
REVIEW
published: 11 May 2021

doi: 10.3389/fmolb.2021.661520

Frontiers in Molecular Biosciences | www.frontiersin.org 1 May 2021 | Volume 8 | Article 661520

Edited by:

Maya Topf,

Birkbeck, University of London, United

Kingdom

Reviewed by:

Kresten Lindorff-Larsen,

University of Copenhagen, Denmark

Shruthi Viswanath,

National Centre for Biological

Sciences, India

*Correspondence:

Vincent A. Voelz

voelz@temple.edu

Specialty section:

This article was submitted to

Biological Modeling and Simulation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 30 January 2021

Accepted: 12 April 2021

Published: 11 May 2021

Citation:

Voelz VA, Ge Y and Raddi RM (2021)

Reconciling Simulations and

Experiments With BICePs: A Review.

Front. Mol. Biosci. 8:661520.

doi: 10.3389/fmolb.2021.661520

Reconciling Simulations and
Experiments With BICePs: A Review
Vincent A. Voelz 1*, Yunhui Ge 2 and Robert M. Raddi 1

1Department of Chemistry, Temple University, Philadelphia, PA, United States, 2Department of Pharmaceutical Sciences,

University of California, Irvine, Irvine, CA, United States

Bayesian Inference of Conformational Populations (BICePs) is an algorithm developed to

reconcile simulated ensembles with sparse experimental measurements. The Bayesian

framework of BICePs enables population reweighting as a post-simulation processing

step, with several advantages over existing methods, including the proper use of

reference potentials, and the estimation of a Bayes factor-like quantity called the BICePs

score for model selection. Here, we summarize the theory underlying this method in

context with related algorithms, review the history of BICePs applications to date, and

discuss current shortcomings along with future plans for improvement.
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1. INTRODUCTION

Bayesian Inference of Conformational Populations (BICePs) is an algorithm developed to reconcile
simulated ensembles with sparse experimental measurements. The inputs to BICePs are: (1) a set of
discrete conformational states and corresponding populations predicted from a theoretical prior,
and (2) a set of experimental observables. The primary output of BICePs are estimates of reweighted
conformational populations that balances the information from theory and experiment using a
Bayesian framework.

The Bayesian Inference of Conformational Populations (BICePs) algorithm arose from a need
to predict conformational ensembles of organic molecules with significant structural heterogeneity
in solution, such as natural product macrocycles and peptidomimetics. Specifically, we aimed
to develop an approach that leaned more heavily on high-quality theory/simulation-based
conformational ensembles, to be later reconciled with potentially sparse experimental observables.

Existing methods for this purpose, such as NAMFIS (NMR Analysis of Molecular Flexibility
in Solution, Cicero et al., 1995) and DISCON (Distribution of in-solution conformations,
Atasoylu et al., 2010) were used primarily by the organic chemistry community in the context
of NMR refinement. While these methods do estimate populations of conformational states,
they are essentially a kind of “maximum parsimony” method, where all possible solution-state
conformations are enumerated in order to find a small number of structures compatible with
NMR-based constraints. Such approaches are less useful for simulated structural ensembles, for
which ensemble-averaged observables should be restrained, in a way that can sufficiently account
for uncertainties in experimental measurements.

Another class of algorithms, categorized as “maximum entropy” approaches (Pitera and
Chodera, 2012; Bonomi et al., 2017; Orioli et al., 2020) focus primarily on using bias potentials
to enforce constraints on an experimental observable throughout the course of a molecular
simulation. While this can be approximated efficiently in practice by restraining replica-averaged
observables (Vendruscolo et al., 2003; Best and Vendruscolo, 2006) it must be modified to account
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for experimental uncertainty, a problemmore recently addressed
by the Metainference algorithm of Bonomi and Vendruscolo
(Bonomi et al., 2016a,b) which employs Bayesian inference.

In contrast to this approach, we sought a method that
could reweight a discrete set of conformational populations as a
“post-processing” step, after a simulation was performed. Such
post-hoc reweighting would nicely complement Markov State
Model approaches for biomolecular simulation, which require
partitioning of trajectory data into discrete conformational
states. Another reason to develop a reweighting approach was
the growing problem of bespoke force field parameterization
for peptidomimetics. A reweighting approach could enable a
sufficiently accurate general force field [e.g., GAFF Wang et al.,
2004] to generate an initial model of conformational populations
that could then be further refined against experimental data.

BICePs was modeled closely after the Inferential Structural
Determination (ISD) algorithm of Rieping, Habeck, and Nilges
(Rieping et al., 2005). Like BICePs, ISD is a Bayesian approach
where simulated conformational populations are used as the
Bayesian prior, and experimental restraints form the likelihood
function. The full posterior distribution of conformational states
and model parameters is then sampled using a Monte Carlo
algorithm (Habeck et al., 2006). But as we soon discovered
when developing BICePs, not all experimental restraints impart
the same amount of information, and BICePs makes critical
improvements over ISD by accounting for this fact.

The information gained upon obtaining a measurement is
relative to the prior information we possess. For example,
suppose we want to use Bayesian inference to refine the
conformational distribution of a linear peptide, given an
experimental distance measurement between two residues. The
measurement is highly informative if the the residues are distant
in sequence, but non-informative if the residues are close in
sequence. To account for a more diverse range of informative
experimental restraints, BICePs implements reference potentials,
which are discussed more fully in the Theory section.

As a consequence of better accounting for the information
content of experimental restraints, BICePs is able to calculate a
Bayes factor-like quantity, that we call the BICePs score, that can
be used for model selection. The BICePs score is highly useful: it
is a number that can report the extent to which a conformational
ensemble is consistent with experimental data. Not only can
this be used to show that reweighted populations are more
consistent with experimental data, it can also be used to rank
different simulated ensembles by their accuracy in reproducing
experimental observables (Ge and Voelz, 2018). While there
are still some improvements to BICePs needed to use this for
automated force field validation (see Discussion), the BICePs
score is highly useful, and we expect it will continue to provide
attractive incentive to use this algorithm.

In the remainder of this review, we will first discuss the theory
underlying the BICePs algorithm, and describe some of the
ways we implement this theory to sample the Bayesian posterior
distribution of conformational state and model parameters. We
then provide a case-by-case review of past examples where
BICePs has been applied to model conformational distributions.
Finally, we discuss some of the shortcomings of BICePs and

ongoing challenges we hope to address with future improvements
to BICePs.

2. THEORY

2.1. Bayesian Inference
The goal of BICePs is to model a posterior distribution P(X|D)
of conformational states X, given some experimental data D.
This posterior probability is proportional to a product of (1) a
likelihood function Q(D|X) representing experimental restraints,
and (2) a prior distribution P(X).

P(X|D) ∝ Q(D|X)P(X) (1)

The prior distribution, P(X), represents prior knowledge about
the populations of conformational states X derived from
theoretical modeling. This distribution can computed directly
from a molecular simulation, or come from any number of
theoretical models of the conformational free energy landscape
(e.g., from QM calculations).

The likelihood function, Q(D|X), reflects how well a given
conformation X agrees with experimental measurements. It is
assumed to obey a normally-distributed error model of the form:

Q(D|X, σ ) =
∏

j

1
√
2πσ 2

exp

(

−
[

rj(X)− r
exp
j

]2
/2σ 2

)

. (2)

Here, the data D comprise a set of experimental observables
indexed by j = 1, ...,Nj. The rj(X) represent observables
back-calculated from the theoretical model (ensemble-averaged
over states within X), and r

exp
j represent the experimental

values of each observable. In Equation (2), we assume that
each experimental observable has the same uncertainty σ . In
practice, different types of observables rj can be assigned specific
uncertainties σj, although this is usually done in groups (different
values of σj for sets of NOE distances, J-coupling constants, etc.)
for the sake of computational efficiency. There are of coursemany
situations where experimental uncertainty can vary even within
different sets measurements, which can be addressed by defining
custom restraint groups.

The likelihood function Q(D|X) can be thought of as the
quantity that reweights the prior estimate of the population P(X).
Conformational states X that better agree with the experimental
measurements get higher weights. An important distinction to
note: as BICePs is currently formulated, the likelihood function
Q(D|X) compares the experimental value r

exp
j to the back-

calculated observable rj(X) of a single conformational state X,
rather than an ensemble-averaged back-calculated observable
〈rj〉 =

∑

X rj(X)P(X). Consequently, the error model parameter
σ reflects both uncertainty in the experimental measurements
and heterogeneity in the conformational ensemble. Errors in the
forward model rj(X) are included in σ , and in many cases may
dominate the experimental errors (chemical shifts being the most
dramatic example).

As for choosing values of the uncertainty parameter(s) σ , these
uncertainties are usually not known a priori, and must be treated
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as a so-called nuisance parameter, which can be modeled using
some prior model P(σ ):

P(X, σ |D) ∝ Q(D|X, σ )P(X)P(σ ) (3)

While we don’t know the exact value of σ , we treat P(σ ) as
non-informative Jeffreys prior [P(σ ) ∼ 1/σ ], and include
this parameter in the posterior in order to sample the joint
distribution of (X, σ ). Then P(X|D) can then be obtained as the
marginal distribution

∫

P(X, σ |D)dσ . In the case where estimates
of the errors from experiments are known, a limited range of
possible σ values can be imposed.

Because the likelihood function enforces restraints on
individual conformational states (not ensemble-averages),
P(X|D) represents an “uncertainty ensemble” rather than a
“statistical ensemble” of conformational populations, to use the
language of Bonomi et al. (2017). However, it is quite useful
think of P(X|D) as conformational populations, as we show in
the examples below. For example, if P(X|D) gives equal values for
two conformational states, then BICePs predicts they are equally
consistent with the experimental data. While BICePs doesn’t
explicitly predict a mixture of two conformations, by maximum
ignorance (i.e., MaxEnt) we would infer equal populations in the
conformational ensemble. Future improvements to BICePs will
address this by constraining ensemble averages across multiple
replicas (see Discussion).

2.2. Reference Potentials
While the likelihood function Q(D|X) weights the
conformational space X, the actual restraints exist in some
restraint space r, a low-dimensional projection of the state
space of X. As a result, we need to introduce a reference
potential Qref(r) that reflects the distribution of observables r

in the absence of any experimental measurements. With this
modification, Equation (1) becomes:

P(X|D) ∝
[

Q(r(X)|D)
Q ref (r(X))

]

P(X). (4)

The negative logarithm of the bracketed weighting function,
− ln[Q(r|D)/Qref(r)], can be thought of as equivalent to a
potential of mean force (Hamelryck et al., 2010; Olsson et al.,
2011, 2013). With a proper reference potential, the relative
information content of each restraint becomes meaningful. In
our previous work, we have shown that using BICePs with proper
reference potentials can be essential for obtaining accurate results
(Voelz and Zhou, 2014; Ge and Voelz, 2018).

As an example of why reference potentials are needed,
consider experimental measurements of interresidue distances in
a protein. A distance measurement of 5 Å for a pair of residue
indices (i, i + 2) is essentially non-informative, since we already
know these residues are close in sequence along the polypeptide
chain, while a distance measurement of 5 Å for (i, i + 50) is
highly informative. The ratio Q(r(X)|D)/Q ref (r(X)) is needed to
correctly characterize the change in our state of knowledge.

The choice of what reference potential to use in a particular
situation is subject to some interpretation. Since BICePs is

designed to be used with sparse and/or noisy experimental data,
the likelihood function Q(D|X) typically enforces experimental
restraints smoothly over broad ranges of values. Similarly,
reference potentials should be sufficiently smooth and broad,
to avoid regions of restraint space with unrealistically small
values of Qref(r), which may in turn produce artificially inflated
weights for certain conformations. For this reason, we advocate
the use of conservative reference potentials, which do not make
unnecessary assumptions about the underlying distribution of a
given observable in the absence of experimental information.

We currently support three kinds of reference potentials
in our software implementation of BICePs: (1) uniform (non-
informative), (2) exponential, and (3) Gaussian. An exponential
reference potential is the least-informative distribution if only
the first moment of Qref (the mean, 〈r〉) is known. A Gaussian
distribution is the least-informative distribution if only the first
and second moments are known (〈r〉 and 〈r2〉).

As an interesting example, consider the reference potential
used for a set of interproton distances measured in an NMR
study of a 14-membered macrocycle, a situation we considered in
Voelz and Zhou (2014). In the absence of all other information,
our reference information is that the space of molecular
conformations are 14-membered rings. At the very least, the
the distribution of interproton distances must be non-negative,
and bounded from above. To get an idea of the empirical
distribution of possible interproton distances, we examined all
input conformations to BICePs, regardless of their energy, and
found no clear pattern other than a well-definedmean. Therefore,
we chose an exponential function as the reference potential. In
practice, the reference potential was fairly flat, since the average
interproton distance had a mean near 4 Å, and a maximum near
5 Å.

2.3. Sampling the Posterior Using MCMC
Markov Chain Monte Carlo (MCMC) is used to sample the
posterior distribution ofX and σ , with− ln P(X, σ |D) used an the
effective energy function. The energy function can be obtained
as the negative logarithm of the posterior probability given in
Equation (3):

− ln P(X, σ |D) =
(

Nj + 1
)

ln σ + χ2(X)/2σ 2 − lnQref

+
(

Nj/2
)

ln 2π − ln P(X). (5)

The quantity χ2(X) is the sum of squared errors, computed as

χ2(X) =
∑

j

wj

(

rj(X)− r
exp
j

)2
(6)

where wj is a weight parameter designated for equivalent
observables (For example: wj = 1/3 is used for hydrogens in a
methyl group).

The Metropolis-Hastings algorithm is used to perform
MCMC sampling of the energy function defined in Equation (5),
yielding an estimate of the full posterior distribution P(X, σ |D).
The most probable values of σ can be obtained by the marginal
distribution P(σ |D) =

∫

P(X, σ |D)dX, and the state populations
are estimated as P(X|D) =

∫

P(X, σ |D)dσ (Figure 1).
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FIGURE 1 | An example of BICePs output for albocycline (Liang et al., 2018). (A) A comparison of conformational state populations pi (exp) inferred using only

experimental restraints, vs. BICePs populations pi (sim + exp) inferred using a combination of the simulation-based prior and experimental restraints. States on the

lower right are highly compatible with experimental restraints, but are conformationally strained according the simulation model. Conformational states near the top of

the graph are both reasonably compatible with experimental restraints, and highly-populated according to the simulation model. States labeled in green correspond

closely to the two crystal isoforms of albocycline. (B) The marginal posterior distribution of σnoe, the uncertainty parameter for NOE distance restraints. (C) The

marginal posterior distribution of σJ, the uncertainty parameter for J-coupling constants. (D) The marginal posterior distribution of γ , the scaling parameter for the

NOE distances, remains near 1.0 throughout the MCMC sampling.

2.3.1. Enhanced Sampling of the Posterior
Accurate BICePs results require sufficiently converged sampling
of the entire (X, σ ) landscape. To achieve enhanced sampling
of P(X, σ |D), we use a free energy perturbation (FEP) method,
where posterior sampling for a series of models with priors
Pλ(X) ∼ [P(X)]λ, where 0 ≤ λ ≤ 1. The λ value serves to linearly
scale the− ln P(X) term in Equation (5). The expanded ensemble
of posterior distributions Pλ(X, σ |D) thus spans a range of prior
information: When λ = 0, the prior Pλ(X) prior is uniform, and
there is no information from theoretical modeling included in
the sampling. When λ = 1, all the information from theoretical
modeling is included in the sampling.

In the current implementation of BICePs, MCMC is
performed in parallel for a fixed number of λ values ranging
from 0 to 1. The multistate Bennett acceptance ratio (MBAR)
free energy estimator (Shirts and Chodera, 2008) is then used
to integrate samples from each ensemble to make statistically
optimal estimates of all Pλ(X|D).

2.4. The BICePs Score
The quality of a model k that uses a prior P(k)(X) from theoretical
modeling can be assessed by the posterior likelihood Z(k) of
model k:

Z(k) =
∫

P(k)(X, σ |D)dXdσ =
∫

P(k)(X)Q(X)dX. (7)

One way to think of Z(k) is as an integral over the entire
input space (including nuisance parameters) of the model.
Another way, however, is to think of Z(k) as an overlap integral
between the prior P(k)(X) and a likelihood function Q(X) =
∫

[Q(r(X)|D, σ )/Qref(r(X))]P(σ )dσ . This integral reaches the

maximum when P(k)(X) most closely matches the likelihood
distribution Q(X) specified by the experimental restraints.

Suppose we have two models (1) and (2) with priors P(1)

and P(2), and we want to know which one is more consistent
with experimental measurements. In Bayesian statistics, the
comparison is often made using the ratio of posterior model
probabilities, Z(1)/Z(2), also called the Bayes factor.

In BICePs, we consider a free energy-like quantity, called the
BICePs score:

f (k) = − ln
Z(k)

Z0
, (8)

which compares a model probability Z(k) to a standard reference
Z0 where no theoretical information is used (i.e., a model using
the prior Pλ(X) where λ = 0). The use of this standard reference
is useful in several ways. For one, if the BICePs score f (k) is
positive for a given model k, it means that the theoretical model is
worse than a totally uninformative prior–the theoretical model is
somehow inconsistent with experiment. More importantly, since
the BICePs score f (k) is always computed against an absolute
reference, it is a scalar quantity that can be used to perform
model selection. The BICePs score therefore can be very useful
for automatic model selection; for example, molecular simulation
force field validation and parameterization (Ge and Voelz, 2018).

Unlike maximum-likelihood approaches, The BICePs score
has the advantage of avoiding overfitting to a particular set of
experimental observable values, especially when the data are
sparse and/or noisy. Consider an alternative approach where
the values of σj that maximize the posterior are identified for
two different models and used to compute χ2 values for model
selection. The χ2 values only compare the models at particular
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points in parameter space, while the BICePs score considers the
total evidence integrated over all of parameter space.

3. APPLICATIONS OF BICEPS

Applications of BICePs to date fall into two main categories:
studies of small molecules like peptides and peptidomimetics,
and studies of larger proteins like apomyoglobin (Figure 2).

3.1. Modeling Macrolide Antibiotics
The first application of BICePs, described in the seminal article
that first introduced the algorithm, was to determine the
solution-state conformational populations of the 14-membered
macrolide antibiotic cineromycin B (Voelz and Zhou, 2014).
Knowledge of solution-state structure is essential to identify
potential targets of natural products, and to rationally design new
kinds macrolide antibiotics.

A combination of theoretical modeling and sparse
experimental NMR observables were used as input to BICePs.
The theoretical modeling was performed in two steps. First,
implicit solvent replica-exchange molecular dynamics (REMD)
simulation in GAFF was performed to exhaustively sample the
conformational landscape. The resulting sampling was then
clustered into 100 discrete states. Next, each cluster center
was subjected to QM minimization and single-point energy
calculation at the B3LYP/6-3111G(2d,p)//HF/6-31G(d) level of
theory. State populations were considered to be Boltzmann-
distributed according to the computed QM energies. The sparse
experimental constraints consisted of 13 interproton NOEs and
five vicinal 3JHH coupling constants.

For this system, BICePs predicted a nearly equal mixture of
two main conformational populations, each closely similar in
structure to the two crystal isoforms found for albocycline, the O-
methylated analog of cineromycin B. This work also showed the

importance of the reference potentials in producing more correct
posterior models.

In subsequent work, BICePs predicted a similar (nearly
equal) mixture of solution-state populations for albocycline,
using 12 NOE distance restraints and seven dihedral restraints
from vicinal 3JHH coupling constants (Chatare and Andrade,
2017). This information helped inform molecular simulation
and computational docking studies of albocycline binding to
MurA, an enzyme involved in peptidoglycan biosynthesis, a
potential new target for Methicillin-resistant Staphylococcus
aureus (MRSA) infection (Liang et al., 2018).

3.2. Modeling Peptoid Foldamers
Peptoids (N-substituted oligoglycines) are a class of sequence-
specific peptidomimetics that can be easily synthesized, and fold
into unique structural scaffolds (Sun and Zuckermann, 2013).
While the peptoid backbone is achiral and lacks hydrogen bond
donors, rational design of N-substituents can control the amide
cis/trans populations and secondary structure. An important
goal for molecular modeling and simulation of these systems is
to accurately predict solution-state conformational populations.
Reliable methods to do this would enable the computational
design of preorganized peptoid structural scaffolds to function
as new bio-inspired materials or therapeutics (Voelz et al., 2011;
Butterfoss et al., 2012; Kang et al., 2017; Schneider et al., 2018;
Gimenez et al., 2019).

A particular challenge in simulating peptoids is the lack of
accurate force fields. Unlike peptides, the chemical diversity of
N-substituents is practically limitless, with each new peptoid
residue requiring custom parameterization. BICePs can help
avoid this by using a general-purpose force field to generate a
prior conformational distribution, to be further refined against
experimental data.

An example of this approach was pursued by Mukherjee et al.
to model the solution-state conformational populations of an

FIGURE 2 | A timeline of BICePs application.
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(S)-N-(1-phenylethyl) glycine pentamer, (Nspe)5, whose bulky
chiral N-subtituents help this sequence fold into a right-handed
cis-amide helix (Mukherjee et al., 2015). Disagreement between
ab initio dihedral scans of the Nspe residue and the results of
GAFF simulations motivated the development of an improved
backbone potential, GAFF-φ, to better model the right-handed
(negative φ-angle) preference of Nspe oligomers in solution.

BICePs was used to reweight GAFF and GAFF-φ predictions
using sparse experimental restraints derived from previously
published NMR studies: NOE distances (Armand et al., 1998)
and cis/trans amide equilibria (Kct ∼ 2.5). BICePs scores for
bothGAFF andGAFF-φ were negative, suggesting themodels are
compatible with experiment. However, the GAFF-φ model was
found to have a likelihood of 1.5 times that of the GAFF model,
indicating it to be superior. Indeed, GAFF-φ predicted a much
higher cis-amide helix population for (Nspe)5, consistent with
previous NMR refinement and circular dichroismmeasurements.

By reweighting pre-defined conformational states, BICePs also
provides a convenient methodology to avoid costly sampling.
Unlike peptides, peptoids can populate both cis and trans amide
conformations. Amides have large isomerization barriers in most
force fields, typically requiring enhanced sampling methods like
REMD to sample the full conformational landscape of peptoids.
Thus, the “post-processing” aspect of BICePs can help to avoid
the costly alternative of having to perform slow-to-converge
simulations in the presence of restraints.

More recently, this approach was used to determine the
solution-state structure and ion-binding mechanism of cyclic
peptoid-spiroligomer hexamer macrocycles (Hurley et al., 2021).
Northrup et al. found that particular sequences of alternating
Q-proline and peptoid residues are able to bind metal cations,
forming highly preorganized structures in the process (Northrup
et al., 2020). To model this process, the BICePs algorithm was
used to reconcile conformational populations from implicit-
solvent REMD simulations in GAFF, against sparse experimental
ROESY correlations. While GAFF simulations predict a range
of macrocycle conformations with an overall preference for cis-
amide backbones, the reweighted populations had a preference
for trans amides, with the most populated conformation having
five of six amides in the trans state. This conformation was
then used to initiate more accurate explicit-solvent simulations
of macrocycles in the presence of K+ and Na+ cations, in
which several direct-binding events–coupled with a transition
to an all-trans state–were observed. In validation of this model,
the authors were able to correctly rank the ion-, solvent-
, and sequence-dependence of cation-binding in agreement
with experiment. Interestingly, a racemic crystal structure
obtained for a peptoid-spiroligomer macrocycle in the absence
of bound cation contains a mixture of cis and trans backbone
amide, underscoring the need for an integrated modeling
approach using BICePs to determine cation bound macrocycle
conformations in solution.

3.3. Modeling Linear and Cyclic Peptides
Like peptoid foldamers, both cyclic and linear peptides can form
preorganized structures in solution, and BICePs can be a valuable
tool to help computationally model and design sequences
with desirable solution-state properties. Wakefield et al. (2015)

simulated 18 cyclic RGD peptides studied extensively by the
Kessler group using NMR, including the anticancer drug
candidate cilengitide, cyclo(RGDf-[N-Me]V), which targets
integrin αVβ3 (Dechantsreiter et al., 1999; Mas-Moruno et al.,
2010). BICePs was used to validate excellent agreement
between simulations and experimental NOE distances. The
results reproduce the highly preorganized solution conformation
of cilengitide, which has the highest affinity to integrin.
Estimated differences in conformational entropy suggested that
N-methylation provided about 0.5 kcal mol−1 of stabilization,
and rigid non-natural amino acid mimics can provide even
more preorganzation.

Ge and Voelz (2018) explored how the BICePs score could
be used for force field validation and parameterization. Using a
2D lattice model as a toy system, they first demonstrated that
BICePs was able to select the correct value of an interaction
energy parameter given ensemble-averaged experimental
distance measurements. The toy model was used to study the
sensitivity of the results to the choice of reference potential,
the number of conformational clusters used in the calculations,
and the robustness of the calculation to experimental noise
and measurement sparsity. In this work, the authors introduce
support for chemical shift modeling in BICePs, which they use
as experimental restraints to refine conformational populations
of designed β-hairpin TrpLoop2 peptides in a number of force
fields (Ge et al., 2017). BICePs results show unambiguously that
explicit-solvent simulations in AMBER ff99-ildn-nmr (Li and
Brüschweiler, 2010; Lindorff-Larsen et al., 2010) yield models
most consistent with the experimental data. While this work
suggests that BICePs is up to the task of model selection in the
context of all-atom simulations, it also reveals several challenges
that need to be overcome to perform these calculations reliably
(see Discussion).

3.4. Reconciling Models of Globular
Proteins With Experimental HDX Data
Recent work by Wan et al. expands the scope of BICePs—
both in terms of system size and sampling complexity—by
introducing support for yet another experimental observable:
hydrogen/deuterium exchange (HDX) protection factors (Wan
et al., 2020). HDX protection factors are challenging to enforce
in molecular simulations, because they are dynamical restraints,
corresponding to the relative rates of local unfolding events,
where solvent exposure of backbone amides leads to exchange.
For BICePs to refine structural ensembles using HDX protection
factors, it requires a structural proxy that correlates with local
unfolding, which the authors capture using the simple model:

ln PFi = βc〈Nc〉i + βh〈Nh〉i + β0. (9)

In this model, the logarithm of the protection factor for residue
i is predicted by the ensemble average number of heavy-atom
contacts 〈Nc〉i and hydrogen bonds 〈Nh〉i.

The free parameters in this model, λ (the β parameters and
others defining how contacts and hydrogen bonds are tallied),
are first determined using Bayesian inference, by training on
two ultralong simulation trajectories of ubiquitin and bovine
pancreatic trypsin inhibitor (BPTI), each well-studied systems
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with published experimental protection factors. The result is
not a set of optimal (maximum-likelihood) parameters λ∗,
but rather the full posterior distribution of parameters P(λ),
which is imported into the likelihood model for BICePs (More
details can be found at https://github.com/vvoelz/HDX-forward-
model). All parameters are then treated as nuisance parameters
that are sampled in the BICePs posterior distribution.

To test this approach, Wan et al. applied the modified BICePs
method to apomyoglobin, which has a disordered helix F and
C-terminal portion of helix H in the absence of heme at pH
6. NMR studies provide no structural information for these
regions, but HDX protection factors and chemical shifts are
available. To model the structural ensemble of these regions, a
series of simulations were performed at different temperatures
and different bias potentials to encourage local unfolding. The
resulting trajectory data was used to construct several competing
multi-ensemble Markov Models (MEMMs) (Wu et al., 2016),
where each could be evaluated using the BICePs score. The
best-scoring model predicts a mixture of two predominant
conformational states, one with a partially disordered yet
compact helix F and other having a more disordered and exposed
helix F, consistent with slow chemical exchange for helix F.
Using the populations of these states predicted by BICePs, back-
calculation of the HDX protection factors results in values that
correlate well the experimental values (R2 = 0.72).

4. DISCUSSION

In the future, we expect that BICePs will play an increasingly
important role in molecular simulation-based prediction and
design, for several reasons. First, unlike many similar algorithms
for Bayesian inference, which enforce restraints during the course
of a molecular simulation, BICePs can be implemented as a post-
processing step. This means the algorithm should be considerably
easier to implement and utilize across many applications.

Second, the ability to “tune” predictions of force fields using
sparse experimental restraints can eliminate the need for custom
parameterization, which can widen the scope of applications
that can be addressed by general-purpose force fields. This is
evidenced by the many examples of peptidomimetic and peptoid
modeling we have described above. A further avenue, made
possible by Markov state models (Prinz et al., 2011; Bowman
et al., 2013), is to obtain reweighted predictions of equilibrium
populations from BICePs to infer improved kinetic properties,
through maximum caliber (MaxCal) approaches, for instance
(Dixit et al., 2015; Wan et al., 2016; Ghosh et al., 2020).

Third, the BICePs score provides an unambiguous metric to
rank model quality and perform model selection. As discussed
above, this makes objective force field evaluation possible.
Given a standard test set of molecular systems and associated
corpus of experimental observables, BICePs could be a uniquely
suitable Bayesian approach for systematically benchmarking
and/or parameterizing new potentials. Similarly, the BICePs
score could help quantify the progress toward an objective in
adaptive sampling.

For BICePs to achieve the status of indispensable tool, there
are several practical shortcomings and improvements that we are
working to address.

4.1. Future Algorithmic Improvements
4.1.1. Replica Averaging
One conceptual problem with BICePs and related methods
like ISD is that the likelihood function compares individual
conformational states to ensemble-averaged experimental
observables. As result, the uncertainty parameter σ reflects
a combination of both agreement with the experimental
measurements and heterogeneity in the conformational
ensemble (Bonomi et al., 2016a). A better comparison–and
one that will result in lower uncertainty in most cases–is a
likelihood function that compares a predicted ensemble-average
to experimental observables. A simple way to achieve this,
implemented currently in algorithms, such as Metainference
(Löhr et al., 2019), is to use a forward model that incorporates
the average of multiple MCMC replicas. In the limit of large
numbers of replicas, such a likelihood function results in the
least-biased, maximum entropy (MaxEnt) posterior distribution
given ensemble-averaged experimental constraints (Pitera and
Chodera, 2012; Cavalli et al., 2013; Roux and Weare, 2013;
Hummer and Köfinger, 2015; Bonomi et al., 2016a; Xu, 2019).

One issue we believe replica averaging will improve is the
performance of BICePs when used with many experimental
restraints. This will increase the impact of BICePs by enabling
its application to larger systems with many structural
measurements. When modeling peptides with many NOE
distance restraints (as in Ge et al., 2017; Ge and Voelz, 2018),
we have noticed that while BICePs is able to correctly predict
solution-state structures, it can overestimate the posterior
populations of folded states. This occurs because particular
conformational states that satisfy multiple restraints are highly
rewarded by the likelihood function. This behavior is akin to the
many constraint-based NMR structural refinement algorithms
which seek to generate ensembles of structures that satisfy all
or most distance constraints. A similar artifact was found by
Ge et al. (2020) when evaluating MSM models of a series of
cyclic β-hairpin peptides against structural NMR observables
measured by Danelius et al. (2016).

In the replica-averaging section of the Discussion, we discuss
this fairly extensively. The issue is not the system *size* per
se (we have successfully applied BICePs to apomyglobin, a
large globular protein, for example) but large numbers of
experimental restraints, which become problematic because the
likelihood function currently uses a forward model for individual
states rather than ensemble-averages. In light of the reviewer’s
comments, we have added to this in our revised manuscript:

With replica averaging, direct comparison (via the BICePs
score) between predictions from BICePs and constraint-based
algorithms like NAMFIS (Cicero et al., 1995) should yield more
favorable results.

4.1.2. Hamiltonian Replica Exchange
As mentioned in the Theory section, better estimations of
conformational populations and more accurate BICePs scores
are achieved by implementing a free energy perturbation-like
framework, in which parallel MCMC trajectories are perfomed
for a series of theoretical priors scaled by λ ∈ [0, 1]. An issue that
arises from this approach is the inability to sample all states in
a reasonably low number of iterations, especially when λ = 1.
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To enhance the sampling of all the states (across all the λ-
ensembles), we aim to implement Hamiltonian replica exchange
in future versions of BICePs, an approach previously pioneered
with ISD (Habeck et al., 2005). In this approach, parallel MCMC
trajectories are coupled so that exchanges of conformational
states across λ-ensembles are attempted at regular intervals and
accepted according to the Metropolis criterion.

4.2. Support for More Experimental
Observables and Reference Potentials
Another area of improvement we are working on is the
incorporation of more experimental observables, and support
for users to be able to extend BICePs by adding custom
experimental restraints and reference potentials with relative
ease. Our most recent addition to the roster of supported
experimental observables is HDX protection factors, ln PFi.
Custom experimental restraints will require a user to write a
derived class and a few simple methods to parse input data files,
compute a sum of squared errors, and specify the posterior− ln P
(i.e., the energy function).

Small angle X-ray scattering (SAXS) has proven to be very
useful for determining molecular shape and resolving structural
dynamics over large range of biomolecular sizes (Bonomi et al.,
2017). In the future, we hope to support SAXS observables
as experimental restraints, joining the ranks of other Bayesian
inference algorithms that can utilize such data (Antonov et al.,
2016; Bonomi and Camilloni, 2017; Shevchuk and Hub, 2017;
Potrzebowski et al., 2018). One issue to consider is how best
to enforce uncertainties when mixed with other types of data,
since SAXS experiments typically have a large number of not
fully independent measurements. Here a Bayesian approach
that can automatically “tune” uncertainties might be particularly
powerful.

5. CONCLUSION

We have reviewed the theory and application of BICePs, an
algorithm for Bayesian Inference of Conformational Populations,
that has several advantages over similar methods. In BICePs,

reweighting of populations can be performed as a post-
processing step, with proper reference potentials. A review of
previous applications demonstrates the utility of BICePs for
improving the predictions of general-purpose force fields for
modeling and designing peptidomimetics. A unique feature of
the algorithm is the BICePs score, which can be used for objective,
systematic model selection.

Since the first inception of the BICePs algorithm (Voelz
and Zhou, 2014) (which we call “BICePs 1.0”) many
modifications have been implemented, including support
for more experimental observables, such as chemical shifts and
HDX protection factors, and improved analysis and visualization.
We have officially released the improved algorithm (BICePs
2.0) at https://github.com/vvoelz/biceps. This latest version is
designed to lower the barriers for researchers to use and extended
the BICePs algorithm.
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