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Allometric scaling relationships enable exploration of animal space-use pat-

terns, yet interspecific studies cannot address many of the underlying

mechanisms. We present the first intraspecific study of home range (HR) allo-

metry relative to energetic requirements over several orders of magnitude of

body mass, using as a model the predatory fish, pike Esox lucius. Analogous

with interspecific studies, we show that space use increases more rapidly

with mass (exponent ¼ 1.08) than metabolic scaling theories predict. Our

results support a theory that suggests increasing HR overlap with body

mass explains many of these differences in allometric scaling of HR size. We

conclude that, on a population scale, HR size and energetic requirement

scale allometrically, but with different exponents.

1. Introduction
Space-use patterns are a fundamental aspect of animal ecology, with impli-

cations including resource acquisition, behavioural interactions (e.g. mate

searching, competition) and human–wildlife interactions [1–3]. Home range

(HR), or the area used by an animal for daily activities [4], is an empirical

measure of space use, known to increase allometrically, since larger bodied

individuals require more space to meet their energetic requirements [5]. Sub-

stantial research has been conducted into the scaling relationships between

body mass, metabolic rate and space use at an interspecific level (e.g. [6]). How-

ever, the relationships are not always straightforward, so the underpinning

ecological mechanisms remain poorly understood [6] and the direct metabolic

interaction with space-use strategy remains elusive.

Early work proposed a directly proportional relationship between HR size

and metabolic rate, suggesting that both scaled with body mass (M) at a rate

close to M0.75 [7]. This led to the conclusion that HR size was a direct reflection

of energetic requirement, though recent studies demonstrate the 3
4 power law of

metabolic rate scaling to be far from universal [8]. Empirical studies found a sig-

nificantly steeper increase in HR size relative to energetic requirements than the

theoretical M0.75. One leading explanation for the discrepancy is the ‘gas

model’ of Jetz et al. [9], which predicts the frequency of interaction, spatial overlap

and loss of resources using an equation taken from physics for collisions among

gas particles to predict the frequency of interactions of neighbours. With this

model, they predicted that while HR size increases at a rate of M0.75, daily

travel distance for foraging within the HR increases only at a rate of M0.25 [8], sup-

ported by empirical studies [10]. Consequently, larger individuals cover the full

extent of their HR less often, leading to lesser expulsion of competitors and

thus greater overlap of HRs. Increased resource sharing ensues, with a related
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Figure 1. Allometric scaling on the geometric scale between body mass
(M, g) and both home range area (m2) (HR, filled circles), log10 HR ¼
0.16 þ 1.08 log10 M and mean daily travel distance (DTD, open circles)
log10 DTD ¼ 0.24 þ 0.40 log10 M in pike, Esox lucius.
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requirement for greater relative HR size at larger body size.

Further detail is given in [9].

Interspecific animal space-use studies are complicated

since factors other than metabolic requirements may be drivers

of variability in space-use traits, e.g. latitude or carnivory/

herbivory. Marked variation in space use may also occur

within species [11], for example, covarying with habitat quality.

High-quality habitats are expected to result in small HRs,

whereas low productivity habitats are associated with larger

HRs [12]. Though within intraspecific studies there will still be

factors that could modify space use, investigating intraspecific

scaling of HR size within a single, highly size-variable species

enables additional consideration of individual behaviour and

physiology influences not otherwise possible.

Fishes are the only vertebrate group in which an individ-

ual’s life history can span eight orders of magnitude in body

size [13]. Pike (Esox lucius), a freshwater predatory fish, is an

ideally suited species for examining scaling of individual

space use since, within a single species where juvenile and

adult body form and habitat use are similar, pike body size

spans several orders of magnitude.

In this study, we address two key questions on space use,

employing a detailed dataset of pike space use. First, based

on allometric scaling relationships of key space-use attributes,

we test whether these variables follow predictions made by

theory. Second, we explore some underpinning potential dri-

vers. Specifically, we predict that HR size will scale at a rate

greater than required solely by energetic requirements and

that daily travel distance will scale at a substantially lower rate.
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Figure 2. Allometric scaling on the arithmetic scale between body mass
(M, g) and (a) home range area (HR, m2) HR ¼ 1.45 M1.08 and (b) mean
daily travel distance (DTD, m) DTD ¼ 1,74 M0.40 in pike, Esox lucius.
2. Material and methods
The study was conducted on the River Frome, England (508419 N;

28119 W). We measured individual summer HR and mean daily

travel distance using radio telemetry of 43 pike ranging in body

mass (M) from 7 to 12 060 g between June and September 2001–

2005. Fish were located at dawn, midday and dusk every day over

a 13 day period, resulting in standard summer HR datasets of 39

locations per fish. Armstrong et al. [14] published a scaling relation-

ship of metabolic rate of pike with body mass and we used the

log-transformed data from all individuals in that study to generate

confidence intervals around the scaling exponent and test for a

significant difference between the metabolism and HR scaling expo-

nents. Metabolic data were collected at 158C, while average summer

water temperatures of the River Frome varied between 15 and

17.58C [15]. Linear regression applied to log–log transformed data

(M versus K99, M versus mean daily travel distance and M versus

metabolic rate) gave coefficients of the slopes around which confi-

dence limits were generated. This enabled significance testing of

the slopes of the different relationships. The back-transformed

equation was plotted onto the arithmetic data for assessment of

the fit of the power law model on the arithmetic scale. For more

information, see the electronic supplementary material, materials

and methods. Statistical analysis was conducted in R and Minitab.
3. Results
Both individual HR and mean daily travel distance showed

strong allometric scaling (figures 1 and 2). Individual HR size

scaled with an exponent of M1.08 (linear regression of log-

transformed data, p , 0.001), significantly higher ( p , 0.05)

than M0.75 predicted by McNab [7] and M0.80 previously

measured for pike standard metabolic rate [14]. Thus, the
trend of HR increasing with body mass more rapidly than pre-

dicted by metabolic needs alone, observed in interspecific

studies, is demonstrated here for a single species. Mean daily dis-

tance travelled scaled as M0.40 (figures 1 and 2; linear regression

of log-transformed data, p , 0.001), increasing at a much lower

relative rate than HR size, indicating a reduced HR traversing

frequency for larger individuals. This follows the prediction of

the Jetz et al. [9] model that a lower allometric increase in daily

travel distance leads to a lower extent of traversing the full HR.
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Presentation of the power functions plotted on the arithmetic

scale is provided in figure 2, while figure 1 demonstrates linearity

of the relationship in the log domain.
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4. Discussion
Our results suggest that increased HR size leads to greater HR

overlap owing to lesser patrolling of the full range area. HR scal-

ing patterns observed in interspecific studies were present

within a single species. The two scaling studies of standard

metabolic rate in pike found exponents that fell within the

higher scaling range typical for teleost fishes [13] (0.80 and

0.82 in [14] and [16], respectively). HR in pike scales with

body size at a significantly greater rate than these two higher

species-specific exponents, as well as the 0.75 exponent com-

monly referred to in many interspecific metabolism scaling

studies [8].

HR establishment is the result of resource availability,

individual behaviour and physiology, and interactions both

within and between species (e.g. [3]). We have shown that HR

increase with larger body mass is greater than basic energetic

requirements might suggest. Jetz et al. [9] proposed that spatial

overlap and loss of resources to neighbours were driving the

steep allometric increase of HR. Our results support their

model, since daily distance travelled increased at a rate of

approximately 0.4 compared to a HR scaling exponent of over

1 (figure 1). Thus, larger individuals covered 60% less ground

relative to their body size than did smaller individuals. While

pike are not territorial and do inhabit overlapping HRs [17],

they are known to adapt their behaviour and reduce attack

frequencies and prey consumption rates in the presence of con-

specifics [18]. Thus, it seems likely that with increasing spatial

overlap between conspecifics and a lack of territorial behaviour,

there is a need for larger HRs than would be predicted based on

metabolic needs alone.
Scaling down to intraspecific studies introduces some

challenges from population and individual scale traits

such as behavioural syndromes [19]. However, despite these

potentially masking factors, the patterns demonstrated inter-

specifically were also clearly represented within a species,

thus opening the opportunity for exploring the mechanisms

behind the patterns. Further work with model species exhi-

biting prolonged growth over several orders of magnitude

of body mass while maintaining relatively stable body

morphology, as occurs in many post-hatchling reptiles and

post-larval fishes, will enable deeper exploration of the

mechanisms behind allometric scaling of space use.

We conclude that, on a population scale, an allometric

relationship does exist between HR size and energetic require-

ment, despite individual variation in factors such as resource

distribution, behaviour, physiology and interaction.
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