment of spatial tissues and the independence

and cooperation of cell groups.

CCIs

ST technology provides a unique opportunity to understand

CCIs, the signals of genes that mediate cellular characteristics
across biological tissue and cellular organization (Figure 5A).
The physical distance between cells is considered an essential

attribute in the study of CCIs since it has the potential to illus-
trate the roles of cells during communication and interactions
[86]. Most computational strategies are focused on ligand–

receptor pairs and their designs are based on the cell–cell dis-
tance. Ligand–receptor pairs are known to produce signaling
events that eventually lead to CCIs in the microenvironment

and tissue structure [87]. Some approaches directly map
single-cell data to ST data to obtain the spatial position of
ligands and receptors [20,88]. Other sophisticated tools
designed for ST assign scores by calculating the interactions

between cells and their neighbors, while also taking the cell-
type into account. Giotto [31] ranks ligand–receptor pairs
based on the cell–cell communication score to identify interac-

tions between adjacent cells. The graph convolutional neural
network approach for genes (GCNG) [89] builds graph convo-
lutional networks to propose novel pairs of cells with extracel-

lular interactions. Furthermore, expression permutation-based
tools, such as CellPhoneDB [90] and CellChat [91], can infer
CCIs directly at the single-cell expression level. These two
methods take multi-subunit protein complexes into considera-

tion and address the common limitation of many other meth-
ods by doing so. CellChat even incorporates signaling
cofactors, including soluble agonists, antagonists, and stimula-

tory and inhibitory membrane-bound co-receptors. NicheNet
[92] predicts ligand–target links between interacting cells by
combining their expression data with more comprehensive

prior knowledge, which incorporates ligand–receptor interac-
tions and intracellular signaling. However, NicheNet neglects
multi-subunit protein complexes and signaling cofactors.

Although various computational approaches have emerged,
it remains unclear which metric best captures the underlying
CCIs. Therefore, different methods should be tested to evalu-
ate the value of resulting data for each method [87].

Spatial and histological information is undoubtedly essen-

tial for CCIs. On one hand, cells in close proximity are more
likely to interact than cells that are farther away from each
other. On the other hand, the tissue region boundaries

extracted from histological images are also key locations where
important CCIs occur. Omics data from other dimensions,
including proteomics data and glycomics data, can also be

integrated methodically to improve the prediction of CCIs
and signaling genes. It is important to note that the presence
of ligand–receptor pairs inferred from transcriptomic data
may be inconsistent with their actual presence in proteomic

data. Glycosylation has effects on protein interactions, espe-
cially in ligand–receptor binding and can alter receptor affinity
[87]. With the maturity of 3D ST reconstruction techniques,

future methods should simultaneously analyze multiple con-
secutive sections of the same tissue to discover CCIs in 3D
space. Furthermore, time-series slices require methods to eluci-

date important changes in CCIs during dynamic processes
such as cellular differentiation and immune responses. Multi-
omics, multi-dimensional, and multi-time-series data not only

provide opportunities for novel discoveries but also pose a
challenge for developing more comprehensive CCI and signal-
ing gene mining methods.

Cell fate inference

The cell fate decision refers to the future developmental fate of
a cell, which is restricted and differentiated in a specific direc-

tion before a recognizable morphological change occurs. The
application of trajectory and RNA velocity analyses provide
essential insights into cell fate decision processes (Figure 5B).

Trajectory analysis aims to reconstruct the structure and
dynamics of cell-state transitions by exploring asynchronous
cellular behaviors, stochastic and regulated cell-to-cell varia-

tion, or intrinsic heterogeneities (including lineage diversifica-
tion, lineage convergence, and re-specification of cell identity
by cellular reprogramming) [93]. The phase stretch transform
(PST) algorithm in stLearn reconstructs evolutionary trajecto-

ries based on the transcriptome profile and the spatial context
of cells within a tissue [48]. It uses partition-based graph
abstraction (PAGA) to identify connections within clusters

and compute the pseudotime via diffusion pseudotime
(DPT). Trajectory analysis methods applied in most ST studies
are designed for single-cell analysis [94] and have been compre-

hensively reviewed and benchmarked by Saelens and his col-
leagues [95]. Among them, Monocle first places cells in a
low-dimensional space and then predicts developmental trajec-
tories by building a minimum spanning tree [96]. PAGA [97]

generates graph-like maps of cells to preserve both continuous
cell transitions and discrete cell types. Slingshot [98] takes
advantage of both techniques to identify multiple branching

lineages. SCORPIUS [99] infers trajectories in a purely data-
driven manner without prior information about the dynamic
process. These methods vary in their ability to detect different

trajectory topologies: linear, tree (such as bifurcation and mul-
tifurcation), graph with cycles, and disconnected graphs [100].
In most cases, users know little about the expected trajectory

of the dataset, but these methods preset the trajectory topolo-
gies in advance. According to benchmarking, there is no single



Figure 5 Tissue-wide data interpretation includes single or multiple slices in two- or three-dimensional space

A. Cell communication and gene behavior can be predicted based on spatial gene expression. The receptors and ligands can be identified to

further predict cell communication, and key signaling genes and SVGs can be identified as another aspect to study cell behaviors.

B. Trajectory analysis and RNA velocity are used to predict the cell state dynamics and infer the cell fate particularly in time-series slices to

study cell development. C. 3D reconstruction can be divided into three steps, namely tissue segmentation, registration, and 3D

visualization. A 3D view of the tissue makes it possible to perform the aforementioned data mining from 2D to 3D data. 2D, two-

dimensional.
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best approach for all types of datasets [101]. Therefore, when
users have sufficient knowledge about the dataset, an algo-
rithm suitable for the corresponding trajectory topology of

the dataset should be selected to complete the task.
RNA velocity analysis can predict the future expression sta-

tus of cells to study the cell state dynamics; construct cell dif-

ferentiation trajectories; estimate the rate of transcription,
splicing, and degradation; and classify different cell dynamics
mechanisms [102]. Spike-in RNA variants (SIRV) [103] is a

recently published software that integrates ST and single-cell
data to calculate the RNA velocity for each cell and derives
the flow field by averaging the dynamics of neighboring cells.
Without spatial information, some algorithms can be used to
calculate RNA velocity at the single-cell level. Velocyto [104]
is the first method to infer RNA velocity of single-cell tran-
scriptomic data based on a steady-state model. It uses the dis-

proportion of pre-mRNA compared to mRNA to estimate the
expected mature mRNA profile of the corresponding future
cell. scVelo [105] constructs a system of differential equations

based on a likelihood-based dynamical model. It takes tran-
scription as well as mRNA processing, degradation, and latent
time into consideration to fit the mature mRNA and pre-

mRNA levels. A steady-state model assumes the presence of
steady states and a common splicing rate across genes while
a likelihood-based dynamical model maintains weaker
assumptions of constant gene-specific reaction rates of
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transcription, splicing, and degradation which are inferred by
expectation–maximization (EM) framework. However, these
assumptions may not be consistent with reality and these

methods suffer inherent noisiness due to the limited read
counts of pre-mRNA and the dependency on the selected genes
[100]. These conventional splicing-based RNA velocity analy-

ses are difficult to apply to most transcription factors, which
are typically expressed at low levels and are related to genes
with no polyA/T-enriched intron regions. Dynamo [106], a

recently published method, integrates metabolic-labeling infor-
mation for pre-mRNA age profiling to improve the RNA
velocity estimation. It overcomes the fundamental limitations
of conventional splicing-based RNA velocity analyses but still

largely depends on the steady-state assumption.
Much of the work on spatial datasets relies on existing tools

that allow trajectory and RNA velocity analyses without spa-

tial information. The combination of spatial mapping and cell
transition inference can provide probabilistic values for differ-
entiation directions based on cellular proximity in spatial tis-

sues. Thus, cell development trajectories, key cell subsets,
and genes involved in differentiation can be revealed more
accurately. Furthermore, it may unveil the transcriptional

changes and mechanisms of anatomically restricted cell popu-
lations and provide novel insights into the molecular programs
within developing tissues [100]. Spatial multi-omics data
involved in trajectory and RNA velocity analyses can provide

new insights into intracellular processes, especially the causes
of lineage differentiation results. Time-series data at the
single-cell level are directly integrated by these methods, but

for ST data, methods to incorporate the relative independence
and organic combination of tissue information and develop-
ment time should be considered for future algorithms. In addi-

tion, inferring and visualizing cell state dynamics and the flow
field in 3D space is a more complex problem that requires more
complicated algorithms combined with 3D reconstruction

software.

3D reconstruction

It is important to create a comprehensive 3D view of the target

sample using continuous ST data from 2D tissue sections in
order to interpret the relationship between gene expression
and function. 3D reconstruction can restore the natural mor-

phology of tissues and visually observe gene expression on
the whole. With the addition of 3D coordinate information,
analysis performed in 2D can be transferred to 3D, such as ver-

ifying a series of conclusions obtained via immunofluorescence
staining through other omics or anatomy knowledge and iden-
tifying co-localized gene sets and functional gene modules in
the tissue space by combining 3D coordinates. Furthermore,

with time-series slices of ST data, cell migration and tissue
development can be more thoroughly studied and explored
with a 3D view of the tissues. However, 3D reconstruction

for ST data is in the early research stage and is still challenging.
3D reconstruction software for ST data is needed to reach

the aforementioned goal. 2D slices can be directly aligned

and stacked to the 3D reference of the studied tissue if one is
available. For example, the Allen Mouse Brain Common
Coordinate Framework (CCFv3) reference brain is a 3D spa-

tial template constructed as a population average of 1675
young adult mouse brains imaged using serial two-photon
tomography (STPT) from the Allen Mouse Brain Connectivity
Atlas [107]. A mouse whole-brain molecular atlas was created
by determining the position of each spot in all sections through

image registration in the CCFv3 reference [36]. To obtain the
full transcriptome profiles of the entire brain, the researchers
captured the RNA expression levels of approximately 15,000

genes from 34,000 spatial probes on 75 coronal tissue slices.
3D references of the human brain, macaque brain, and human
development have also been constructed [108–110]. A 3D

image generated from magnetic resonance imaging (MRI) or
computed tomography (CT) of tissues can also be used as a
3D reference when a high-resolution reference is unavailable.
However, a 3D reference does not exist for most species and

tissues, and de novo reconstruction of ST data is required [111].
The 3D reconstruction process can be divided into three

steps (Figure 5C). The first step is tissue segmentation, which

separates the tissue-covered area from the background and
can be handled by many programs with manual processing.
Registration is next performed to align all slices in spatial coor-

dinates and prepare for reconstruction. This step can be per-
formed by many existing software packages, but high-quality
original images with high brightness and contrast are required,

with minor differences in the rotation angles and translation
deviation since a standard automated program cannot handle
large differences. After registration, 3D visualization is then
performed to obtain a 3D view of the tissues. It is still a chal-

lenge for programs to handle large datasets with ultra-high res-
olution on local machines [112]. A cloud-based 3D
visualization software (https://github.com/google/neu-

roglancer) that borrows computing power from a remote ser-
ver may solve this problem, but further customization is
needed. Integrated tools for 3D reconstruction of ST data con-

taining the aforementioned three functions are under develop-
ment. Additionally, images derived from ST data contain more
uncertainty and have higher computational demands due to

their ultra-high resolution compared to images derived from
MRI or CT. However, when the research focus is on the con-
tinuity of the tissue area rather than the single-cell level, com-
pressing the data from high to low resolution can be

considered for better alignment, and the data can be observed
and analyzed at a coarse-grained level. Moreover, 3D recon-
struction software should be designed to support data analysis

and mining of ST data at spatial locations.

The multi-omics era of single-cell and spatial omics

With the advancement of multi-omics techniques, data can be
integrated in different ways based on common characteristics
(anchors) of different multi-omics datasets by different meth-

ods (Table 2) [113]. Horizontal integration is used to integrate
datasets of the same data modality, e.g., two or more scRNA-
seq datasets from different sources. With this approach, genes

can act as anchors because they are from the same genome.
Harmony [114] first maps the dataset into a low-dimensional
space and then finds a cell-specific linear correction function

through iterative clustering. scVI [53] uses stochastic optimiza-
tion and deep neural networks to approximate the distribution
of observed expression values and learn a non-linear embed-
ding of the cells that can be used for batch correction. LIGER

[59] applies integrative non-negative matrix factorization
(iNMF) to distinguish dataset-specific factors from shared

https://github.com/google/neuroglancer
https://github.com/google/neuroglancer
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factors. These methods can achieve better integration results
but require recalculation to incorporate a new dataset and
can hardly perform on massive datasets. Recently, online

iNMF [115] extended the non-negative matrix factorization
approach at the heart of LIGER making it possible for inte-
grating large, diverse, and recently completed single-cell data-

sets using fixed memory. Vertical integration involves datasets
collected from the same cells but different omics layers, such as
RNA transcription and chromatin accessibility. For example,

Seurat v4 [57] learns the relative utility of each data type in
each cell using a ‘‘weighted-nearest neighbor” framework to
enable the integration of multiple modalities. Other popular
tools include Multi-Omics Factor Analysis v2 (MOFA+)

[116], which has been described as ‘‘a multi-omics generaliza-
tion” of PCA. Diagonal integration involves molecular mea-
surements of unrelated populations of cells that usually relies

on fragile biological assumptions and may fail in given scenar-
ios. Many methods, such as MATCHER [117] and MMD-MA
[118], use this strategy. However, defining the input data and

validating and interpreting the model output are more chal-
lenging. scRNA-seq and single-cell assay for transposase-
accessible chromatin using sequencing (scATAC-seq) are par-

ticularly useful in understanding the underlying molecular
mechanisms. scRNA-seq determines which genes are
expressed, while scATAC-seq highlights the corresponding
regulatory regions. By integrating these datasets, scientists

can identify the cis-regulatory elements that act on genes, the
transcription factors that may control these elements, and
more importantly, when and where they are dynamically regu-

lated by comparing different samples. Exploring gene regula-
tory networks is important for researchers to understand
how cell fate is determined.

Traditional single-cell experiments provide details on thou-
sands of molecules at the expense of location information. The
latest technological advances have improved the power of ST

to systematically measure the expression levels of all or most
genes across the tissue space and have been used to generate
biological insights from neuroscience, as well as to investigate
a range of disease backgrounds. ST data can be integrated with

other multi-omics data, providing an extensible framework for
the in-depth understanding of biological processes. Integration
of ST and single-cell omics (including scRNA-seq, single-

nucleus RNA-seq, and scATAC-seq) is currently a hot spot
of spatial multi-omics integration. Integration of ST with
single-cell omics can take advantage of both technologies

and produce high-resolution maps of cellular subpopulations
in tissue. This integration can be applied to establish cell-
type proportions (for low-resolution ST data) or get cell-type
annotation (for high-resolution ST data) of spatial barcoding

capture spots, or to get the spatial location of single-cell data
by mapping it onto the ST data [13]. Methods like SPOTlight
[76], Cell2location [63], and CellTrek [79] are designed to reach

that goal. These methods are described in the ‘‘Single cell- and
tissue-level annotations in ST data” section. With the maturity
of spatial multi-omics technology — examples include spatial

proteomics technology and spatial chromatin accessibility
technology — novel methods for parsing spatial and single-
cell omics integration will be needed to be developed

accordingly.
However, there are still challenges with the integration of

single-cell and spatial omics data that should be settled. The
first challenge is to develop additional algorithms and to

https://github.com/welch-lab/liger
https://scvi-tools.org
https://github.com/welch-lab/liger
https://github.com/satijalab/seurat
https://github.com/bioFAM/MOFA2
https://github.com/jw156605/MATCHER
https://bitbucket.org/noblelab/2019_mmd_wabi/src/master/
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determine the anchors that support spatial omics integration
for different analysis modules. As mentioned in the previous
section, multi-omics data can be integrated into different anal-

ysis tasks, but the corresponding tools require higher analytical
capabilities. The second challenge is to score and rank the fea-
tures extracted from multiple omics data when the available

evidence for the same event is inconsistent. For example, both
the transcriptome and proteome can reveal the gene expres-
sion, but they are generally not identical. The third challenge

is how to make use of the multi-omics data to obtain a macro
interpretation of the data at the spatial level after integrating
the omics data. The difficult aspect of these challenges is that
they are a composite superposition of problems on multiple

levels. Resolving these challenges in multi-omics integration
requires extensive accumulation of knowledge, a full under-
standing of the data, and greater technical capabilities for

algorithm implementation.

Future perspectives

Thorough interpretation of ST data requires the develop-
ment of new technologies and bioinformatics algorithms.
This review highlights five topics and the corresponding

challenges related to ST data processing. Efficient compres-
sion algorithms and parallel computing have been developed
to tackle the big data challenge. Algorithms designed to

screen data and improve data quality are expected to coun-
teract technical noise or bias in sequencing depth and elim-
inate the batch effect. Methods for cell identification and

annotation can then be applied to define the cell boundary,
cluster, and corresponding RNA expression. Tissue-wide
data mining approaches enable researchers to investigate

the tissue-wide associations of cells and genes in multi-
dimensional space. Spatial multi-omics integration provides
an extensible framework for the in-depth understanding of
biological processes. These next paragraphs discuss the prob-

lems of existing algorithms and the future directions for ST
development.

Numerous algorithms were developed to address data prob-

lems related to defects in the current experimental techniques.
For example, most ST techniques cannot accurately locate the
cell boundary, and cell identification algorithms have been

designed to compensate. Resolution-enhancement algorithms
were developed to solve the low-resolution problem. With
the development of high-resolution ST technology, algorithms

are required to deal with the sparseness of gene expression
caused by low capture efficiency. The effect of 3D reconstruc-
tion is highly dependent on the data quality. A well-designed
technology for ST experiments will have high-quality expres-

sion data and well-formatted imaging data to avoid unneces-
sary pre- and post-processing for downstream analyses. With
the development of experimental approaches, data with higher

quality will be produced, and the performance of the algo-
rithms will improve accordingly. Similarly, the demands for
dedicated algorithms will continue to grow.

Spatial-resolved approaches that consider spatial location
and histological information are urgently needed to meet com-
puting requirements. Knowing spatial information ahead of
time can improve the prediction accuracy of an algorithm,

especially for the prediction tasks of clustering, CCI, and
RNA velocity. Histological images can provide algorithms
with references for tissue zones and integrity, which is signifi-
cant in data normalization as well as in identifying spatial
domains and SVGs and so on. On the other hand, the huge dif-

ference in data distribution and concentration between ST
data and single-cell data indicates that algorithms developed
for single-cell data may not be suitable for ST data. Along with

ST-specific algorithms, corresponding analysis standards
should be further established. Unified and high-quality data
will be generated through the standard processing workflows

for comparison, verification, and integration, which is an
essential basis to confirm previous results and explore new bio-
logical mechanisms.

Another area that warrants attention is the performance of

ST-specific algorithms. The development of ST technologies is
in an expansion phase, and various experimental techniques
are producing great amounts of data, but a unified approach

is lacking. Since ground truth data are almost non-existent,
the performance of algorithms can only be judged by compar-
ing the results using common cognitive sense before and after

the algorithm is applied. Supervised machine learning algo-
rithms, including supervised neural network algorithms, can-
not be trained properly due to the small amount of labeled

data available. In addition, the lack of ground truth data also
leads to a lack of benchmark evaluation of the algorithms.
These problems may be solved with the development and
maturity of ST technologies, but remain enormous challenges

at present.
Although the technologies and corresponding algorithms

still require a long time to develop, researchers have applied

ST methods to elucidate the inner workings of discrete cell
subpopulations within various contexts and organ systems.
These include embryonic development [12], hematopoietic

stem cell development and metastasis [18], compilation of a
tissue spatial transcriptomic atlas [19,20], and study of the
spatial heterogeneity of diseases, as well as tumor develop-

ment and tissue microenvironment [21,119]. These techniques
have helped uncover the mechanisms of previously opaque
cell–cell communication and biological functions, define dis-
ease subtypes, guide prognosis, and target cell populations

for precision treatment. For example, multi-dimensional
information provided by the ST technologies, such as the
location of immune cell infiltration, the type and state of

infiltration, and the positional relationship between immune
cells and tumor cells, can be comprehensively considered to
evaluate the immune infiltration state of the patient. Pro-

grammed cell death protein 1 (PD-1) and cytotoxic T
lymphocyte-associated protein 4 (CTLA-4) immunotherapies
have led to significant progress in tumor treatment [120–
123], but PD-1 immunotherapy is ineffective for a large num-

ber of programmed death-ligand 1 (PD-L1)-positive patients.
Development of effective therapies requires comprehensive
assessment of the spatial information and distribution of

specific cell communities for immune checkpoint molecules
represented by PD-L1 [124,125], which may promote the
development of measurement and scoring algorithms for

new immune checkpoint blockers or new companion diagnos-
tic methods. As the development of ST technologies which
moves closer to clinical applications, the corresponding algo-

rithm development will enable ST to solve more difficult
problems, including disease prevention, detection, and
treatment.
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