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Genomic and metabolic adaptations of biofilms to
ecological windows of opportunity in glacier-fed
streams
Susheel Bhanu Busi 1,5, Massimo Bourquin 2,5, Stilianos Fodelianakis2,5, Grégoire Michoud 2,

Tyler J. Kohler2, Hannes Peter2, Paraskevi Pramateftaki2, Michail Styllas 2, Matteo Tolosano2,

Vincent De Staercke2, Martina Schön 2, Laura de Nies1, Ramona Marasco 3, Daniele Daffonchio3,

Leïla Ezzat2, Paul Wilmes 1,4✉ & Tom J. Battin 2✉

In glacier-fed streams, ecological windows of opportunity allow complex microbial biofilms to

develop and transiently form the basis of the food web, thereby controlling key ecosystem

processes. Using metagenome-assembled genomes, we unravel strategies that allow biofilms

to seize this opportunity in an ecosystem otherwise characterized by harsh environmental

conditions. We observe a diverse microbiome spanning the entire tree of life including a rich

virome. Various co-existing energy acquisition pathways point to diverse niches and the

exploitation of available resources, likely fostering the establishment of complex biofilms

during windows of opportunity. The wide occurrence of rhodopsins, besides chlorophyll,

highlights the role of solar energy capture in these biofilms while internal carbon and nutrient

cycling between photoautotrophs and heterotrophs may help overcome constraints imposed

by oligotrophy in these habitats. Mechanisms potentially protecting bacteria against low

temperatures and high UV-radiation are also revealed and the selective pressure of this

environment is further highlighted by a phylogenomic analysis differentiating important

components of the glacier-fed stream microbiome from other ecosystems. Our findings

reveal key genomic underpinnings of adaptive traits contributing to the success of complex

biofilms to exploit environmental opportunities in glacier-fed streams, which are now rapidly

changing owing to global warming.
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Ecosystems and their constituent biota are finely tuned to the
seasonal variations of their environment. This phenology is
particularly pronounced in glacier-fed streams (hereafter

GFSs), which are commonly enveloped by snow cover and
darkness in winter, and subject to high flow and sediment
mobilization in summer. Yet, ecological ‘windows of opportunity’
arise in spring and autumn1,2 when nutrient (N, P) and light
availability is elevated and streamflow is moderate1–3. During the
onset of spring snowmelt, inorganic N that has accumulated from
atmospheric deposition and concentrated at the snowpack surface
is washed into GFSs3,4, whereas hydrologic connectivity with
various glacial sources (e.g., subglacial) can increase concentra-
tions of phosphorus as the melt season progresses4,5. Following
the height of the melt season in summer, discharge and turbidity
decline in autumn, again elevating nutrient concentrations and
light availability. These favorable conditions allow algae and
cyanobacteria to rapidly develop into ‘green oases’ of photo-
trophic biofilms. Partially due to the absence of major terrestrial
organic matter subsidies from the catchment, this punctuated
exploitation of solar energy in an otherwise energy-limited eco-
system transiently forms the base of the GFS food web and
ecosystem energetics1,6. Such windows of opportunity may
therefore function as ‘ecosystem control points’7 with dis-
proportionately high ecological processing rates affecting eco-
system dynamics relative to longer intervening time periods.
These ecosystem control points are widely distributed across
ecosystems and vary across spatial and temporal scales7. How-
ever, our understanding on the microbiology of the communities
that facilitate ecosystem control points remains limited to date.

Owing to climate change, the mass balance and melting
dynamics of mountain glaciers are rapidly changing worldwide,
altering the annual distribution of runoff in GFSs8. Invigorated
glacial melt increases discharge and sediment delivery, but after
glaciers shrink past a certain point (i.e., ‘peak water’), GFSs are
likely to become warmer, less turbid, and less hydrologically
dynamic4. These changes are almost certain to have substantial
impacts on GFS ecosystem structure and function by either
contracting or extending the duration of these windows of
opportunity. It is therefore critical to understand how benthic
biofilms operate during these times in order to predict how these
ecosystems are likely to change in the future4.

In streams, biofilms closely interact with the sedimentary
environment9. For example, extracellular polymeric substances
(EPS) produced by biofilms bind fine sediment grains together,
which can locally stabilize substrata, reducing scour and vertical
permeability10. Similarly, boulders resist flow-induced dis-
turbance to promote biofilm growth11, and if protruding through
the water column, may also increase light availability to further
facilitate photosynthesis. Therefore, it seems advantageous for
phototrophic biofilms to colonize boulders, which can be regar-
ded as islands of stability in otherwise highly unstable GFS
channels. These islands may allow biofilm growth to locally
persist beyond the typical windows of opportunity (at least until
snow cover), drive ecosystem energetics (i.e., gross primary
production)12, and to sustain the GFS food web and related
benthic biodiversity4,13.

The relationships between photoautotrophs (such as algae and
cyanobacteria), prokaryotes and fungi regulate nutrient and car-
bon cycling, and therefore represent a fundamental ecological
interface in aquatic ecosystems. This interface (i.e., the phyco-
sphere) has received substantial attention in pelagic ecosystems
over the last decades14–17, but less so in stream ecosystems. While
early work on phototrophic biofilms colonizing the benthic zone
in streams has highlighted the role of algal–bacterial interactions
for carbon and nutrient fluxes18,19, we do not currently under-
stand the fine-scale mechanisms of such interactions. For

example, cyanobacteria produce pigments that protect the biofilm
as a whole against harmful UV-radiation20, while mucilage-rich
algal colonies (e.g., Hydrurus spp.) provide labile organic matter
to heterotrophic microorganisms and facilitate their attachment.
Such interactions may foster facultative interactions between
photoautotrophs and other microorganisms, which, similarly to
the phycosphere, may be particularly beneficial to microbial life in
oligotrophic and harsh ecosystems such as GFSs. Unraveling the
genomic and metabolic underpinnings of algal–bacterial rela-
tionships in biofilms helps to better understand the success of the
biofilm mode of life in an extreme ecosystem.

Here we dissect the microbiome of GFSs and describe the
genomic underpinnings of the adaptive mechanisms that poten-
tially contribute to the success of complex biofilms. Using 16S
rRNA and 18S rRNA gene amplicon sequencing, we assess the
microbiome structure of biofilms associated with two sedimen-
tary habitats that are common in GFSs, namely sandy sediments
(i.e., epipsammic biofilms) and boulders (i.e., epilithic biofilms).
We sampled geographically distant streams, transcending hemi-
spheres (Southern Alps in New Zealand, NZ, and the Caucasus,
CC), to draw more generalisable conclusions about microbiome
structure and assembly. Furthermore, using genome-resolved
metagenomics, we screen twenty-one epilithic biofilm micro-
biomes for energy pathways and cross-domain metabolic
interactions. Our findings suggest the diversification of energy-
acquiring pathways and metabolic interactions are relevant for
epilithic biofilms to thrive during the ecological windows of
opportunity, and beyond, within low-disturbance patches in
GFSs. Moreover, our findings shed light on what the future
biofilm mode of life in GFSs may look like as glaciers shrink and
GFS ecosystems are predicted to become more autotrophic4.

Results and discussion
Sedimentary habitats affect microbiome structure and assem-
bly. We used 16S rRNA and 18S rRNA gene amplicon sequencing
to compare the microbiome structure of 48 epipsammic and
epilithic biofilm samples from GFSs in NZ and CC collected
during spring and autumn, respectively (Methods) (Fig. 1a;
Supplementary Fig. 1a, b). These seasons broadly align with
the windows of opportunity in these GFSs; however, we recognize
that epilithic biofilms, in particular, may extend beyond these
windows well into summer or until snow coverage. We found that
both prokaryotic and eukaryotic communities differed between
the two habitat types in terms of community structure and alpha
diversity (Fig. 1b, c). Overall, taxonomic differences were even
apparent at the phylum level, despite high inter-sample variability
within the categories (Supplementary Fig. 1c, d). Geography (i.e.,
NZ versus CC) explained 11.5% and 12.9% of the variability in
the prokaryotic and eukaryotic datasets (db-RDA, p < 0.05 for
both datasets), while sedimentary habitats explained an additional
10% and 8.3% of the variability (db-RDA, p < 0.05 for prokaryotes
and eukaryotes).

The estimated α-diversity (i.e., richness of amplicon sequence
variants; ASVs) was higher for both prokaryotes and eukaryotes
in epipsammic biofilms when compared to epilithic biofilms (2–3
fold differences, non-parametric t-tests, p < 0.001) (Fig. 1d, e).
These observations are in accordance with findings by Tolotti and
colleagues21 where α-diversity of the epipsammic habitats were
higher than the epilithic biofilms in rock glacier- and ground-
water/precipitation-fed waters21. It is plausible that continuous
dispersal and mixing facilitated by the transport of fine sediments
from various upstream sources (e.g., the subglacial environment
and adjacent soils) leads to the greater diversity of the
epipsammic biofilms. Overall, our results unravel distinct
microbiome structures for both sediment habitats within the
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Fig. 1 Sedimentary habitats affect microbiome structure and assembly. a Representative images of sample collection indicating GFS and adjacent
epilithic biofilm (left) with images of epilithic biofilms (right). Photo credits: Martina Schön and Matteo Tolosano. Ordination analyses of the epipsammic
(n= 27 biologically independent samples) and epilithic (n= 21 biologically independent samples) biofilm based on prokaryote (b) and eukaryote
(c) metabarcoding profiles from Southern Alps and Caucasus. Microbial richness across geographic locations and sample types in (d) prokaryotes and
(e) eukaryotes. The statistical analyses was performed on 27 epipsammic and 21 epilithic samples using a two-sided non-parametric t test. Bonferroni-
corrected p values are indicated by *, i.e., *** represents p < 0.001. Boxplots represent the median richness with the 25th and 75th quartiles observed within
the samples.
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same GFS reaches. This agrees with previous studies21, and
more generally with the relationship between streambed
physical variation and spatial biodiversity dynamics22,23. Stream-
beds, including their biofilms, are understood as landscapes
where dispersal among patches can shape biodiversity and
resilience24–26. Therefore, we hypothesized that epilithic com-
munities are partially structured by dispersal from epipsammic
communities that typically dominate the GFS streambeds by area.
Using Sloan’s neutral community model27, we instead found that
the composition of the epilithic biofilms is not dictated by a
source-sink relationship with the epipsammic communities
(Supplementary Note). In other words, the epilithic biofilm
communities are not determined by epipsammic communities
that typically surround the boulders within the complex
landscape of the GFS streambed.

Metagenomics unveils the complexity of epilithic biofilms. To
unveil the full complexity of the epilithic biofilms, we performed
whole genome shotgun metagenomics on 21 epilithic samples
from four GFSs each in NZ and CC (Supplementary Fig. 1a, b);
low biomass associated with sandy sediments precluded epip-
sammic biofilms from metagenomic analysis. Metagenomic
sequencing, after quality filtering, yielded on average 1.2 × 108

(±1.4 × 107 s.d.) reads per sample which were assembled to obtain
an average of 8.7 × 105 contigs per sample that were subsequently
binned. Bacteria and eukaryotes dominated the biofilm commu-
nities across all samples (Supplementary Fig. 2a). Seventy-three
(70 bacteria and three archaea) medium-to-high quality (>70%
completion, < 5% contamination) metagenome-assembled gen-
omes (MAGs) from a total of 662 MAGs formed the pool of the
prokaryotes. As seen from the phylogenomic analysis, the high-
quality MAGs (n= 49, >90% completion and <5% contamina-
tion) span the bacterial tree of life. Based on the phylogenomic
analyses along with the taxonomic information (Fig. 2), we
sought to further characterize these MAGs that could represent
novel species or species that have not previously been reported
(Fig. 2a). We found that only 30% of these high-quality MAGS
were annotated up to the family level, whereas the remaining
MAGs could be taxonomically labelled at the genus level. Only
high-quality MAGs were used for the phylogenetic analyses to
mitigate disparities arising from incomplete MAGs. Aggregated at
the genus level, Polaromonas was both abundant and prevalent in
the biofilms along with representatives of Flavobacterium, Cya-
nobacteria, and unclassified MAGs from the Bacteroidota and
Candidate Phyla Radiation (CPR; Patescibacteria) (Fig. 2b). These
taxa were found in over half of the samples, irrespective of geo-
graphic origin. The CPR bacteria have only recently been iden-
tified based on genomic data28, and Patescibacteria specifically
have been reported from oligotrophic ecosystems, including
groundwater29 and thermokarst lakes30. Their apparently mini-
mal biosynthetic and metabolic pathways may help them dwell in
these ecosystems, which is of equal relevance in GFSs.

Alongside these bacteria, archaea contributed less than 1% to
the microbiome of epilithic biofilms, with representatives of
Asgardarchaeota, Crenarchaeota and Nanoarchaeota. Intrigu-
ingly, the recently discovered lineages of Asgardarchaeota31,32

have been reported from freshwater sediments, yet not from
cryospheric environments. Algae, mostly diatoms and Hydrurus
(Ochrophyta phylum), as well as dinoflagellata, were the most
important photoautotrophs of the eukaryotic domain (Fig. 2c).
The prevalence of Hydrurus (~87% relative abundance) under-
scores the function of these filamentous algae as a resource to
higher trophic levels in GFS33. Our metagenomic insights further
support the notion that phototrophic biofilms are highly diverse
with representatives from all three domains of life28.

In addition to the archaeal, bacterial and eukaryotic commu-
nity members, we also found a diverse viral community
associated with epilithic biofilms (Supplementary Fig. 2b). Most
of the viruses were bacteriophages targeting abundant MAGs
such as Flavobacterium, Pseudomonas, and Bacillus genera, but
we also identified eukaryotic phages (i.e., Paramecium bursaria
Chlorella virus). Few have studied viruses in stream biofilms to
date34, potentially because it was common wisdom that the
biofilm mode of life protects bacteria from viral infection. While
viruses have previously been shown to be abundant in
glaciers35,36, our findings provide evidence for a diverse and
likely active viral community in GFS biofilms where they may
influence bacterial growth and both carbon and nutrient cycling
as on the glacier surface35.

Epilithic biofilms form the basis for a ‘green’ food web in
glacier-fed streams. Cyanobacteria and eukaryotic algae domi-
nated the photoautotrophs in the epilithic biofilms and hence
form the basis of the ‘green’ food web during the windows of
opportunity. While these photoautotrophs are well known to use
chlorophyll to capture solar energy, little is known on retinal-
based phototrophy using rhodopsins in GFSs. Intriguingly, we
found that MAGs from sixteen out of twenty phyla in the epilithic
biofilms, including the abundant groups, such as Proteobacteria
(Polaromonas) and Bacteroidota (Flavobacterium), encoded for
(bacterio-)rhodopsins (Fig. 3a). These also included genes
encoding for light-harvesting complex 1 (LH1), reaction centre
(RC) subunits (pufBALM), and transcriptional regulators (ppsR)
required for aerobic anoxygenic phototrophs along with rho-
dopsins as a signature of energy-limitation adaptations (Fig. 3a).
Recently, rhodopsins were also reported to serve as a photo-
protectant in Flavobacterium from glaciers37. Collectively, our
findings unveil multiple strategies of photoautotrophy, which
may help cyanobacteria and algae to maximize their utilization of
solar energy and to thrive on boulders in GFSs.

In order to exploit the favorable habitat provided by boulders
during and beyond the windows of opportunity in GFS, rapid
growth may be advantageous for primary producers such as
cyanobacteria. Moreover, functional independence from other
microorganisms could allow them to seize environmental
opportunities. To test this hypothesis, we assessed the relation-
ship between projected times of growth (doubling time in hours)
with the median KEGG pathway completion within each MAG.
Given the partial completeness of the MAGs, including possibly
missing metabolic modules, we performed a linear regression
between median KEGG pathway completion and projected time
of growth, accounting for MAG completion as a fixed effect.
Strikingly, 86% of the cyanobacterial MAGs (n= 38 out of 44)
exhibited decreased projected times of growth with an increase in
median KEGG module completion per MAG (rs=−0.47, Two
way ANOVA, adj. p < 0.05). These observations suggest that
when encoding all genes to form a complete KEGG pathway,
phototrophic taxa within these epilithic biofilms may indeed grow
rapidly and be self-sufficient, putatively autonomously from other
microorganisms from other (micro)organisms and fostering
growth.

Given the energetic constraints in GFSs, it would be beneficial
for bacterial heterotrophs to interact with these photoautotrophic
(micro)organisms for meeting their energy and nutrient
demands. To investigate such cross-domain relationships, we
used network analyses and identified key interacting taxa based
on positively co-occurring nodes using all prokaryotic and
eukaryotic MAGs (see Methods). Based on a null model
assessment (see Methods), our interaction networks showed
preferential attachment within the nodes, along with increased
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Fig. 2 Metagenomics unveils the complexity of epilithic biofilms. a Bacterial phylogenetic tree constructed using high-quality (n= 49, >90% completion
and <2% contamination) MAGs reconstructed from the epilithic biofilms. The numbers beside the phylum names indicate the number of high-quality
MAGs assigned to the respective phylum. Only high-quality MAGs were used to mitigate phylogenetic disparities from incomplete MAGs. b Normalized
abundance of reconstructed prokaryotic genomes, i.e., MAGs, from the epilithic biofilms. Taxonomy at phylum and genus levels is depicted. NA:
unclassified genus. Samples from the Southern Alps are indicated in red, while those from Caucasus are shown in blue. Medium-to-high quality MAGs
(n= 73) are depicted. c Eukaryotic relative abundance profile obtained from metagenomic sequencing across all epilithic biofilms samples.
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Fig. 3 Epilithic biofilms are the basis for a ‘green food chain’. a Abundance of genes involved in energy production (light-harvesting complex,
transcriptional regulator for phototrophy, and rhodopsin) and photo-heterotrophic interactions (cobalamin metabolism and tryptophan synthesis), across
all prokaryotic phyla are represented in the heatmap. Values indicate the log10 abundance per gene within the phyla. b Largest component of the co-
occurrence network between pro- and eukaryotic MAGs. Each node corresponds to a MAG (pro- or eukaryote). Size of the node corresponds to degree
centrality and the edges represent the positive coefficients of correlation between each node. Colour of each node represents the phylum annotation. NA:
unclassified genus. c Spearman’s correlation analyses of relative abundances of eukaryotic primary producers with the CAZyme abundances. CAZymes
include AA auxilliary activities, CBM carbohydrate-binding module, CE carbohydrate esterases, GH glycoside hydrolases, GT glycosyltransferases, PL
polysaccharide lyases. FDR-adjusted p values were estimated using the ‘cor.mtest’ function from the corrplot R package and are indicated by *, i.e., *<0.05,
**<0.01, ***<0.001. d KEGG orthology (KO) pathways enriched in epilithic biofilms compared to publicly available cryospheric metagenomes were further
assessed via KEGGDecoder for pathway completion and are displayed. The completeness of the pathways is indicated in the heatmap, per sample.
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centralities (i.e., degree and edge-betweenness, Supplementary
Fig. 3a, b), suggesting that the interactions within these networks
were not random. More importantly, the largest connected
component (based on degree and betweenness centralities) of the
interaction network contained taxa spanning archaea, bacteria
and eukaryotic domains (Fig. 3b and Supplementary Fig. 3b).
Though Acidobacteria had a high degree of centrality, both
Polaromonas and Methylotenera demonstrated strong interac-
tions (>0.6 betweenness centrality) with primary producers
(including eukaryotic algae) and fungi. Specifically, Polaromonas
had a strong interaction with algae, while Methylotenera co-
occurred with Chytridiomycetes (Fig. 3b). Interestingly, we found
similarly connected nodes demonstrating cross-domain interac-
tions within the largest component of the individual regions, i.e.,
NZ (Supplementary Fig. 3c, d) and CC (Supplementary Fig. 3e, f),
albeit the two regions had varying numbers of edges (NZ= 205
and CC= 30). This suggests that inherent interactions within
these GFS epilithic biofilms are conserved irrespective of
geographic origins. These results also support our hypothesis of
heterotrophic bacteria co-occurring with eukaryotes, primarily
algae, for metabolic cross-feeding, similar to those occurring in
the phycosphere15.

Furthermore, our results hint at the existence of a more cryptic
interaction in epilithic biofilms between the parasitic fungi
Chytridiomycetes and algae (mostly Ochrophyta). Fungal parasit-
ism on pelagic algae has been recently reported to be more
important than expected, even with consequences for carbon and
nutrient cycling as mediated by the fungal shunt38,39. The
possibility of fungal parasitism on algae in epilithic biofilms
further supports the notion of photoautotrophs forming the
foundation of a complex food web in GFS ecosystems.

Genomic underpinnings of algae–bacteria metabolic interac-
tions. As photoautotrophs grow and senesce, they increasingly
exude intracellular material into their ambient environment,
where it can be metabolized by heterotrophic bacteria through
extracellular enzymes40. To explore this metabolic cross-feeding
between bacterial heterotrophs and algae, we assessed the MAGs
for genes encoding five common extracellular enzymes required
for cleaving complex polysaccharides, phosphomonoesters and
proteins41. Not unexpectedly, these genes were associated with
bacterial heterotrophs rather than with the photoautotrophs
(Supplementary Fig. 4), which suggests adapted genomic traits to
meet specific metabolic needs of the heterotrophs. However,
based on the presence of extracellular enzyme genes among
Cyanobacteria, we cannot discount the possibility of mixotrophy
in the epilithic biofilms (Supplementary Fig. 4b). Additionally,
genes associated with mixotrophy, such as those encoding for
auto- and heterotrophic pathways, were also found in other
abundant members of the epilithic microbiome (e.g., Proteo-
bacteria). The widespread occurrence of mixotrophy in plank-
tonic communities42, including members of the Cyanobacteria,
and the ensuing food web dichotomy is considered as an adaptive
strategy to oligotrophic and cold ecosystems (e.g., the polar sea42

and alpine lakes43). Therefore, we argue that mixotrophy may
also be an important trait of Cyanobacteria within GFS biofilms.

Carbohydrate-active enzymes (CAZymes) are the primary
tools used by heterotrophic bacteria to initiate the degradation of
polysaccharides, largely algae-derived in the GFS epilithic
biofilms. To shed light on this potential trophic interaction
identified through specific extracellular enzyme activities (EEAs),
we tested if all the CAZymes in the metagenomes covaried with
the abundance of eukaryotes. Overall, we found positive
correlations between eukaryote abundances and CAZymes,
particularly carbohydrate-binding modules (CBM) and glycoside

hydrolases (GH) (Supplementary Fig. 4d). More specifically, these
correlations were particularly pronounced for GH and some of
the algal groups (e.g., Ochrophyta, Haptophyta, Cryptophyta)
that we found at relatively high abundances in the epilithic
biofilms (Fig. 3c and Supplementary Fig. 4d). As some of these
algae are known to copiously produce sulfated carbohydrates44,
we suggest a similar involvement of CAZymes (Supplementary
Data 1) in relation to polysaccharide degradation in GFS epilithic
biofilms as recently reported from Verrucomicrobia isolates45.
Given that sulfated carbohydrates are more resistant to bacterial
degradation than other carbohydrates45, our findings suggest that
they are still relevant to carbon turnover in an ecosystem that is
inherently carbon limited.

In order to understand whether functions potentially geared
towards cross-domain interactions were enriched in epilithic
biofilms in GFSs, we compared the KEGG orthology (KO)
annotations from our metagenomes to 105 metagenomes from a
wide range of ecosystems (Supplementary Data 2). Strikingly, we
found that whole metagenome comparisons revealed that KOs
associated with quorum sensing, vitamin B12 (cobalamin)
transporters and thiamine biosynthesis were enriched in epilithic
GFS biofilms compared to other ecosystems (Supplementary
Data 3). The associated pathways and their completion levels
were evaluated using KEGGDecoder (Fig. 3d; Supplementary
Fig. 5) indicating a high completion of pathways associated with
cross-domain interactions. These findings are in line with
previous genomic insights into algal–bacterial interactions46,47,
specifically with the observed upregulation of vitamin biosynth-
esis in bacteria (Halomonas) growing in the presence of algal
extracts.

Furthermore, several MAGs were found to encode genes (e.g.,
quorum sensing, cobalamin metabolism, tryptophan synthesis)
potentially facilitating algal–bacterial interactions (Fig. 3a). Parti-
cularly, cobalamin metabolism may be relevant for nutrient
acquisition in algal–bacterial relationships48, whereas tryptophan
was reported as a key signalling molecule involved in interactions
between bacteria and associated phytoplankton16,49. Collectively
these genomic insights stress cross-domain interactions as an
adaptive potential that the epilithic microorganisms have
developed to exploit the window of opportunity in GFSs.

Energy acquisition and biogeochemical pathways in epilithic
biofilm MAGs. The dominance (~88%) of MAGs encoding for
organic carbon metabolism suggests a ‘baseline’ heterotrophy in
GFSs likely supported by organic carbon subsidies from melting
glaciers6,50,51 ‘green food web’ during the windows of opportu-
nity, potentially sustaining metabolic interactions between pri-
mary producers and heterotrophs. Given the notoriously low
concentrations of dissolved organic carbon in GFSs50,52,53,
including our study sites in NZ (96.18 ± 21.35 µg C L−1) and CC
(221.36 ± 31.01 µg C L−1), we suggest that the ‘green food web’
dominates over allochthonous subsidies.

Exploring the gene repertoire of the epilithic biofilms, we found
that Cyanobacteria were one of the largest bacterial contributors
to carbon fixation along with Bacteroidota and few Gammapro-
teobacteria (Fig. 4a). An in-depth analysis across the 662 MAGs
revealed that 583 MAGs encoded genes involved in organic
carbon oxidation, while 120 MAGs encoded genes involved in
CO2 fixation. In line with the above findings, the majority of these
MAGs was identified as Cyanobacteria along with few other phyla
such as Proteobacteria, Asgardarchaeota, Crenarchaeota and
Huberarchaeota. We also note that 351 MAGs encoded genes
for fermentation (Fig. 4b) spanning several phyla, including
Actinobacteriota, Bacteroidota, Patescibacteria, Planctomycetota
and Verrucomicrobiota.
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For biofilms to thrive in GFSs, particularly during the windows
of opportunity, it appears opportune to diversify the exploitation
of energy sources. Therefore, we performed an in-depth
characterisation of chemolithotrophic pathways to explore the
potential role of minerals derived from the glacial comminution

of bedrock as an energy source for microorganisms54.
The prevalence of the sox gene cluster in representatives of
the Bacteriodota (UBA7662) and Bdellovibrionota reveals the
potential importance of inorganic sulfur oxidation in epilithic
biofilms. This notion is supported by the broad occurrence of
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sulfur dioxygenases (SDOs) across the various phyla that facilitate
sulfur oxidation (Fig. 4c). Interestingly, Tranter and Raiswell
suggested that sulfates derived from sulfide oxidation in
comminuted bedrock55 potentially increase sulfur availability
and acquisition in glacial meltwaters56. Sulfide oxidation can
stimulate carbonate weathering with the resulting CO2 potentially
being fixed by algae and cyanobacteria in the epilithic biofilms—a
link that appears relevant given that GFSs are often under-
saturated in CO2

57. Furthermore, we found that almost all MAGs
encoded for group IV hydrogen dehydrogenases (NiFe_Gp4;
Fig. 4c), which potentially serve as an alternate energy acquisition
pathway. Hydrogen dehydrogenases have recently been reported
to support primary production in various glacial and other
extreme environments58,59. This suggests that lithogenic hydro-
gen may also contribute energy to bacteria within the epilithic
biofilms.

Genomic insights into the nitrogen cycle revealed the
Dissimilatory Nitrate Reduction to Ammonium (DNRA, or
nitrite ammonification) and, to a lesser extent, denitrification, as
major pathways (Fig. 4d). Relatively little is known regarding
these two competing pathways in stream biofilms or
sediments60, particularly in GFSs. This is in line with other
ecosystems where DNRA is favoured over denitrification when
alternate electron donors prevail over nitrate61. For instance,
predicting metagenomes from 16S rRNA sequences, Ren et al.62

found DNRA to be an important pathway in GFSs, suggesting
that bacteria use inorganic nitrogen more as an energy source
than a source for biosynthesis. Our analyses revealed Burkhol-
deriales (Gammaproteobacteria) as the largest contributor to
nitrate assimilation and ammonia-oxidation genes (Fig. 4a, c).
DNRA, if not conducive to N2O production, would enhance
nitrogen recycling within epilithic biofilms through ammonia
assimilation by algae and cyanobacteria, for instance. Our
genomic evidence for nitrogen recycling that potentially over-
whelms nitrogen losses through denitrification is corroborated
by flux measurements from microbial mats in Antarctic GFSs63,
and highlights recycling as a strategy to cope with nutrient
limitation in glacier ecosystems63–65.

Strikingly, we found only few MAGs, mostly belonging to
Deinococcota, Gammaproteobacteria, Beijerinckiaceae and Crenarch-
aeota, involved in the oxidation of ammonia and nitrite, potentially
leading to the accumulation of nitrate. The involvement of archaea
would be in line with recent studies showing ammonia oxidation by
archaea in Arctic soils66 and with the observation that archaea
couple ammonia oxidation with biomass formation (i.e., via CO2

fixation)67. Our finding that archaeal MAGs encode for carbon
fixation genes (Fig. 4b) further highlight their role in ammonia
oxidation and biomass accrual in epilithic biofilms. Overall, the
overlap of metabolic capacities within the MAGs suggests that the
epilithic biofilms efficiently recycle carbon and nutrients. Internal
recycling in stream biofilms is thought to be facilitated by increased
residence times of water and contained solutes within the biofilms
compared to the overlying water68, which is certainly an advantage
in a losing ecosystem such as GFSs.

Genomic underpinnings of adaptation to the extreme GFS
environment. The GFS environment is extreme as illustrated by
near-freezing temperatures, high UV-radiation, and high flow
velocities. To assess potential adaptive traits of bacteria dwelling
in epilithic biofilms, we first performed a phylogenomic analysis
of Polaromonas spp., one of the most abundant and prevalent
genera in the studied GFSs. Our analysis revealed that a few
of the GFS Polaromonas formed clades that are distinct
from Polaromonas identified in other environments (Methods),
thus potentially comprising novel ‘species’ (Fig. 5a). This

phylogenomic pattern indicates that Polaromonas has evolved
traits that facilitates its success in GFS, both in NZ and CC. To
identify such traits, we created a pangenome and performed an
enrichment analysis for clusters of orthologous genes. We found
three categories that were significantly enriched in GFS Polar-
omonas compared to those from other environments (Supple-
mentary Data 4). Two categories are related to defense
mechanisms, both general and transcription, and one to energy
production (Fig. 5b). It is plausible that these mechanisms are
related to high UV-radiation69,70 and oxidative stress71, as well as
to cold stress responses as previously reported from other
bacteria72–74. Furthermore, the presence of CRISPR-Cas proteins
in the enriched clusters of orthologous genes (COGs) hint at
defense mechanisms against phages (Supplementary Data 4),
which we showed to be present in the epilithic biofilms. This is in
accordance with reports demonstrating that cryospheric bacteria
(such as Janthinobacterium spp.) develop defense strategies,
including biofilm formation75 and extracellular vesicle
formation76 to escape viruses. On the other hand, the transcrip-
tion of ‘defense mechanism’ genes have been linked to cold
adaptation in psychrophiles72. Cold-shock proteins regulate
transcription at low temperature, while genes involved in mem-
brane biogenesis77 and membrane transport proteins78, several of
which are also enriched in the GFS Polaromonas genomes, are
up-regulated. For example, in the psychrophilic Colwellia psy-
chrerythraea 34H, adaptation to cold includes the maintenance of
the cell membrane in a liquid-crystalline state via the expression
of genes involved in polyunsaturated fatty acid synthesis79.
Similarly, ATP-driven or proton motive secondary transport
systems have been associated with solute transfers across mem-
branes in bacteria and archaea as an adaptation to the cold78.

Our insights into the adaptive potential of Polaromonas to the
GFS environment prompted us to expand our search for adaptive
traits across all MAGs from the epilithic biofilms. Querying for 76
genetic traits spanning nine categories related to cold
adaptation73, we indeed found distinct patterns of genomic
adaptation across MAGs (Fig. 5c). Several MAGs encoded for
genes associated with membrane and peptidoglycan alterations,
cold and heat shock proteins, oxidative stress, and transcription/
translation factors alongside DNA replication and repair. While
all major phyla encoded for adaptive traits related to the outer
membrane and cell wall, Proteobacteria were the predominant
group with an overall higher copy number of genes (~5 copies/
genome), albeit insignificant compared to other phyla, involved in
counteracting osmotic and oxidative stress. This was followed by
Bacteroidota, Cyanobacteria and Actinobacteriota with three, two
and two copies per genome respectively. Interestingly, we found
that Patescibacteria MAGs had significantly lower copies of cold
adaptation genes, whilst both Actinobacteria and Asgardarch-
aeota demonstrated a significantly higher number of osmotic
stress genes (Supplementary Data 7). This is in line with
metagenomic studies reporting an enrichment of sigma B genes
in Antarctic mats, allowing for surviving severe osmotic stress
during freezing74. Similarly, Psychrobacter arcticus80 and Plano-
coccus halocryophilus Or181 were shown to have specific genomic
modifications, particularly with genes involved in putrescine and
spermidine accumulation, both of which are associated with
alleviating oxidative stress. Furthermore, MAGs from Proteobac-
teria were characterized by a high prevalence of genes potentially
expressed in response to stressors, such as UV and reactive
oxygen species (Fig. 5c).

Our genomic insights into possible adaptive traits of epilithic
microorganisms may also contribute to our understanding of
their adaptation beyond the windows of opportunity when the
GFS environment is even harsher. In fact, with the onset of winter
and during winter, GFSs partially freeze and become snow-
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covered thereby inhibiting primary production. Mixotrophy as
observed within the Cyanobacteria (Supplementary Fig. 4b)
would be advantageous during these periods.

Furthermore, it is recognized that cell membrane alterations
and lipid composition allow for withstanding cold conditions73.
Our observations regarding several MAGs encoding genes
associated with membrane and peptidoglycan alterations are
concordant with previous reports of increased membrane fluidity
in Psychrobacter arcticus 273–480, Sphingopyxis alaskensis82, and
Pseudomonas extremaustralis83. Simultaneously, at low tempera-
tures oxygen solubility increases, potentially generating reactive
oxygen species and subsequently leading to oxidative stress84. As
reported above, we observed several MAGs encoding genes to
counteract this phenomenon which may be even more critical as
temperatures may decrease outside of the ‘warmer’ windows of
opportunity. Overall, the diversity of the cold adaptation genes
and their potential mechanisms within MAGs support the notion
that these taxa are potentially equipped to deal with the even
harsher GFS environment outside the windows of opportunity.

In conclusion, our genome-resolved metagenomic analyses
have set the stage for a mechanistic understanding of how the
diversification of energy and matter acquisition pathways, meta-
bolic interactions, and genomic adaptations to harsh environ-
mental conditions allow GFS biofilms to persist and thrive during
windows of opportunity and beyond. We acknowledge that a
metagenomic time series outside and throughout windows of
opportunity would be required to substantiate some of our
observations. Nevertheless, our findings shed light on boulders as
important habitats that confer stability to biofilms even outside
the typical windows of opportunity. GFSs count among the
ecosystems that are most vulnerable to climate change. Therefore,
our findings open a window into the future of how microbial life,
with a strong photoautotrophic component, may look like in
GFSs when the environmental conditions become more favorable
for primary producers as glaciers shrink.

Methods
Sample collection. We sampled a total of eight GFSs from the Southern Alps in
New Zealand Southern Alps and the Caucasus in Russia in early- and mid-2019,
respectively, for a total of 27 epipsammic samples taken from sandy sediments and
21 epilithic biofilm samples from boulders adjacent to the epipsammic samples
(Supplementary Data 5). In order to have comparable samples, the collection was
largely constrained to the vernal and autumnal windows of opportunity, respec-
tively. Epipsammic samples were collected from each GFS by first identifying three
patches within a reach of ~5–10 m. From each patch, epipsammic samples were
taken from the <5 cm surface of the streambed with a flame-sterilized metal scoop
and sieved to retain the 250 μm to 3.15 mm size fraction. While three epipsammic
samples were taken from each stream, epilithic samples were taken opportunisti-
cally from up to three boulders per reach (Supplementary Data 5) due to their
heterogeneity within and among the streams due to the unequal presence of
boulders in each GFS. Epilithic biofilms were sampled using a sterilized metal
spatula. All samples were immediately flash-frozen in liquid nitrogen in the field
and transported and stored frozen pending DNA extraction. Streamwater turbidity,
conductivity, temperature, and pH were measured in situ during the sampling
(Supplementary Data 5). Samples for the determination of streamwater dissolved
organic carbon and inorganic nutrient concentrations were filtered through pre-
combusted (450 °C) glass microfiber filters (GF/F, Whatman), frozen, and analyzed
in the laboratory. DOC concentration was measured with a TOC carbon analyzer
(Sievers M9 TOC Analyser, GE). Phosphate, ammonium, nitrite and nitrate were
measured with a continuous flow injection analyzer (Lachat QuikChem 8500,
methods 10-115-01-1-M (PO4), 10-107-04-1-B (NO3/NO2) and 10-107-06-3-D
(NH3)) (Supplementary Data 5).

DNA extraction and purification. A previously established protocol85 was used to
extract DNA from all samples. Briefly, 5 g of epipsammic and 0.05–0.1 g of epilithic
biofilm were subjected to a phenol:chloroform-based extraction and purification
method. The differential input volume for the DNA extractions were established to
account for the differences in biomass between the epipsammic and epilithic
biofilms. The samples were treated with a lysis buffer containing SDS along with
0.1 M Tris-HCl pH 7.5, 0.05 M EDTA pH 8, 1.25% SDS and RNase A (10 µl:
100 mg/ml). The samples were vortexed and incubated at 37 °C for 1 h. Proteinase
K (100 µl; 20 mg/ml) was subsequently added and further incubated at 70 °C for

10 min. Samples were purified once with phenol/chloroform/isoamyl alcohol (ratio
25:24:1, pH 8) and the supernatant was subsequently extracted with a 24:1 ratio
chloroform/isoamyl alcohol. Linear polyacrylamide (LPA) was used along with
sodium acetate and ice-cold isopropanol for precipitating that DNA overnight at
−20 °C. For epilithic biofilms, the entire protocol was adapted to a smaller scale
due to the availability of higher DNA concentrations compared to sediment. The
former was treated with 0.75 ml of lysis buffer (instead of 5 ml for sediment) and all
subsequent volumes of reagents were adapted accordingly (see supplementary
material). Furthermore, a mechanical lysis step of bead-beating was necessary along
with a lysis buffer to facilitate DNA release from the more developed epilithic
biofilms. Due to the higher DNA yields, the addition of LPA was omitted from the
DNA precipitation step. DNA quantification was performed for all samples with
the Qubit dsDNA HS kit (Invitrogen).

Metabarcoding library preparation and sequencing. The prokaryotic 16S rRNA
gene metabarcoding library preparation was performed as described in Fodelia-
nakis et al.86, targeting the V3-V4 hypervariable region of the 16S rRNA gene with
the 341 F (5ʹ-CCTACGGGNGGCWGCAG-3ʹ) and 785R (5ʹ-GACTACHVGGG-
TATCTAATCC-3ʹ) primers and following Illumina guidelines for 16S metage-
nomic library preparation for the MiSeq system. The eukaryotic 18 S rRNA gene
metabarcoding library preparation was performed likewise but using the TAR-
euk454F (5ʹ-CCAGCASCYGCGGTAATTCC-3ʹ) and TAReukREV3 (5ʹ- CTTTCG
TTCTTGATYRA-3ʹ) primers to target the 18 S rRNA gene V4 loop87. Samples
were sequenced using a 300-bp paired-end protocol partly in the Genomic Tech-
nologies Facility of the University of Lausanne (27 epipsammic samples) and
partly at the Biological Core Lab of the King Abdullah University of Science and
Technology (21 epilithic samples).

Metabarcoding analyses. The 16S rRNA gene metabarcoding data were analysed
using a combination of Trimmomatic88 and QIIME289 as described in Fodelianakis
et al.86, with the exception that here the latest SILVA database90 v138.1 was used
for taxonomic classification of 16S rRNA and 18S rRNA gene amplicons. Non-
bacterial ASVs including those affiliated to archaea, chloroplasts and mitochondria
were discarded from the 16S rRNA amplicon dataset in all downstream analyses.
ASVs observed only once were removed from both 16S rRNA and 18 S rRNA
amplicon datasets. Diversity analyses were performed in R using the vegan91 and
metacoder92 packages. For non-metric multidimensional scaling (nMDS) and
distance-based redundancy (db-RDA) analyses data were log(x+ 1) transformed
and the capscale and ordiR2step (backwards direction, 200 permutations) functions
from vegan were used. To test for a source-sink hypothesis from epipsammic to
epilithic, the Sloan’s Neutral Community Model27 was used based on the R
implementation developed by Burns et al.93.

Whole-genome shotgun libraries and sequencing. All epilithic biofilm DNA
samples underwent random shotgun sequencing following library preparation
using the NEBNext Ultra II FS library kit94. Briefly, 50 ng of DNA was used for
constructing metagenomic libraries under 6 PCR amplification cycles, following
enzymatic fragmentation of the input DNA for 12.5 min. The average insert size of
the libraries was 450 bp. Qubit (Invitrogen) was used to quantify the libraries
followed by quality assessment using the Bioanalyzer from Agilent. Sequencing was
performed at the Functional Genomics Centre Zurich on a NovaSeq (Illumina)
using a S4 flowcell.

Metagenomic preprocessing, assembly, binning, and analyses. For processing
metagenomic sequence data, we used the Integrated Meta-omic Pipeline (IMP)95

workflow to process paired forward and reverse reads using version 3.0 (commit#
9672c874; available at https://git-r3lab.uni.lu/IMP/imp3)96. IMP’s workflow
includes preprocessing, assembly, genome reconstructions and additional func-
tional analysis of genes based on custom databases in a reproducible manner.
Briefly, adapter trimming is followed by an iterative assembly using MEGAHIT
v1.2.997. Concurrently, MetaBAT2 v2.12.198 and MaxBin2 v2.2.799 are used for
binning in addition to an in-house method, binny100, for reconstructing
metagenome-assembled genomes (MAGs). Binning was completed by selecting a
non-redundant set of MAGs using DASTool101 based on a score threshold of 0.7.
The quality of the MAGs was assessed using CheckM v1.1.3102, while taxonomy
was assigned using the GTDB-toolkit v1.4.1103.

For the downstream analyses including identification of viruses, VIBRANT
v1.2.1104 was used on the metagenomic assemblies. The output from this was used
to identify the viral taxa using vConTACT2 v0.9.22105. Independently, the viral
contigs were also validated using CheckV v0.7.0106. To estimate the overall
abundances of eukaryotes along with prokaryotes including archaea, we used
EUKulele v1.0.5107 with both the MMETSP and the PhyloDB databases, run
separately, to confirm the detected eukaryotic profiles. To understand the overall
metabolic and functional potential of the metagenome and reconstructed MAGs we
used MANTIS108. Additionally, we used METABOLIC v4.0109, metabolisHMM
v2.21110, and Lithogenie from MagicLamp v1.0 (https://github.com/Arkadiy-
Garber/MagicLamp) to identify metabolic and biogeochemical pathways relevant
for determining nutritional phenotypes of all MAGs along with the ‘anvi-estimate-
metabolism’ function from anvi’o111. This information was manually validated
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based on the different tools to identify which MAGs encode for the respective
pathways. Subsequently, to determine the growth rates of prokaryotes, we used
codon usage statistics for detecting optimization of genes that are highly expressed,
as an indicator of maximal growth rates with gRodon v1.0112. All the parameters,
databases, and relevant code for the analyses described above are openly available
at https://git-r3lab.uni.lu/susheel.busi/nomis_pipeline and included in the Code
availability section.

Eukaryote assembly and binning. To obtain eukaryotic MAGs, an alternate,
custom pipeline (https://github.com/Mass23/NOMIS_ENSEMBLE/tree/
coassembly) was established for coassembling the twenty-one epilithic biofilm
sequence data with subsequent binning. Individual samples were first preprocessed
similar to the workflow used in IMP, i.e., using FastP v0.20.0113. Subsequently, the
reads were deduplicated to avoid overlap and enhance computation efficiency using
clumpify.sh from the BBmap suite v38.79114. Thereafter, any reads mapping to
bacteria or viruses were removed by filtering the reads against a Kraken2
v2.0.9beta115 maxikraken database available at https://lomanlab.github.io/
mockcommunity/mc_databases.html. Only reads that were unknown or mapping
to eukaryotes were retained and concatenated. This was followed by another round
of deduplication using clumpify.sh. The concatenated reads were assembled using
MEGAHIT v1.2.7 with the following options: -kmin-1pass -m 0.9 -k-list
27,37,47,57,67,77,87 -min-contig-len 1000. Following assembly, EukRep v0.6.7116

was used for retrieving eukaryotic contigs with a minimum length of 2000 bp and
the ‘-m strict’ flag. These contigs were used for binning into MAGs as described
herein.

Eukaryotic MAGs were binned using CONCOCT v1.1.0117. To do this,
coverages were estimated for the contigs by mapping the reads of all samples
against the contigs using the coverm v0.6.1 (https://github.com/wwood/CoverM) to
generate bam files. These files were then used to generate a table with coverage
depth information per sample. The protein coding genes of the MAGs was
predicted with MetaEuk v4.a0f584d118 with their in-house database made with
MERC, MMETSP and Uniclust50 (http://wwwuser.gwdg.de/~compbiol/metaeuk/).
The annotation was then subsequently done with eggNOG-mapper v2.1.0119. The
completeness and contamination of the MAGs were assessed with Busco v5.0.0120

and the eukaryotic lineage (255 genes). We determined their taxonomy by
comparing the results of the EUKulele v1.0.3107 and EukCC v0.3121 along with
homology comparisons with publicly available genomes not included in the
previous tools by protein BLAST v2.10.0122.

Co-occurrence interaction networks. Co-occurrence networks between the pro-
and eukaryotic MAGs were constructed using an average of the distance matrices
created from SparCC123, Spearman’s correlation and SpiecEasi124, where the net-
works were constructed using the ‘Meinshausen and Bühlmann (mb)’ method.
Nodes with fewer than two degrees were discarded to identify cliques with three or
more interactions, while negative edges were removed to visualize only mutualistic
relationships. The matrix was visualised using the igraph125 R package. The largest
component from the overall co-occurrence network was determined using the
components module of the igraph package. Null model hypothesis was tested by
assessing the distribution of the node degree and the respective probabilities of the
occurrence network against those simulating the Erdos-Renyi, Barabasi-Albert,
Stochastic-block null models126. The igraph package was also used for plotting the
networks.

Phylogenomics and pangenomes. For the pangenome analyses, we collected all
the bins taxonomically identified as Polaromonas spp. and used the pangenome
workflow described byMeren et al. (http://merenlab.org/2016/11/08/pangenomics-v2)
using anvi’o111, along with NCBI127 refseq genomes for comparison and an outgroup
from the closely related Rhodoferax genus. The choice of Polaromonas spp. was based
on its high abundance and prevalence within the epilithic biofilms. The accession IDs
from the reference genomes obtained from NCBI are provided in the supplementary
material. The pangenome was run using the -min-bit 0.5, -mcl-inflation 10 and -min-
occurence 2 parameters, excluding the partial gene calls. A phylogenomic tree was
built using MUSCLE v3.8.1551128 and FastTree2 v2.1.10129 on all single-copy gene
clusters in the pangenome that were present in at least 30 genomes and had a
functional homogeneity index below 0.9, and geometric homogeneity index above 0.9.
The phylogenomic tree was used to order the genomes, the frequency of gene clusters
(GC) to order the GC dendrogram. A phylogenomic bacterial tree of life containing
the 47 high-quality MAGs along with 264 NCBI bacterial genomes was built based on
a set of 74 single-copy genes using the GToTree v1.5.51130 pipeline with the -D
parameter, allowing to retrieve taxonomic information for the NCBI accessions.
Briefly, HMMER3 v3.3.2131 was used to retrieve the single-copy genes after gene-
calling with Prodigal v2.6.3132 and aligned using TrimAl v1.4.rev15133. The entire
workflow is based on GNU Parallel v20210222134.

Data analyses and figures. Figures for the study including visualizations derived
from the taxonomic and functional components, were created using version 3.6 of
the R statistical software package135. The maps indicating the collection sites were
generated using the ggmap136 package in R. KEGGDecoder137 was used to assess
enriched KEGG orthology (KO) IDs in comparison to 105 publicly available

metagenome sampled in various ecosystems at a global scale (Supplementary
Data 3 and 6), which were processed using the IMP workflow. DESeq2138 with
FDR-adjustments for multiple testing were used to assess KOs significantly enri-
ched in the GFS metagenomes compared to this comparison dataset. The volcano
plot highlighting the significant KOs was generated using the EnhancedVolcano139

R package. Figures from metabarcoding data were also generated in Rv3.6 using the
ggplot2140 package and were further annotated graphically using Inkscape141 while
the network plots were generated using the igraph v1.2.2 package.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data samples and the MAGs are available at NCBI’s sequence read
archive under BioProject accession PRJNA733707. The Biosample accession IDs and the
metadata associated with each sample are listed under Supplementary Data 6. A snippet
of the results and source data generated and used in this study have been deposited in
Zenodo at https://doi.org/10.5281/zenodo.5545722. Data used to generate the figures are
also provided as a ‘Source Data’ file. Source data are provided with this paper.

Code availability
The detailed code used for the downstream functional and growth analyses is available at
https://git-r3lab.uni.lu/susheel.busi/nomis_pipeline and https://doi.org/10.5281/zenodo.
6372573. The custom pipeline for eukaryote analyses can be found here: https://github.
com/Mass23/NOMIS_ENSEMBLE/tree/coassembly. Subsequent binning and manual
refinement of eukaryotic MAGs was done as described here: https://git-r3lab.uni.lu/
susheel.busi/nomis_pipeline/-/blob/master/workflow/notes/MiscEUKMAGs.md.
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