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Human extraintestinal pathogenic
Escherichia coli strains differ in prevalence
of virulence factors, phylogroups, and
bacteriocin determinants
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Abstract

Background: The study used a set of 407 human extraintestinal pathogenic E. coli strains (ExPEC) isolated from (1)
skin and soft tissue infections, (2) respiratory infections, (3) intra-abdominal infections, and (4) genital smears. The
set was tested for bacteriocin production, for prevalence of bacteriocin and virulence determinants, and for
phylogenetic typing. Results obtained from the group of ExPEC strains were compared to data from our previously
published analyses of 1283 fecal commensal E. coli strains.

Results: The frequency of bacteriocinogeny was significantly higher in the set of ExPEC strains (63.1 %), compared
to fecal E. coli (54.2 %; p < 0.01). Microcin producers and microcin determinants dominated in ExPEC strains, while
colicin producers and colicin determinants were more frequent in fecal E. coli (p < 0.01). Higher production of
microcin M and lower production of microcin B17, colicin Ib, and Js was detected in the set of ExPEC strains. ExPEC
strains had a significantly higher prevalence of phylogenetic group B2 (52.6 %) compared to fecal E. coli
strains (38.3 %; p < 0.01).

Conclusions: Human ExPEC strains were shown to differ from human fecal strains in a number of parameters
including bacteriocin production, prevalence of several bacteriocin and virulence determinants, and prevalence
of phylogenetic groups. Differences in these parameters were also identified within subgroups of ExPEC
strains of diverse origin. While some microcin determinants (mM, mH47) were associated with virulent strains,
other bacteriocin types (mB17, Ib, and Js) were associated with fecal flora.
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Background
Extraintestinal pathogenic E. coli (ExPEC) strains
colonize various sites in the human body and cause
diverse extraintestinal infections [1, 2]. Compared to
commensal E. coli strains, extraintestinal strains have
larger genomes and encode more virulence factors [3].
The group of ExPEC strains includes uropathogenic E.
coli strains, septicemia-associated E. coli, meningitis-
associated E. coli, and other strains [4]. ExPEC strains
typically encode i) virulence factors that allow them to

bind to human cells (e.g. P-fimbriae, S-fimbriae) [5, 6], ii)
factors important for survival in the human body (e.g.
siderophores), and iii) factors capable of damaging human
cells and tissues (e.g. hemolysin, cytotoxin necrotizing
factor) [7].
Another important feature of pathogenic and also

commensal E. coli strains is production of bacteriocins
[8–12]. Colicins and microcins (bacteriocins) are
antibacterial proteins or peptides, respectively, differing
in a number of characteristics including molecular mass,
presence of post-translational modifications, export from
producer cells, etc. Colicin Js is known to share features
of both colicins and microcins [9, 10, 13, 14]. Bacteriocin
production has been shown to play an important
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ecological role in bacterial competition [15]. In addition
to antimicrobial activity, several bacteriocin types have
also been shown to inhibit proliferation of eukaryotic
cells [16]. In previous reports, an association of bacteri-
ocin production with E. coli virulence factors was
described [10–12, 17] as well as a positive correlation
between the frequency of bacteriocinogeny and the
number of virulence factors encoded by E. coli strains
[17]. In a former study, production of virulence factors
typical for the ExPEC pathotype (sfa, pap, aer, iucC,
cnf1, α-hly), in the set of fecal E. coli strains, was associ-
ated with a higher frequency of bacteriocinogeny, a
higher prevalence of bacteriocin multi-producers, and a
greater abundance of microcins H47, M, V, B17, and co-
licins E1, Ia, and S4 [17]. In addition, production of
microcin types H47, M, I47, E492, and V, and colicin E1
was associated with the uropathogenic E. coli pathotype
[10–12]. Higher production of microcin V was also
detected in septicemia-associated ExPEC strains isolated
from blood [18].
In this study, we characterized a set of 407 human

extraintestinal pathogenic E. coli isolated from different
body sites and determined the prevalence of 30 bacteri-
ocin determinants representing most of the known bac-
teriocin types. In addition, we determined 18 virulence
determinants typical of intestinal and extraintestinal
pathogenic E. coli strains and also the main phylogroups
of E. coli (A, B1, B2, and D). ExPEC strains were isolated
from skin and soft tissue infections, as well as from
respiratory, intra-abdominal, and genital infections.
Results obtained in this study were compared to a previ-
ously characterized and published set of 1283 human
fecal E. coli strains [19, 20].

Results
Origin of extraintestinal pathogenic E. coli and fecal
strains
The ExPEC strains (n = 407) were isolated between 2007
and 2012 from patients attending the University Hospital
in Brno, Czech Republic (Table 1 and Additional file 1:
Table S1) and characteristics of these strains are
shown in Table 1. The ExPEC strains were isolated
from patients suffering from skin and/or soft tissue

infections (SSTIs) (n = 154), from patients with
respiratory infections (n = 111), from patients with
intra-abdominal infections (n = 87), and from patients
with genital infections (n = 55).
A set of 1283 E. coli strains of fecal origin had been

isolated from patients in the Czech Republic during the
same years (i.e. 2007–2012) and previously described in
detail [19, 20].

Detection of virulence factors in ExPEC and fecal strains
Results of detection of 18 DNA determinants
(pCVD432, α-hly, afaI, aer, cnf1, sfa, pap, ial, lt, st, bfpA,
eaeA, ipaH, iucC, fimA, stx1, stx2, and ehly) encoding 17
different virulence factors in both ExPEC and fecal
strains are shown in Fig. 1 and Additional file 2: Table
S2. Virulence genes encoding aerobactin synthesis (iucC,
aer), fimbriae type 1 (fimA), S (sfa) and P (pap),
afimbrial adhesin I (afaI), cytotoxic necrotizing factor
(cnf1), and α-hemolysin (α-hly) were significantly more
common in the set of ExPEC strains, compared to fecal
E. coli strains (Fig. 1). No virulence determinant was
found to be more common among fecal E. coli strains,
compared to ExPEC strains.

Distribution of E. coli phylogenetic groups in ExPEC and
fecal strains
Among 407 tested ExPEC strains, the most prevalent
phylogenetic group was B2 (n = 214; 52.6 %), followed by
phylogroup D (n = 75; 18.4 %), A (n = 75; 18.4 %), and
B1 (n = 43; 10.6 %). Compared to fecal E. coli strains,
ExPEC strains had a higher prevalence of phylogenetic
group B2 (38.3 vs. 52.6 %, respectively; p < 0.01) (Fig. 1
and Additional file 2: Table S2).

Bacteriocinogeny and bacteriocin types in ExPEC and
fecal strains
The overall frequency of bacteriocinogeny was signifi-
cantly higher in the set of ExPEC strains (63.1 %),
compared to fecal E. coli strains (54.2 %; p < 0.01) (Fig. 1).
While strains producing colicins, but no microcins, were
under-represented among ExPEC bacteriocinogenic
strains compared to fecal bacteriocinogenic strains (20.2
vs. 28.8 %, respectively; p < 0.01), strains producing only

Table 1 ExPEC strains (n = 407) characterized in this study

Origin of ExPEC strains (n = 407)

Characteristics of patients SSTIsa

(n = 154)
Respiratory infections
(n = 111)

Intra-abdominal infections
(n = 87)

Genital smears
(n = 55)

Total no. of strains
(n = 407)

Females 62 43 46 40 192

Males 92 68 41 15 215

Average age 45.8 41.0 56.4 33.5 45.1

Age range 1y – 98y 1y – 88y 1y – 88y 1y – 76y 1y – 98y
aExPEC strains isolated from patients suffering from skin and/or soft tissue infections
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microcins (i.e., no colicin types) were more prevalent
(45.1 vs. 30.8 %, respectively; p < 0.01).
The distribution of bacteriocin determinants encoding

different bacteriocin types was different between ExPEC
and fecal strains. Among ExPEC bacteriocinogenic
strains, a higher prevalence of the microcin M determin-
ant (41.2 vs. 23.5 %, respectively; p < 0.01) and a lower
prevalence of determinants encoding microcin B17 (5.4
vs. 12.2 %, respectively; p < 0.01), colicins Ib (3.1 vs.
8.9 %; respectively; p < 0.01), and Js (1.6 vs. 4.3 %,
respectively; p = 0.05) was detected, compared to fecal E.
coli (Fig. 1 and Additional file 2: Table S2).
In general, microcin determinants were more preva-

lent, while colicin determinants were less prevalent
among ExPEC strains compared to fecal strains (Fig. 1
and Additional file 2: Table S2).

Detection of individual bacteriocin determinants in
phylogroups of ExPEC and fecal strains
In ExPEC strains, there was a 64.4 % frequency of
bacteriocinogeny in the phylogenetic groups A + B1 and
62.6 % in the phylogroups B2 + D. In fecal strains, the
frequency of bacteriocinogeny was significantly lower
(p = 0.03) in the less pathogenic phylogroups A + B1
(49.9 %), compared to phylogroups B2 + D (56.5 %).
Since previous reports showed that several bacteriocin
determinants were associated with E. coli phylogroups
[20], we tested for the prevalence of bacteriocin de-
terminants within less and more virulent phylogroups
(A + B1 vs. B2 + D, respectively, Table 2 and
Additional file 3: Table S3). Bacteriocin type mC7 was
found to be more common among ExPEC strains of
phylogroup A and B1 compared to the same fecal
phylogroups. In contrast to microcin C7, the bacteri-
ocin determinant encoding mM was more common

in B2 + D phylogroups of ExPEC compared to fecal
strains (Table 2). At the same time, microcin B17 was
found to be under-represented among ExPEC strains
of phylogroups B2 and D.

Virulence factors, E. coli phylogroups and
bacteriocinogeny within ExPEC strains
Compared to fecal E. coli strains, ExPEC strains isolated
from patients suffering from skin and/or soft tissue
infections (SSTIs) (n = 154) showed higher prevalence of
determinants encoding aerobactin synthesis and uptake,
fimbriae type I, and afimbrial adhesin I (Fig. 2 and
Additional file 4: Table S4). The ExPEC strains from
patients with respiratory infections (n = 111) showed a
higher prevalence of determinants encoding aerobactin
synthesis and uptake, fimbriae type I, α-hemolysin, cyto-
toxic necrotizing factor, and S-fimbriae. ExPEC from
patients with intra-abdominal infections (n = 87) had a
higher prevalence of determinants encoding aerobactin
synthesis and uptake. ExPEC from patients with genital
infections (n = 55) showed no detectable differences in
encoded virulence factors compared to fecal strains
(Fig. 2 and Additional file 4: Table S4).
ExPEC strains from SSTIs, strains from respiratory

infections, and strains from genital infections, but not
strains from intra-abdominal infections, showed a higher
prevalence of phylogroup B2 (p < 0.01, Fig. 2) compared
to fecal strains. In addition, the set of strains isolated
from SSTIs also had a lower prevalence of phylogenetic
group A (p < 0.01) compared to fecal E. coli strains
(Fig. 2).
Within ExPEC strains, the highest rate of bacterioci-

nogeny was found in E. coli strains isolated from genital
smears (80.0 %). Compared to fecal strains, strains
isolated from SSTIs and strains from genital infections

Fig. 1 Significant differences in the prevalence of virulence determinants, E. coli phylogroups, bacteriocin producers, and the prevalence of
bacteriocin determinants among ExPEC and fecal strains (for all results see Additional file 3: Table S3). Note: statistically significant results with
*0.05 > p > 0.01 or with **p < 0.01; ***bacteriocin producers
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showed a higher prevalence of the mM determinant.
Strains from respiratory infections showed a higher
prevalence of determinants encoding both mM and
mH47 (Fig. 2). Both, ExPEC strains from respiratory
infections, and strains from genital infections, showed a
higher prevalence of microcin determinants, respectively
(p < 0.01). At the same time, these strains showed a
lower prevalence of colicin determinants.

Discussion
ExPEC strains characterized in this study were isolated
from various sites of infection including skin and/or soft

tissue infections, respiratory, intra-abdominal, and
genital infections. Compared to fecal strains isolated
during the same time period in a similar geograph-
ical area, ExPEC strains showed a higher prevalence
of seven known virulence factors. These virulence
factors comprised adherence factors, aerobactin syn-
thesis and uptake, and cytotoxin synthesis, which is
consistent with increased ability to colonize extrain-
testinal body sites and represents the initial step in
the development of extraintestinal infections. These
findings are in agreement with previous studies on
ExPEC strains [5–7, 21–25].

Table 2 Detection of individual bacteriocin determinants in ExPEC and fecal bacteriocin producers within less virulent phylogenetic
groups A + B1 compared to more virulent phylogroups B2 + D

Bacteriocin
determinanta

ExPEC strains Fecal strains P valuea ExPEC strains Fecal strains P value

A + B1 (n = 118) % A + B1 (n = 455) % B2 + D (n = 289) % B2 + D (n = 828) %

Bacteriocinogeny 76 (64.4) 227 (49.9) 0.03 181 (62.6) 468 (56.5) -

mM determinantb 13 (17.1) 24 (10.6) - 93 (51.4) 139 (29.7) <0.01

mB17 determinant 4 (5.3) 19 (8.4) - 10 (5.5) 66 (14.1) <0.01

mC7 determinant 6 (7.9) 4 (1.8) 0.02 4 (2.2) 8 (1.7) -
aOnly statistically significant results are shown, for other results see Additional file 4: Table S4
bBacteriocin determinants (mM, mB17, and mC7) of bacteriocinogenic E. coli isolates

Fig. 2 Significant differences in the distribution of virulence factors, E. coli phylogroups, bacteriocin production, and bacteriocin determinants
between subgroups of ExPEC and fecal strains (for all results see Additional file 4: Table S4). Note: statistically significant results with
*0.05 > p > 0.01 or with **p < 0.01; ***bacteriocin producers
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Phylogenetic analysis revealed that phylogenetic group
B2 was dominant in the set of extraintestinal pathogenic
E. coli tested in this study. A high prevalence of phylo-
genetic group B2 is typical of more virulent E. coli
strains [26] and a higher prevalence of phylogenetic
group B2 (35.0 %) has been described in E. coli strains
isolated from bacteremia [27] and in uropathogenic
strains (55.0 %) [28]. In a different set of E. coli strains
isolated from blood, wound, swab, pus, urine, cerebro-
spinal fluid, ascitic fluid, and intravascular devices, phy-
logroups B2 (35.0 %) and D (36.0 %) were found to be
most prevalent [29]. Molecular epidemiology, based on
MLST (Multilocus sequence typing), also revealed that
the phylogroup B2 was correlated with the ExPEC
pathotype [23]. ExPEC strains characterized in this study
were clearly more virulent compared to fecal strains.
Compared to fecal strains from phylogroup A and

B1, microcin type C7 was found to be more common
among ExPEC strains of the same phylogroups. These
data are consistent with the role of bacteriocin genes
regarding increased virulence of E. coli strains. Alter-
natively to bacteriocin genes, genes encoded on the
same plasmids could contribute to the increased viru-
lence of these strains since mC7 plasmids are rela-
tively large with a number of genes of predicted and
unknown functions [30–33].
A higher frequency of bacteriocin determinant mM

among B2 + D phylogroups suggest that microcin M
and/or genes in the same linkage group contribute to
the virulence of ExPEC strains. Previous reports have
shown that the mM and mH47 locus is abundant in
uropathogenic isolates, while the cluster seldom ap-
peared in intestinal or in other extraintestinal E. coli
isolates [10–12, 17, 34]. Our study showed that the per-
centage of strains coding for mM and mH47 differed
among ExPEC strains of diverse origin suggesting that the
source of extraintestinal E. coli isolates affects the preva-
lence of mM and mH47 determinants. Despite the fact
that microcins H47 and M are typically produced together,
sequence analyses have revealed frequent rearrangements
at this locus [7, 17, 20, 27, 34]. The incomplete linkage of
the microcin H47 and M locus is also supported by our
results.
E. coli strains isolated from intra-abdominal infections

were not phylogenetically distinct from fecal flora
suggesting that any E. coli strain having access to the
abdominal cavity can cause an infection. This was also
true for all other tested parameters with just one excep-
tion, which related to increased synthesis and uptake of
siderophore aerobactin. Access to iron thus appears to
be of importance to E. coli strains causing infections in
intra-abdominal environment
E. coli strains isolated from respiratory infections

showed a lower number of colicin producers and a

higher number of microcin producers, and also a higher
representation of phylogroup B2. Unlike other tested
ExPEC strains, these strains also showed a higher preva-
lence of microcin H47, in addition to a higher preva-
lence of microcin M determinants, suggesting selection
for a complete chromosomal region encoding both
microcins H47 and M [31].
Strains isolated from genital infections showed the

highest rate of bacteriocinogeny (reaching 80 %) and
also of microcin production, even though they produced
only six different colicin types. Based on the prevalence
of phylogroup B2, E. coli strains isolated from genital
smears were the most virulent in our set of ExPEC
strains. Although, there was no evidence for a direct as-
sociation between ExPEC strains and bacteriocinogeny,
previous studies have found an association between viru-
lence factors and bacteriocin determinants, suggesting a
role for bacteriocin in bacterial virulence [10–12, 17]. It
is widely accepted that strains causing genital infections
and uropathogenic strains originate from fecal flora,
which represents a reservoir of these strains [35, 36].
Genital infections appear to be caused by only the most
virulent and bacteriocinogenic subset of fecal E. coli
strains.
E. coli strains isolated from skin and soft tissue infec-

tions, i.e., decubiti, abscesses, and surgical wounds,
showed a higher prevalence of microcin M and a higher
prevalence of phylogenetic group B2. Results published
by Petkovšek et al. (2009) revealed a similarly higher in-
cidence of phylogroup B2 in a group of 102 SSTIs
strains [22]. However, in general, E. coli strains isolated
from skin and soft tissue infections showed a bacterioci-
nogeny frequency comparable to fecal E. coli. Bacteriocin
synthesis, therefore, in these skin and soft tissue infec-
tions does not appear to be of selective advantage. At
the same time, skin and soft tissue infections including
decubiti, abscesses, and surgical wounds are typical for
hospitalized patients and therefore likely hospital-
acquired [22]. It has been previously reported that uro-
pathogenic ESBL-producing hospital-acquired strains
showed a low frequency of bacteriocinogeny [37]. Since
hospital-acquired strains are often of clonal origin, we
have tested genetic heterogeneity among the SSTIs
strains used in this study. Detection of four E. coli phy-
logroups, 18 different virulence, and 30 different bacteri-
ocin determinants among the 154 strains analyzed in
this study revealed 103 distinct phenotypes (data not
shown) suggesting that the strains causing SSTIs are not
of clonal origin.

Conclusions
In summary, we have described a higher frequency of
bacteriocinogeny in a set of ExPEC strains isolated from
various human extraintestinal infections relative to fecal
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E. coli. Production of bacteriocins is important for most
extraintestinal strains isolated from various locations on
and in the human body. In general, the extraintestinal
environment appears to select for strains with chromo-
somally encoded microcins (predominantly of mH47
and mM), while plasmid-encoded microcin and colicin
types (e.g. mB17, Ia, M) appear to be contra-selected
among ExPEC strains suggesting their contribution to
fitness in fecal E. coli strains.

Methods
Bacterial strains
Human extraintestinal E. coli strains were collected
between 2007 and 2012 from patients attending the
University Hospital in Brno (n = 407) (Table 1 and
Additional file 1: Table S1). From each patient, a single
E. coli strain was isolated and the ENTEROtest16 (Erba
Lachema, Czech Republic) was used for biochemical
identification. ExPEC strains used in the study were
isolated from various extraintestinal infections and
included 1) E. coli strains isolated from skin and/or soft
tissue infections (SSTIs), 2) E. coli strains isolated from
respiratory infections (nasal, oral, and throat smears
and/or sputum), 3) E. coli strains isolated from intra-
abdominal infections, and 4) E. coli strains isolated from
genital smears. ExPEC strains were defined as strains
isolated from extraintestinal environment causing an
extraintestinal infection (Additional file 1: Table S1).
A set of 1283 E. coli strains of fecal origin had been

isolated from patients at two university hospitals in Brno
(n = 1181) and one in Hradec Králové in the Czech
Republic during the same years (i.e. 2007–2012) and
previously described in detail [19, 20].
For identification of colicin and microcin determinants

among tested strains, known bacteriocin producers were
used as positive controls: E. coli BZB2101pColA - CA31,
BZB2102 pColB - K260, BZB2103 pColD - CA23,
BZB2107 pColE4 - CT9, BZB2108 pColE5 - 099,
BZB2150 pColE6 - CT14, BZB2120 pColE7 - K317,
BZB2279 pColIa - CA53, BZB2202 ColIb - P9, BZB2116
pColK - K235, PAP1 pColM - BZBNC22, BZB2123
pColN - 284 (original source: A. P. Pugsley), E. coli
189BM pColE2 - P9 (B. A. D. Stocker), E. coli 385/80
pColE1, pColV (H. Lhotová), E. coli 185 M4 pColE3 -
CA38 (P. Fredericq), E. coli W3110 pColE8, W3110
pColE9 (J. R. James), E. coli K-12 pColS4 (D. Šmajs), S.
boydii M592 (serovar 8) pColU (V. Horák), E. coli K339
pColY (D. Friedman), Shigella sonnei (colicinotype 7)
pColJs (J. Šmarda), E. coli pCol5, E. coli pCol10 (H.
Pilsl), E. coli 449/82 pColX (microcin B17), E. coli 313/
66 pColG (microcin H47), E. coli 363/79 pColV (micro-
cin V, original source: H. Lhotová), E. coli TOP10F'
pDS601 (microcin C7), E. coli D55/1 (microcin J25), and
E. coli B1239 (microcin L, D. Šmajs) [11, 17].

Positive controls for detection of virulence determi-
nants were taken from our laboratory stock and com-
prised the following strains: E. coli B2917 (pCVD432), E.
coli B3428 (α-hly), E. coli B3406 (afaI), E. coli B3427
(aer), E. coli B3410 (cnf1), E. coli B3418 (sfa), E. coli
B3406 (pap), E. coli B3430 (ial), E. coli B2541 (st), E. coli
B2802 (lt), E. coli B1804 (bfpA), E. coli B2905 (eaeA), E.
coli B2987 (ipaH), E. coli B3411 (iucC), E. coli B3404
(aer), E. coli B3423 (fimA), and E. coli B2871 (ehly).

Detection of colicin and microcin determinants
A previously described method [11, 17] was used for
detection of bacteriocin producers. Briefly, bacteriocino-
geny of ExPEC strains (n = 407) was tested on agar plates
against six indicator strains E. coli K12-Row, C6 (ϕ), B1,
P400, S40, and Shigella sonnei 17. Identification of genetic
determinants encoding 23 colicin (A, B, D, E1, E2-9, Ia, Ib,
Js, K, L, M, N, S4, U, Y, and 5/10) and 7 microcin (H47,
M, B17, C7, J25, L, and V) types, in bacteriocin producers,
was performed using the DNA-PCR and colony PCR
method. The list of primer pairs and the length of PCR
products are in a separate file (Additional file 5: Table S5).
The PCR protocol was as follows: 94 °C (2 min for DNA-
PCR method; 5 min for colony PCR); 94 °C (30 s), 60 °C
(30 s), 72 °C (1 min), 30 cycles; 72 °C (7 min). Because of
the sensitivity of microcin types H47 and M to chloroform
vapors, all investigated ExPEC and fecal E. coli strains
were tested for the presence of microcin encoding genes
using PCR [38]. PCR products of related bacteriocin types
(colicins E2-9, Ia-Ib, and U-Y) were sequenced using
dideoxy chain terminator sequencing with amplification
primers (Additional file 5: Table S5) and sequences were
analyzed using Lasergene software (DNASTAR, Inc.,
Madison, WI).

Detection of virulence factors
The presence of 18 virulence determinants (pCVD432,
α-hly, afaI, aer, cnf1, sfa, pap, ial, lt, st, bfpA, eaeA, ipaH,
iucC, fimA, stx1, stx2, and ehly) encoding 17 virulence
factors was screened in ExPEC strains. The primer pair
sequences, PCR product lengths and PCR protocols
used, were previously described [39–46].

Phylogenetic group analysis
The phylogenetic groups (A, B1, B2, and D) of 407
extraintestinal E. coli strains were determined using the
triplex PCR protocol (detection of chuA, yjaA genes, and
TspE4.C2 fragment) described previously [47].

Statistical analysis
The statistical significance of the prevalence of bacteriocin
determinants, E. coli phylogenetic groups, and virulence
factors was performed by applying standard methods
derived from the binomial distribution, including the
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two-tailed test. STATISTICA version 8.0 (StatSoft,
Tulsa, OK, USA) was used for statistical calculations.
The Bonferroni correction was used in analyses
involving multiple comparisons.

Additional files

Additional file 1: Table S1. Complete list of ExPEC strains (n = 407)
characterized in this study. (XLSX 90 kb)

Additional file 2: Table S2. Distribution of E. coli phylogroups, virulence
factors, bacteriocin producers, and the prevalence of bacteriocin
determinants in ExPEC strains and fecal E. coli strains. (XLSX 13 kb)

Additional file 3: Table S3. Detection of individual bacteriocin
determinants in ExPEC and fecal bacteriocin producers within less
virulent phylogenetic groups A + B1 compared to more virulent
phylogroups B2 + D. (XLSX 11 kb)

Additional file 4: Table S4. Differences in the distribution of virulence
factors, E. coli phylogroups, bacteriocin production, and bacteriocin
determinants between subgroups of ExPEC strains and fecal strains.
(XLSX 14 kb)

Additional file 5: Table S5. List of primers and the length of PCR
products. (DOCX 19 kb)

Abbreviations
E. coli: Escherichia coli; ExPEC: Extraintestinal pathogenic Escherichia coli;
PCR: Polymerase chain reaction; SSTIs: Skin and/or soft tissue infections;
MLST: Multilocus sequence typing; ESBL: Extended Spectrum ß-Lactamase; TY
agar: Tryptone yeast agar

Acknowledgments
We would like to thank Thomas Secrest (Secrest Editing, Ltd.) for the English
editing of the manuscript.

Funding
This work was supported by the Grant Agency of the Czech Republic
(16-21649S) and by a grant from the Ministry of Health of the Czech
Republic (NT13413-4/2012) to DS.

Availability of data and material
All data generated or analyzed during this study are included in Additional
files 1: Table S1, Additional files 2: Table S2, Additional files 3: Table S3,
Additional files 4: Table S4, and Additional files 5: Table S5.

Authors’ contributions
DS designed the study and together with LM and JB wrote the manuscript.
LM and JB performed bacteriocin and virulence testing of E. coli strains. DS
and LM analyzed the data. LM, JB, MV, and AS contributed to isolation and
characterization of the bacterial strains and gathered data. All authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
All human data used in the study were anonymized and the study was
approved by the Ethics Committee of the Faculty of Medicine, Masaryk
University, Czech Republic. All clinical samples were collected after patients
gave written informed consent for participation in the study and for their
samples to be used in research.

Author details
1Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5,
Building A6, 625 00 Brno, Czech Republic. 2Department of Clinical

Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00 Brno, Czech
Republic.

Received: 2 April 2016 Accepted: 13 September 2016

References
1. Orskov I, Orskov F. Escherichia coli in extra-intestinal infections. J Hyg (Lond).

1985;95:551–75.
2. Eisenstein BI, Jones GW. The spectrum of infections and pathogenic

mechanisms of Escherichia coli. Adv Intern Med. 1988;33:231–52.
3. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree

J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel
J. The pangenome structure of Escherichia coli: comparative genomic
analysis of E. coli commensal and pathogenic isolates. J Bacteriol.
2008;190:6881–93.

4. Johnson JR, Russo TA. Extraintestinal pathogenic Escherichia coli: “the other
bad E. coli”. J Lab Clin Med. 2002;139:155–62.

5. Leffler H, Svanborg-Edén C. Glycolipid receptors for uropathogenic
Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun.
1981;34:920–9.

6. Mulvey MA. Adhesion and entry of uropathogenic Escherichia coli.
Cell Microbiol. 2002;4:257–71.

7. Johnson JR. Virulence factors in Escherichia coli urinary tract infection.
Clin Microbiol Rev. 1991;4:80–128.

8. Šmarda J, Šmajs D. Colicins - exocellular lethal proteins of Escherichia coli.
Folia Microbiol (Praha). 1998;43:563–82.

9. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley
M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev MMBR.
2007;71:158–229.

10. Azpiroz MF, Poey ME, Laviña M. Microcins and urovirulence in Escherichia
coli. Microb Pathog. 2009;47:274–80.

11. Šmajs D, Micenková L, Šmarda J, Vrba M, Ševčíková A, Vališová Z, Woznicová
V. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli:
colicin E1 is a potential virulence factor. BMC Microbiol. 2010;10:288.

12. Budič M, Rijavec M, Petkovšek Z, Zgur-Bertok D. Escherichia coli bacteriocins:
antimicrobial efficacy and prevalence among isolates from patients with
bacteraemia. PLoS One. 2011;6:e28769.

13. Šmajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding
colicin Js activity, immunity, and release genes. J Bacteriol. 2001;183:3949–57.

14. Šmajs D, Weinstock GM. The iron- and temperature-regulated cjrBC genes
of Shigella and enteroinvasive Escherichia coli strains code for colicin Js
uptake. J Bacteriol. 2001;183:3958–66.

15. Riley MA, Gordon DM. The ecological role of bacteriocins in bacterial
competition. Trends Microbiol. 1999;7:129–33.

16. Cornut G, Fortin C, Soulières D. Antineoplastic properties of bacteriocins:
revisiting potential active agents. Am J Clin Oncol. 2008;31:399–404.

17. Micenková L, Štaudová B, Bosák J, Mikalová L, Littnerová S, Vrba M,
Ševčíková A, Woznicová V, Šmajs D. Bacteriocin-encoding genes and ExPEC
virulence determinants are associated in human fecal Escherichia coli strains.
BMC Microbiol. 2014;14:109.

18. Davies DL, Falkiner FR, Hardy KG. Colicin V production by clinical isolates of
Escherichia coli. Infect Immun. 1981;31:574–9.

19. Kohoutová D, Šmajs D, Moravková P, Cyrany J, Moravková M, Forstlová M,
Čihák M, Rejchrt S, Bureš J. Escherichia coli strains of phylogenetic group B2
and D and bacteriocin production are associated with advanced colorectal
neoplasia. BMC Infect Dis. 2014;14:733.

20. Micenková L, Bosák J, Štaudová B, Kohoutová D, Čejková D, Woznicová V,
Vrba M, Ševčíková A, Bureš J, Šmajs D. Microcin determinants are associated
with B2 phylogroup of human fecal Escherichia coli isolates. Microbiol Open.
2016. doi:10.1002/mbo3.345.

21. Mokady D, Gophna U, Ron EZ. Virulence factors of septicemic Escherichia
coli strains. Int J Med Microbiol. 2005;295:455–62.

22. Petkovsek Z, Elersic K, Gubina M, Zgur-Bertok D, Starcic Erjavec M. Virulence
potential of Escherichia coli isolates from skin and soft tissue infections.
J Clin Microbiol. 2009;47:1811–7.

23. Köhler CD, Dobrindt U. What defines extraintestinal pathogenic Escherichia
coli? Int J Med Microbiol. 2011;301:642–7.

24. Fakruddin M, Mazumdar RM, Chowdhury A, Mannan KS. A preliminary study
on virulence factors & antimicrobial resistance in extra-intestinal pathogenic
Escherichia coli (ExPEC) in Bangladesh. Indian J Med Res. 2013;137:988–90.

Micenková et al. BMC Microbiology  (2016) 16:218 Page 7 of 8

dx.doi.org/10.1186/s12866-016-0835-z
dx.doi.org/10.1186/s12866-016-0835-z
dx.doi.org/10.1186/s12866-016-0835-z
dx.doi.org/10.1186/s12866-016-0835-z
dx.doi.org/10.1186/s12866-016-0835-z
http://dx.doi.org/10.1002/mbo3.345


25. Koga VL, Tomazetto G, Cyoia PS, Neves MS, Vidotto MC, Nakazato G,
Kobayashi RK. Molecular screening of virulence genes in extraintestinal
pathogenic Escherichia coli isolated from human blood culture in Brazil.
Biomed Res Int. 2014;2014:465054. doi:10.1155/2014/465054
[Epub 2014 Apr 15].

26. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J,
Denamur E. The link between phylogeny and virulence in Escherichia coli
extraintestinal infection. Infect Immun. 1999;67:546–53.

27. Santos AC, Zidko AC, Pignatari AC, Silva RM. Assessing the diversity of the
virulence potential of Escherichia coli isolated from bacteremia in São Paulo,
Brazil. Braz J Med Biol Res. 2013;46:968–73.

28. Mirzarazi M, Rezatofighi SE, Pourmahdi M, Mohajeri MR. Occurrence of
genes encoding enterotoxins in uropathogenic Escherichia coli isolates.
Braz J Microbiol. 2015;46:155–9.

29. Chakraborty A, Saralaya V, Adhikari P, Shenoy S, Baliga S, Hegde A.
Characterization of Escherichia coli Phylogenetic Groups Associated with
Extraintestinal Infections in South Indian Population. Indian J Pathol
Microbiol. 2014;57:255–8.

30. Waters VL, Crosa JH. Colicin V virulence plasmids. Microbiol Rev.
1991;55:437–50.

31. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-
encoded antibacterial peptides from enterobacteria. Nat Prod Rep.
2007;24:708–34.

32. Jeziorowski A, Gordon DM. Evolution of microcin V and colicin Ia plasmids
in Escherichia coli. J Bacteriol. 2007;189:7045–52.

33. Šmajs D, Strouhal M, Matějková P, Čejková D, Cursino L, Chartone-Souza E,
Šmarda J, Nascimento AM. Complete sequence of low-copy-number
plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of
mcc genes among human E. coli. Plasmid. 2008;59:1–10.

34. Gordon DM, O’Brien CL. Bacteriocin diversity and the frequency of multiple
bacteriocin production in Escherichia coli. Microbiology. 2006;152:3239–44.

35. Nielsen KL, Dynesen P, Larsen P, Frimodt-Møller N. Faecal Escherichia coli
from patients with E. coli urinary tract infection and healthy controls who
have never had a urinary tract infection. J Med Microbiol. 2014;63:582–9.

36. Moreno E, Andreu A, Pigrau C, Kuskowski MA, Johnson JR, Prats G.
Relationship between Escherichia coli strains causing acute cystitis in
women and the fecal E. coli population of the host. J Clin Microbiol.
2008;46:2529–34.

37. Micenková L, Šišková P, Bosák J, Jamborová I, Černohorská L, Šmajs D.
Characterization of human uropathogenic ESBL-producing Escherichia coli in
the Czech Republic: spread of CTX-M-27-producing strains in a university
hospital. Microb Drug Resist. 2014;20:610–7.

38. Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. The colicin G, H and X
determinants encode microcins M and H47, which might utilize the
catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology
(Reading, Engl). 2003;149:2557–70.

39. Martínez JL, Herrero M, de Lorenzo V. The organization of intercistronic
regions of the aerobactin operon of pColV-K30 may account for the
differential expression of the iucABCD iutA genes. J Mol Biol.
1994;238:288–93.

40. Schmidt H, Knop C, Franke S, Aleksic S, Heesemann J, Karch H.
Development of PCR for screening of enteroaggregative Escherichia coli.
J Clin Microbiol. 1995;33:701–5.

41. Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of
urovirulence factors in Escherichia coli by multiplex polymerase chain
reaction. FEMS Immunol Med Microbiol. 1995;12:85–90.

42. Kuhnert P, Hacker J, Mühldorfer I, Burnens AP, Nicolet J, Frey J. Detection
system for Escherichia coli-specific virulence genes: absence of virulence
determinants in B and C strains. Appl Environ Microbiol. 1997;63:703–9.

43. Paton AW, Paton JC. Detection and characterization of Shiga toxigenic
Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA,
enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol.
1998;36:598–602.

44. Paciorek J. Virulence properties of Escherichia coli faecal strains isolated in
Poland from healthy children and strains belonging to serogroups O18,
O26, O44, O86, O126 and O127 isolated from children with diarrhoea.
J Med Microbiol. 2002;51:548–56.

45. López-Saucedo C, Cerna JF, Villegas-Sepulveda N, Thompson R, Velazquez
FR, Torres J, Tarr PI, Estrada-García T. Single multiplex polymerase chain
reaction to detect diverse loci associated with diarrheagenic Escherichia coli.
Emerging Infect Dis. 2003;9:127–31.

46. Bírošová E, Siegfried L, Kmeťová M, Makara A, Ostró A, Gresová A, Urdzík P,
Liptáková A, Molokácová M, Bártl R, Valanský L. Detection of virulence
factors in alpha-haemolytic Escherichia coli strains isolated from various
clinical materials. Clin Microbiol Infect. 2004;10:569–73.

47. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the
Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66:4555–8.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Micenková et al. BMC Microbiology  (2016) 16:218 Page 8 of 8

http://dx.doi.org/10.1155/2014/465054

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Origin of extraintestinal pathogenic E. coli and fecal strains
	Detection of virulence factors in ExPEC and fecal strains
	Distribution of E. coli phylogenetic groups in ExPEC and fecal strains
	Bacteriocinogeny and bacteriocin types in ExPEC and fecal strains
	Detection of individual bacteriocin determinants in phylogroups of ExPEC and fecal strains
	Virulence factors, E. coli phylogroups and bacteriocinogeny within ExPEC strains

	Discussion
	Conclusions
	Methods
	Bacterial strains
	Detection of colicin and microcin determinants
	Detection of virulence factors
	Phylogenetic group analysis
	Statistical analysis

	Additional files
	show [Abbrev]
	Acknowledgments
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

