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Cortical plasticity and nerve regeneration after 
peripheral nerve injury
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Abstract  
With the development of neuroscience, substantial advances have been achieved in 
peripheral nerve regeneration over the past decades. However, peripheral nerve injury 
remains a critical public health problem because of the subsequent impairment or absence 
of sensorimotor function. Uncomfortable complications of peripheral nerve injury, such as 
chronic pain, can also cause problems for families and society. A number of studies have 
demonstrated that the proper functioning of the nervous system depends not only on a 
complete connection from the central nervous system to the surrounding targets at an 
anatomical level, but also on the continuous bilateral communication between the two. 
After peripheral nerve injury, the interruption of afferent and efferent signals can cause 
complex pathophysiological changes, including neurochemical alterations, modifications 
in the adaptability of excitatory and inhibitory neurons, and the reorganization of 
somatosensory and motor regions. This review discusses the close relationship between 
the cerebral cortex and peripheral nerves. We also focus on common therapies for 
peripheral nerve injury and summarize their potential mechanisms in relation to cortical 
plasticity. It has been suggested that cortical plasticity may be important for improving 
functional recovery after peripheral nerve damage. Further understanding of the potential 
common mechanisms between cortical reorganization and nerve injury will help to 
elucidate the pathophysiological processes of nerve injury, and may allow for the reduction 
of adverse consequences during peripheral nerve injury recovery. We also review the role 
that regulating reorganization mechanisms plays in functional recovery, and conclude with 
a suggestion to target cortical plasticity along with therapeutic interventions to promote 
peripheral nerve injury recovery.
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Introduction 
Peripheral nerve injury (PNI) affects more than one million 
people worldwide, and the occurrence of trauma-induced PNI 
continues to increase (Jiang et al., 2010; Sachanandani et al., 
2014). PNI can cause a loss of perception and motor ability 
to varying degrees, with subsequent chronic dysfunction, 
and severely reduces quality of life (Modrak et al., 2020). 
Numerous promising outcomes in terms of local nerve 
regeneration have been achieved using diverse nerve growth 
factors, stem cell-derived exosomes, electrical stimulation, 
and other medical treatments (Quan et al., 2017; Du et al., 
2018; Rao et al., 2019a, b). However, the recovery of sensory 
or motor functions remains limited, even after severed 
peripheral nerves have been successfully reconnected and a 
range of therapies have been administered.

Plasticity is a characteristic of neurons that is common in the 
nervous system. It represents the adaptability of neurons to 
modify their functions and structures throughout the lifespan 
in response to various signals from the environment, learning 
processes, injury, and disease (Navarro et al., 2007; Davis et 

al., 2011; Colangelo et al., 2019; Sandquist and Sakaguchi, 
2019). Reorganization initiated by PNI can be observed 
in the spinal cord, brainstem, relay nuclei, thalamus, and 
cortex (Nicolelis et al., 1993; Florence et al., 2000; Mohanty 
et al., 2015). In the present review, we mainly discuss 
cortical plasticity and its potential relationship with PNI and 
regeneration.

A common conception related to plasticity and peripheral 
nerve regeneration is that an intact peripheral nerve circuit is 
the only element that limits the recovery of nerve function; 
however, cerebral cortical reorganization also plays a crucial 
role in functional recovery (Quraishe et al., 2018; Meyers et 
al., 2019). Brain imaging techniques have been used to confirm 
that cortical maps are reorganized following peripheral nerve 
transection (Lotze et al., 2001; Nordmark and Johansson, 
2020). These findings have inspired new strategies aimed at 
better restoring the performance of injured peripheral nerves, 
for example by establishing effective connections between the 
nervous system and target tissues, and by further regulating 
the ensuing central nervous system functional remodeling 
(Jiang et al., 2014). In the present study, a literature search 
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of studies in rodents, non-human primates, and humans was 
performed in the MEDLINE database from 1993 to 2020. 
The key words/terms were cortical plasticity, peripheral 
nerve injury, mechanisms, and regeneration. The results 
were further screened by title and abstract. In addition, an 
electronic search of the MEDLINE database was performed for 
methods of regulating cerebral cortical plasticity to promote 
PNI functional recovery. This search included publications 
with the following search terms: nerve transfer, neurorrhaphy, 
phantom limb pain, functional recovery, and treatment. This 
review describes the plastic changes that occur in the cerebral 
cortex after PNI. Additionally, it clarifies the regulatory role 
of cortical reorganization in the process of peripheral nerve 
injury and regeneration. The aim of this review is to emphasize 
that the regulation of cortical reorganization is a powerful tool 
that can be used to promote functional recovery and improve 
the prognosis of PNI patients.

Cortical Plasticity after Peripheral Nerve Injury 
Levels of somatosensory and motor cortical reorganization 
are strongly associated with the duration and degree of the 
interruption of peripheral nerve activity. If the nerve injury 
is reversible—for example, after transient peripheral nerve 
blockade induced by local anesthetics or ischemia, or mild 
nerve damage (Sunderland grades 1 and 2) (Figure 1)—
the plasticity process will be reversed as signal transmission 
resumes. However, in the case of transected nerves that are 
unable to dock accurately because of severe nerve trauma 
(Sunderland grades 3 and above) or amputation, the involved 
cortex undergoes a long-term reorganization process (Guo et 
al., 2012; Jiang et al., 2015).

There is growing evidence to suggest that the removal of 
sensory stimulation can result in conspicuous rearrangements 
of cortical morphology (Chen et al., 2002; Socolovsky et 
al., 2017). In early primate experiments investigating the 
reorganization of the somatosensory cortex, researchers 
reported a marked loss of activity in the relevant cortical 
district after disconnecting the dorsal rootlets of the index 
finger and thumb. In addition, the boundaries of the cortical 
skin receptive field corresponding to the severed nerve 
became blurred, and stimulation of the adjacent area also 
caused a response (Darian-Smith and Brown, 2000). Moreover, 
evidence of plasticity in the somatosensory cortex has been 
found in a rat carpal tunnel syndrome model. A dynamic 
plastic process occurred in the cerebral cortex of these carpal 
tunnel syndrome rats, which was similar to the results of 
primate experiments. Functional magnetic resonance imaging 
studies have demonstrated that the sensory area of the 
affected limb expands in the early stage and narrows in the 
later stage after injury. At the early stage, the brains of rats 
with median nerve entrapment attempt to compensate for 
sensory loss by enlarging the median nerve-involved regions 
of the sensorimotor cortex, as well as the related brain regions 
of sensorimotor networks. At the later stage, activation in the 
same area is markedly decreased in carpal tunnel syndrome 
rats. This result reflects the maladaptive process of the brain 
that is caused by peripheral nerve blockade (Bao et al., 2018). 
A series of changes in the central sensory cortex may reflect 
an abnormal state of supercompensation of the cerebral 
cortex after the interruption of input signals. With the 
support of human brain imaging technology, researchers have 
revealed that visual stimulation in deaf people can activate 
regions of the temporal cortex related to hearing function. 
This activation state is positively correlated with the duration 
of deafness (Que et al., 2018). Brain imaging techniques can 
thus provide valuable temporal and spatial information about 
dysfunctional areas. Such results imply that the cerebral 
cortex may not stabilize in the short-term after injury, and can 
become further altered after a longer time.

Paralysis caused by transection of the peripheral nerve is 

caused by the interruption of output signals from the motor 
cortex to the denervated muscles. In previous studies, 
researchers have observed that the motor cortex also 
launches plasticity processes after motor nerve injury. In 
early rodent experiments, researchers discovered that the 
corresponding motor cortex regions of denervated muscles 
lose their activation characteristics when vibrissal nerves are 
damaged. Moreover, the involved areas fail to produce similar 
muscle activation even after receiving electrical stimulation. 
However, after a few hours, the forearm and eyelid produce 
motor responses to the same stimulation of the same area. 
Similarly, in patients with forearm amputations, stimulation 
of the motor cortex region that previously innervated the 
forearm muscles can cause muscle movement in the shoulders 
(Sanes and Donoghue, 2000; Tomov et al., 2002). Thus, like 
in the sensory cortex, reorganization of the bilateral motor 
cortex can also occur after unilateral PNI. A recent study 
revealed that in a unilateral whisker deprivation mouse model, 
the bilateral cortex is recruited to reorganize the response to 
sensations from the unaffected peripheral area or to control 
its movement (Petrus et al., 2019). These results indicate 
that reorganization of the motor cortex occurs at the cortical 
boundary of the innervated area, and that the reorganized 
area regains control of the surrounding tissue. 

Cortical plasticity is a cross-species phenomenon. Consistent 
with observations in animal experiments, cerebral cortex 
reorganization also occurs after PNI in humans. PNI and limb 
immobilization can induce a decrease in cortical thickness 
in the affected primary motor and somatosensory areas 
(Langer et al., 2012). Additionally, after limb amputation, local 
cortical reorganization can be clearly detected in the primary 
sensorimotor cortex (Makin et al., 2015). An alteration of 
cortical activity in the local area that involved the injured 
peripheral nerve can promote the remodeling of both the 
local region and the network of the sensorimotor system. A 
study of patients with brachial plexus injury reported that 
when subjects were asked to imagine performing unilateral 
gestures, the activation of cortical innervation on the side of 
the brachial plexus injury was significantly lower than that 

Figure 1 ｜ Sunderland’s classification of nerve injuries. 
Grade 1: The continuity of nerve fibers remains intact, without Wallerian 
degeneration. Grade 2: The continuity of the axon and its myelin sheath is 
interrupted. The endoneurial tube remains intact, and the distal end of the 
injured nerve shows Wallerian degeneration. Grade 3: Nerve fibers (including 
axons and the endoneurium) are interrupted. The perineurium remains 
intact. The distal end of the injured nerve shows Wallerian degeneration. The 
possibility of self-recovery remains. Grade 4: Only the epineurium remains 
intact. The distal end of the injured nerve shows Wallerian degeneration. 
Grade 5: The entire nerve is completely interrupted. The distal end of the 
injured nerve shows Wallerian degeneration. Figure 1 was created with 
BioRender. com.
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of the normal group. Moreover, the supplementary motor 
area was almost not activated in the patients with brachial 
plexus injury. However, activation patterns were similar when 
comparing between healthy participants and the normal 
hands of patients with brachial plexus injury (Lu et al., 2016). 
In addition, the local cortical area of a patient who underwent 
limb transplantation and successful rehabilitation was able 
to become a canonical structure from an abnormal state 
(Hernandez-Castillo et al., 2018). Furthermore, several studies 
have reported that good clinical results after advanced surgical 
re-innervation techniques also depend on peripheral nerve 
regeneration ability and the adaptation capacity of cortical 
plasticity (Dahlin et al., 2017; Sturma et al., 2018).

The scope of brain plasticity involves local, long-distance, 
intra-hemispheric, and trans-hemispheric processes, and can 
usually be regarded as a remodeling process that adapts to 
stimuli. However, the compensatory mechanism that recruits 
the deprived cerebral cortex to process adjacent complete 
sensory information may be a beneficial adaptive change, or 
may conversely lead to maladaptive changes (Lee and Whitt, 
2015; Lent and Tovar-Moll, 2015; Bahia et al., 2019).

Cortical Plasticity and Phantom Limb Pain
According to clinical reports, most patients with severe 
PNI or amputation suffer from phantom limb pain (PLP) 
(Shankar et al., 2015; Kuffler, 2018). In recent years, basic 
and clinical medical research has initially revealed a close 
relationship between PLP and cortical reorganization (Diers 
et al., 2015). Two research (Karl et al., 2001; Raffin et al., 
2016) reports have noted that when upper limb amputees 
perform phantom movements, neurons in the somatosensory 
cortex corresponding to the elbow and mouth are activated. 
The reorganization of primary sensory and motor cortices 
after PNI is related to phantom limb pain. Researchers have 
discovered that the associated cortex after PNI is invaded by 
representations of the body parts adjacent to the missing 
limb. There is a positive correlation between the severity of 
phantom limb pain and the degree of neuronal reorganization; 
that is, a higher degree of reorganization in the deprived 
cortex relates to a higher PLP score. These results indicate that 
the severity of PLP is positively correlated with the degree of 
somatosensory and motor cortical reorganization.

Research has shown that the reversible ability of cortical 
plasticity may be used as a potential treatment for PLP 
(Lefaucheur et al., 2008). In a within‐participants, double‐blind, 
sham‐controlled study, Kikkert et al. (2019) demonstrated 
that PLP outcomes were able to be relieved with noninvasive 
brain stimulation interventions. They revealed that both 
short- and long-term pain relief was associated with increased 
activity in the brain regions related to pain caused by the 
interventional stimulation. In another such study, patients 
with PLP caused by brachial plexus avulsion underwent brain 
machine interface training of a neuroprosthetic (robotic) 
hand using real-time magnetoencephalography signals. Brain 
machine interface training was able to enhance PLP, while less 
brain machine interface training helped to reduce pain. These 
outcomes suggest a direct link between sensorimotor cortical 
plasticity and PLP resulting from severe PNI, but the authors 
also hypothesized that an ideal rehabilitation method might 
alleviate pain by providing an intact nerve circuit (Yanagisawa 
et al., 2016). The application of central plasticity in the 
treatment of PNI should be based on preventing abnormal 
increases or decreases in central areas by regulating sensory 
input and motor output signals.

Mechanisms of Cortical Reorganization
The reorganization of the extensive central nervous network, 
including the cortex, thalamus, brainstem, and spinal cord, 
after PNI is considered to be a progressive injury-related 

adaptation process. The mechanisms involve many changes at 
the tissue, cellular, and molecular levels. However, the exact 
mechanisms of reorganization remain unclear.

Imbalance of excitatory and inhibitory neurons
In the cortical neural network, excitatory pyramidal neurons 
and inhibitory interneurons form local neural circuits through 
synaptic structures. These circuits are the structural basis 
of the excitation–inhibition balance in the cortex. Increased 
inhibition in the visual cortex after visual deprivation can 
be regulated through either the long-term depression of 
excitatory intracortical synapses (Rittenhouse et al., 1999) or 
the potentiation of inhibitory synapses (Maffei et al., 2006). 
It is generally believed that action potentials emitted by 
excitatory neurons are transmitted along axons to presynaptic 
membranes, and excitatory postsynaptic potentials then 
activate inhibitory neurons through synaptic transmission. If 
they reach a certain threshold, inhibitory neurons produce 
inhibitory postsynaptic potentials on the excitatory neurons 
innervated by them, thereby inhibiting excitatory neurons. 
Alterations of neurotransmitter levels have a significant 
impact on the reorganization process. One study has found 
that a combination of excitatory neurons and inhibitory 
neurons can regulate the excitability and dynamic range of 
neural circuits (Benali et al., 2008). The process of neuronal 
remodeling is promoted by an imbalance between the two 
kinds of neurons, induced by nerve damage (Jones et al., 
2002). The results of histology, immunostaining, and brain 
imaging techniques indicate that, after sensory deprivation, 
the cortex is more likely to be remodeled with increased 
inhibitory interneuron activity, whereas the activity of 
excitatory pyramidal neurons has less of an impact on cortical 
plasticity (Pelled et al., 2009).

Long-term plasticity
The long-term reorganization of the cerebral cortex may 
involve more stable functional or structural mechanisms, 
including long-term potentiation and long-term depression. 
PNI contributes to chronic pain and causes synapses to 
respond with long-term potentiation (Chen et al., 2014; 
Bliss et al., 2016). However, some researchers believe that 
whisker-deprived rats have attenuated excitatory layer IV 
input of L2/3 pyramidal cells in the primary somatosensory 
cortex, and that this loss of somatosensory input causes long-
term depression (Allen et al., 2003; Bender et al., 2006). The 
Ca2+ influx is regulated by α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid and N-methyl-D-aspartate receptors, 
which in turn affect long-term cortical plasticity through 
synaptic plasticity (Mohanty et al., 2015). Signs of new axon 
and dendrite formation after sensory deprivation have also 
been found in the cerebral cortex (Bahia et al., 2019).

Plasticity can be conducted by synaptic activities that regulate 
protein synthesis and degradation after PNI (Bingol et al., 
2010; Jarome and Helmstetter, 2014). Cortical plasticity 
is regulated by the synthesis and degradation rates of 
synaptic proteins affected by nociceptive signal stimulation 
from surrounding receptors (Ko et al., 2020). Neurotrophic 
factors, including nerve growth factor, brain-derived 
neurotrophic factor, neurotrophin 3, and neurotrophin 4, are 
important signaling molecules that take part in the cortical 
reorganization process. These factors are not only involved in 
controlling changes in synaptic structures and the efficiency of 
signal transmission, but they also regulate dynamic changes 
in the brain’s neuronal network (Gibon and Barker, 2017). For 
example, neurotrophins play a pivotal role in glutamatergic 
neurotransmission and the γ-aminobutyric acidergic 
transmission system, which affect the process of cortical 
plasticity (Kim et al., 2017; Meis et al., 2019).

In summary, cerebral cortex modification is supported by 
changes in neural circuits. Different internal environments 
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activate distinct areas of neuromodulatory systems and affect 
the excitatory–inhibitory balance of the cerebral cortex to 
facilitate long-term cortical plasticity.

Effects of Nerve Repair on Remodeling 
Nerve function can be restored faster and better if the 
continuity of the severed peripheral nerve is repaired as 
soon as possible. Multiple therapies are suitable for PNI 
with different gap defects. At present, nerve neurorrhaphy 
is a common option in the treatment of small or unclear 
nerve defects. Nerve lengthening or small-segment nerve 
transplantation is typically applied for short- or middle-
distance peripheral nerve defects (Griffin et al., 2013). 
Furthermore, nerve transposition repair is thought to be 
able to cover long-segment peripheral nerve defects, such 
as brachial plexus injuries (Ali et al., 2015). Here, we briefly 
discuss the potential impact of different repair methods on 
the cortex.

Neurorrhaphy and autografts
Ideally, the corresponding cortical region will be reset as a 
normal structure if the transected peripheral nerve achieves 
perfect nerve regeneration. Generally, this situation only 
occurs in Sunderland grades 1–2 (axons can regenerate in 
their original endometrial sheaths after slight crush injuries).

After direct neurorrhaphy or autograft repair, there is a 
high rate of regenerative nerve misdirection (de Ruiter et 
al., 2008). Misdirection of regenerating peripheral nerves, 
which results in an exception occurring in bidirectional signal 
transduction between the target tissue and the cortex, can 
lead to somatosensory cortex reorganization and skin area 
reorganization (Lundborg, 2003; Nordmark and Johansson, 
2020). If this occurs, the previous cortical area, which has 
been explicitly defined, will disappear and be replaced by a 
discontinuous and incomplete texture in the reconstructed 
cortical area. Our previous studies have demonstrated that, 
compared with ordinary nerve neurorrhaphy, the use of 
chitosan conduits to repair small gap peripheral nerve defects 
have a better effect in correcting the direction of nerve 
regeneration (Zhang et al., 2013; Yu et al., 2016; Wang et al., 
2018). This finding implies that bridging small gap defects with 
chitosan conduits may have a potential role in the study of 
cortical remodeling as well as for treating small gap peripheral 
nerve defects.

Nerve transposition
After transferring healthy C7 roots to repair the contralateral 
injured median nerve, the cortices of rodents undergo 
reorganization. At 3, 5, and 7 months after the nerve transfer, 
intracortical microstimulation of the primary motor cortex 
was performed to construct a motor cortex response map. 
Results demonstrated that the injured limb was able to be 
moved by stimulating the motor cortex of the contralateral 
hemisphere. At 5 months after transfer, the injured limb was 
able to be moved by stimulating the ipsilateral motor cortex. 
Moreover, stimulation of the bilateral cortices elicited motion 
of the injured limb at 7 months after the surgery. Notably, 
the injured forelimb representation area was identified in 
the contralateral motor cortex at 10 months after the repair. 
The results of this experiment indicate that the transfer of 
functional plasticity between the two hemispheres is time 
dependent (Jiang et al., 2010). In addition, transhemispheric 
functional reorganization occurs based on the plasticity of the 
central nervous system, especially via the corpus callosum, 
which can cause extensive functional transformation 
between the two hemispheres (Lou et al., 2006). Sokki et al. 
(2012) noted synkinetic movements of elbow flexion during 
inhalation in patients in the early stages after successful 
intercostal–musculocutaneous nerve transfer. After a period 
of recovery, this uncoordinated phenomenon gradually faded 

and these patients were then able to autonomously flex their 
elbows without interfering with their respiratory activity. 
In addition, functional magnetic resonance imaging results 
from this study revealed that the cortical activation of the 
original intercostal muscle motor area was transferred to the 
elbow flexion area. These results demonstrate that cortical 
reorganization occurs after intercostal–musculocutaneous 
nerve transfer (Sokki et al., 2012). Together, these findings 
indicate that cortical plasticity participates in both the 
pathophysiology and the recovery process of PNI. Thus, 
functional recovery after PNI requires an understanding of not 
only the promotion of peripheral nerve regeneration, but also 
the role of brain reorganization at this stage.

Cortical Plasticity in the Treatment of Peripheral 
Nerve Injury  
For better rehabilitation after PNI, it is necessary to carry out 
comprehensive therapy focused on the mutual influences of 
PNI and the cerebral cortex.

Sensory reeducation
The progressive process of brain reorganization, which 
occurs through cognitive learning techniques (for example, 
visualization and verbalization) and alternate senses (such as 
vision, hearing, and graded tactile stimuli) is called sensory 
reeducation (SR). This technique aims to improve the 
functional use of the affected limb through maintaining and/
or restoring reorganizational sensory areas (Jerosch-Herold, 
2011). SR mainly includes two stages. In phase I, within 24 
hours after denervation, the corresponding sensory cortical 
area begins to shrink, while the surrounding cortical areas 
expand and occupy the area represented by the injured 
nerve. The aim of SR is to provide another sensory input to 
the sensory cortex before the regenerated nerve fibers have 
reached the surrounding target. This is also known as cross-
modal sensory substitution technology. In this phase, SR keeps 
the initial cortical map by using other sensory techniques 
and sensations, including touch observation, mirror visual 
feedback technology (audio-visual interaction), and the 
sensory glove system (auditory interaction) (Rosén and 
Lundborg, 2007). Phase II, or classical SR, begins when the 
initial regeneration is confirmed by a positive Tinel’s sign and 
touch threshold test. The process of phase II is a combination 
of vision, memory, and learning sensory signals that stimulate 
the corresponding cortical area from multiple aspects, thereby 
affecting the process of brain reorganization. In a prospective 
study of patients who had undergone long-term median nerve 
microsurgical repair, sensory function in the hands of patients 
treated with SR was better than that of patients without SR 
treatment (Rosén et al., 2003; Antonopoulos et al., 2019).

Vagus nerve stimulation
Vagus nerve stimulation (VNS) is a neurostimulation therapy. 
The electrical stimulation of the vagus nerve is considered 
an effective treatment for enhancing recovery in multiple 
neurological disorders, including stroke, traumatic brain 
injury, and spinal cord injury (Hays, 2016; Darrow et al., 2020). 
Cooperating with sensory, motor, or cognitive events during 
rehabilitation, temporary bursts of VNS at appropriate times 
can strengthen cortical remodeling and retain permanent 
functional improvements. Meyers et al. (Meyers et al., 2019) 
established complete transection models of the median and 
ulnar nerves in rats, and then used nerve conduits to repair 
the severed nerves. Promising results were obtained after 
6 weeks of closed-loop VNS treatment in this rat model of 
nerve injury. The closed-loop VNS was able to control the 
injured neural circuit by accurately timing the release of 
neuromodulators (acetylcholine), and effectively reversed 
the maladaptive expansion of the cortical circuit without 
significantly impacting on the peripheral nerve or muscle 
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after nerve transection (Meyers et al., 2019). These findings 
suggest that closed-loop VNS can be considered an easy-to-
implement therapy, and suitable operations that regulate 
cortical plasticity may be beneficial for restoring sensorimotor 
function.

Local nerve blockade
Previous studies have reported that blocking the local nerves 
of normal hands causes reorganization in the motor cortex of 
the involved nerves, representing the expansion in the motor 
cortex of upper limb muscles in the adjacent parts. Hence, 
it is envisaged that using local nerve blockade to regulate 
the representative area of the cortex adjacent to damaged 
innervated tissue may promote the functional recovery of 
the affected hand (Weiss et al., 2004; Björkman et al., 2005). 
In a further study, patients with median nerve injury or ulnar 
nerve injury underwent 2 weeks of local skin anesthesia of 
the forearm while performing hand sensory recovery training. 
After 6 weeks, the sensory function of the experimental 
group was significantly better than that of the control group 
(Walbruch and Kalliainen, 2015). The reason for this effect is 
likely related to cortical plasticity mechanisms, which manifest 
as the expansion and contraction of brain regions.

Action observation with peripheral nerve stimulation
Neurophysiological experiments have demonstrated that the 
excitability of the motor cortex is activated when observing 
actions performed by another individual or when thinking 
about simulated movements (Rizzolatti and Craighero, 
2004). However, this effect can disappear quickly if follow-up 
training is not carried out in time. According to reports, the 
combination of action observation and behavior replication has 
a positive effect on retaining information (Bisio et al., 2015). 
Furthermore, action observation combined with peripheral 
nerve stimulation shortens the time interval between 
observation and execution, and simultaneously enhances and 
consolidates the activation of motor cortex excitability through 
afferent feedback from peripheral nerves, thereby improving 
the long-term excitability of the cerebral cortex. Clinical trials 
have demonstrated that action observation with peripheral 
nerve stimulation effectively induces lasting plasticity of 
the cortical area by acting as a reorganization mechanism, 
similar to long-term potentiation (Bisio et al., 2017). Action 
observation with peripheral nerve stimulation supports the 
effectiveness of increasing the excitability of cortical areas, and 
may be used as a potential method for promoting functional 
recovery in patients with PNI.

Concluding Remarks
Pathological activity in disturbed neural circuits after PNI can 
impair both normal function and the rehabilitation process. 
In addition to repairing the integrity of neural circuits, the 
precise control of cortical remodeling may be a promising 
factor for repairing PNI and obtaining better rehabilitation 
results (Figure 2).

Looking to the future, the optimization of nerve repair 
technology should make use of neuroplasticity, which is an 
intrinsic characteristic of the nervous system. The mechanisms 
of cortical remodeling and PNI need to be further clarified, 
and may provide new ideas for studying the correlation 
of nerve injury. On this basis, it may be possible to create 
multiple combination therapies (through the joint action of 
the brain, spinal cord, peripheral nerves, and target organs) to 
further enhance this synergistic effect. Multiple combination 
therapies show great potential for comprehensive treatment 
because of the inseparable neurological connections at all 
levels.
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