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Abstract
Developing a hedging strategy to reduce risk of losses for a given set of stocks in a portfolio is a difficult task due to cost
of the hedge. In Vietnam stock market, cross-hedge is involved hedging a long position of a stock because there is no put
option for the stock. In addition, only VN30 stock index futures contracts are traded on Hanoi Stock Exchange. Inspired by
recently achievement of deep reinforcement learning, we explore feasibility to construct a hedging strategy automatically
by leveraging cooperative multi-agent in reinforcement learning techniques without advanced domain knowledge. In this
work, we use 10 popular stocks on Ho Chi Minh Stock Exchange, and VN30F1M (VN30 Index Futures contracts within one
month settlement) to develop a stock market simulator (including transaction fee, tax, and settlement date of transactions) for
reinforcement learning agent training. We use daily return as input data for training process. Results suggest that the agent
can learn trading and hedging policy to make profit and reduce losses. Furthermore, we also find that our agent can protect
portfolios and make positive profit in case market collapses systematically. In practice, this work can help Vietnam’s stock
market investors to improve performance and reduce losses in trading, especially when the volatility cannot be controlled.

Keywords Deep reinforcement learning · Hedging · Trading · Portfolio

1 Introduction

Hedging a position in stock is an attractive topic for both
academics and practitioners. The objective of hedging is
to minimize market risk due to price fluctuation, maximize
profit by speculation on the basis, and construct a portfo-
lio with reduced risk Floros and Vougas (2004). Portfolio
managers have used stock index futures as a means to adjust
desired return of a portfolio andpotential loss since the 1980s.

Communicated by Vladik Kreinovich.

B Uyen Pham
uyenph@uel.edu.vn

Quoc Luu
quoc.luu2015@qcf.jvn.edu.vn

Hien Tran
hien.tran@ttu.edu.vn

1 Economic Mathematics, University of Economics and Law,
Ho Chi Minh City, Vietnam

2 Quantitative and Computational Finance, John von Neumann
Institute, Ho Chi Minh City, Vietnam

3 School of Engineering, Tan Tao University, Long An,
Vietnam

Main advantage of index futures as a major hedging tool is
liquidity and lower transaction costs Ghosh (1993). How-
ever, hedge strategies are not always effective as expected
because relationship of cash price and price of a future con-
tract is usually not perfect, or hedged position in stock is
different from the underlying portfolio for the index contract
Figlewski (1984), Floros and Vougas (2004). It is possible to
increase risk of potential loss that leads to negative return.
Hence, hedgers have to determine the optimal hedge ratio to
control the risk of the portfolio.

In contrast to supervised learning and unsupervised learn-
ing, reinforcement learning mainly relies on experience of
repeated interaction to learn optimal policy in order to make
sequential decisions to maximize rewards in a given envi-
ronment Sutton and Barto (2018). In a complex and dynamic
environment, it may require huge amounts of computational
power over a long period of time to train. With revolution of
deep learning techniques and computer hardware, reinforce-
ment learning has becomemore feasible by using deep neural
network as a functional estimator. From long time horizons
with high-dimensional observation and action spaces in real-
time strategy games, to self-driving vehicles, data center
cooling systems, deep reinforcement learning has been more
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and more applied to solve many complex real-world chal-
lenges Berner et al. (2019), Evans and Gao (2016), O’Kelly
et al. (2018). In finance, deep reinforcement learning is also
widely adopted. Zhang et al. Zhang et al. (2020) uses various
RL algorithms including deep Q-learning, policy gradients,
and Advantage Actor–Critic (A2C) to design trading strate-
gies for continuous futures contracts. They use technical
indicators such as moving average convergence/divergence
(MACD) and relative strength index (RSI) as a part of input
features. The agent shows that it candeliver profits evenunder
heavy transaction costs. Ganesh et al. Ganesh et al. (2019)
develop amulti-agent dealer market for market marking with
different competitive scenarios and market price conditions.
The research suggests that trained agent can learn to manage
inventory and its competitor’s policy for pricing.

However, investigating feasibility of stock and futures
trading to hedge portfolio at the same time using deep rein-
forcement learning is still a topical and interesting problem.
In this study, we selected 10 popular stocks on HSX, and one
stock index futures contract on HNX to build a simulation
of stock market environment with real market data to study
learning performance of our agent. Our objective in this work
is to investigate whether cooperation of multi-agent to deter-
mine optimal hedging strategy to protect stock portfolio is
achievable.

2 Related work

2.1 Some basic background about hedging

Hedging is a finance strategy to reduce risk in investments by
taking an opposite position in a related asset to offset losses.
Basically, before making any investments, investors have
to balance between profit and risk, for example, expected
returns and variance of returns. It is the fact that a dollar of
loss can cost the investor or the company more than a dol-
lar of high profit. Hence, the reduction in risk provided by
hedging also typically results in reduction in potential profits.
The trade-off between profits and risks is the basic problem
in finance.

Hedging generally involves the use of financial instru-
ments known as derivatives. The two most common deriva-
tives are options (such as call option, namely the right to buy
an asset at the fixed strike price by the predetermined time
t in the future, or the put option, i.e., the right to sell) and
futures or future contracts. (The buyer must purchase or the
seller must sell the underlying asset at the set price at the
expiration date.)

How much should an open or spot position be hedged?
Fixed or “obvious” hedge ration may increase rather than
decrease risk (McDonald (2006)). It depends onwhich kinds
of risk investors consider, and then, the optimal hedge ratio

would be obtained accordingly. For example, if the variance
of returns is used as a risk measure of a portfolio, the optimal
hedge ration would be the minimum variance hedge ratio
(MVHR).

2.2 Hedging effectiveness of stock index futures

Motivated by risk reduction, hedging a stock portfolio with
index futures has been an active research topic since it was
introduced Figlewski (1984). A hedger supposes that return
of a hedged position (e.g., stock portfolio) can be closed
to risk-free interest rate. In terms of optimal hedge ratio
hr , there are many methods used to estimate the ratio. For
instance, one-to-one hedge, the beta hedge, and the MVHR
are some of thesemethodsBrown (1985), Ederington (1979).
Butterworth et. al. Butterworth and Holmes (2001) evalu-
ated hedging effectiveness of stock index futures with four
different strategies (i.e., the traditional hedge, MVHR, least
trimmed squares (LTS), and beta ratio of cross-hedge) with
two daily and weekly hedge durations in the UK market.
The results suggest that MVHR and LTS methods are robust
to estimate the ratio. With cash prices and futures moving
closely together assumption, one-to-one hedge strategy sug-
gests hr = −1. Beta hedge strategy uses negative of the beta
cash portfolio as hr . The hedger expects the overall beta of
the portfolio is zero. However, in practice, change of prices
of spot and futures is imperfectly correlated. Particularly in
case of cross-hedge (namely the use of a derivative on one
asset to hedge another asset), one-to-one and beta hedge may
not reduce risk. In contrast, futures hedging can lead to unex-
pected loss.

The MVHR was introduced to work around for the prob-
lem by taking the imperfect relationship of prices into
account and determine the optimal ratio hr . Let Rs , R f , and
Rh are returns of spot position (e.g., open portfolio), futures
positions (e.g., index futures for hedging), and the hedged
portfolio with futures, respectively, then we get

Rh = Rs + hR f (1)

Var(Rh) = Var(Rs) + h2Var(R f ) + 2hCov(Rs, R f )

(2)

The optimal ratio h (or hr ) to minimize the Var(Rh) is:

hr = −Cov(Rs, R f )

Var(R f )
(3)

Furthermore, by using ordinary least squares (OLS) regres-
sion to estimate minimum risk hedge, Figlewski Figlewski
(1984) found that hedging effectiveness of a large capitaliza-
tion portfolio can yield “fairly good” for a one-week holding
period (p. 663). However, with diversified portfolio of small
stocks, the effectiveness is reduced significantly. Basis risk
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Fig. 1 Daily movement of VN30 Index from December 19, 2019, to April 16, 2020

is also not negligible even if the spot is hedged with index
futures itself. When basis risk arises, it can generate profit
or loss. It is suggested that one-day holding hedge positions
strategy can potentially increase basis risk and reduce risk
effectiveness than one-week hedge.

Stating that traditional methods to estimate optimal hedge
ratio are misspecified, error correction model (ECM) was
proposed to estimate optimal hedge ratio and forecast out
of sample for evaluation as in Ghosh (1993). Firstly, it car-
ries out cointegration test. Secondly, it use OLS regression
to estimate error correction model. The model incorporates
relationship of the long-run equilibrium as well as the short-
run dynamics. The result shows that optimal hedge ratio is
significantly improved with adjusted R2 from ECM which
is higher than traditional methods. Also, by comparing root-
mean-squared error (RMSE), out-of-sample forecasts from
the ECM are found to be better than other methods.

Beyond variance and standard deviation, value at risk
(VaR) and conditional value at risk (CVaR) are extensively
applied to measure market risk for hedging strategies of port-
folio Cao et al. (2010), Huggenberger et al. (2016). VaR was
introduced by J.P. Morgan in the 1990s and widely adopted
to summarize risk of an entire portfolio at the end of each day
Miller (2018). However, VaR is not a coherent risk measure.
To be coherent, it must be monotonicity, positive homogene-
ity, translation invariance, and subadditivity Artzner (1999),
Artzner et al. (1997). CVaRwas constructed with these prop-
erties as a new valid practical alternative to VaR Acerbi
and Tasche (2002). Espeholt et al. Alexander et al. (2003)

show that CVaR is applicable to a wide range of derivatives
portfolio including American options and exotic options. In
addition, it is found that CVaR risk metric is suitable for
asymmetric return distributions and expected loss of port-
folio can be minimized in many circumstances Topaloglou
et al. (2002).

2.3 Deep Reinforcement Learning in Trading

Reinforcement learning was proposed to train trading sys-
tems to make profit and to adjust risk Moody et al. (1998),
Moody et al. (1998). Recurrent learning and Q-learning
with neural networks were used to optimize financial perfor-
mance functions including risk-adjusted return and imme-
diate utility for online learning Moody et al. (1998). Fur-
thermore, portfolios with continuous quantities of multiple
assets were considered. The result shows that reinforce-
ment learning can avoid large losses when market crashed.
Basis risk hedging strategy was developed using reinforce-
ment learning as in Watts (2015). Without assets modeling
requirements, state–action–reward–state–action (SARSA)-
based algorithm was applied to find an optimal trading
policy to hedge a non-traded asset. Q-learning is proposed
to extend Black–Scholes–Merton (BSM) model for option
pricing and hedging in Halperin (2017). In an attempt to
escape Greeks and complete market assumptions in risk
management, by leveraging deep reinforcement learning, a
Greek-free approach is proposed to focus on realistic market
dynamics and out-sample testing performance for optimiz-
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ing hedging of a portfolio of derivatives Buehler et al. (2019).
Deep reinforcement learning is further investigated for hedg-
ing a portfolio of over-the-counter derivatives under generic
market frictions as in Buehler et al. (2019). Trading costs and
liquidity constraints are considered in the approach.

3 Multi-Agent Reinforcement Learning
Approach

3.1 Deep Reinforcement Learning

3.1.1 Single-Agent Reinforcement Learning

For a given stochastic environment ε, an agent interacts with
the environment by choosing to take a legal action at from
many actions at time step t , at ∈ A ≡ {1, . . . , L}. Action
space can be discrete or continuous.When the selected action
is passed to the environment ε, internal state st is switched
to another state in many states S. In other words, the process
of sequential interactions between the agent and the environ-
ment is result of mapping from perceived states st to actions
at by policyπ . For instance, inDota 2 game, internal state can
be all the available information for human player including
positions, health, map Berner et al. (2019). In this research,
internal state is asset return in percentage, position of each
asset. In return, the agent receives reward rt of the passed
action as feedback, and new internal state st+1 for each time
step until reaching terminate state. The ultimate goal of deep
reinforcement learning is to find an policy π that can select
optimal action to maximize reward signal for each state st .
Value of a state measures total expected return by predicting
future reward with discount rate γ ∈ [0, 1]. The total accu-
mulated discounted return Gt from time t with k time steps
in the future is defined as:

Gt =
∞∑

k=0

γ krt+k+1 (4)

The state value Vπ (s) is defined as in Sutton and Barto
(2018):

Vπ (s)
.=Eπ [Gt |St = s]

=Eπ

[ ∞∑

k=0

γ k Rt+k+1|St = s

]
(5)

Similarly, action value Qπ (s, a) is the expected return for
state s from selecting action a following policy π .

Qπ (s, a) =Eπ [Gt |St = s, At = a]

=Eπ

[ ∞∑

k=0

γ k Rt+k+1|St = s, At = a

]
(6)

In value-based reinforcement learning, off-policy Q-
learning was introduced to estimate the action value function
Qπ (s, a), defined as Watkins (1989).

Q(St , At ) ← Q(St , At )

+ α
[
Rt+1 + γ max

a
Q(St+1, a) − Q(St , At )

] (7)

The algorithm directly approximates the optimal action value
function Q∗(s, a). By extending neural network as a function
approximator, the function can be estimated as Q∗(s, a) ≈
Q(s, a, θ). The approach is referred as Q-network with
weights θ Mnih et al. (2013).

In contrast to value-based methods, policy-based can
select actions directly by parameterizing the policy π(a|s, θ)

and using gradient ascent to optimizeE[Rt ] to find the best θ
that can produce the highest reward. In terms of probability,
we can express the policy as π(a|s, θ) = Pr{At = a|St =
s, θt = θ} for the probability of a given environment ε in
state s at time t with parameter θ to take action a. Actor–
critic algorithms use both value and policy functions to learn
approximationsKonda andTsitsiklis (2000). To improve per-
formance, the critic learns a value function (e.g., state value)
and is used to update policy parameters of actor.

3.1.2 Multi-Agent Reinforcement Learning

Extent from single agent, multi-agent learning is considered
n agents interacting with the environment ε. At state st of
time step t , each agent selects action ait to react to the state
and receive reward r it , where i ∈ {1, . . . n}. Hence, for any
given joint policy π(a|s) .= ∏n

i π i (ai |s) with state s ∈ S,
state value function can be defined as in Zhang et al. (2019):

V i
π i ,π−i (s)

.= E

[ ∞∑

t=0

γ t Ri
t+1

∣∣∣∣a
i
t ∼ π i (·|st ), s0 = s

]

(8)

where −i indicates that all n agents except the ith agent.

3.2 High Throughput Architecture with Importance
Weighted Actor–Learner Architecture

Importance weighted actor–learner architecture (IMPALA)
is a decoupled actor–critic style learner with introduction of
V-trace off-policy to learn a policy π and a baseline func-
tion V π that achieves stability, high data throughput, and
efficiency for agent training Espeholt et al. (2018). More-
over, deep neural networks can be trained efficiently with
IMPALA as suggested in Fig. 2. Suppose at time t , a given
local actor policyμgenerates trajectory (st , at , rt )

t=k+n
t=k . The

n-step V-trace target for value approximation V (sk) at state
sk is defined as:
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Fig. 2 Left: Single learner.
Right: multiple synchronous
learners. Adopted from Espeholt
et al. (2018)

vk
.= V (sk) +

k+n−1∑

t=k

γ t−k(
t−1∏

i=k

ci
)
δt V

δt V
.= ρt (rt + γ V (st+1) − V (st ))

ρt
.= min

(
ρ̄,

π(at |st )
μ(at |st )

)

ci
.= min

(
c̄,

π(ai |si )
μ(ai |si )

)

(9)

where δt V is temporal difference for V , and ρt and ci are
truncated importance sampling. It is worth to note that the
truncation levels are assumed c̄ ≤ ρ̄.

Furthermore, value function Vθ and policy πω with θ and
ω parameters, respectively, can be updated in the direction
of:


θ = (vk − Vθ (sk))∇θVθ (sk)


ω = ρk∇ωlogπω(ak |sk)
(rk + γ vk+1 − Vθ (sk)) − H(ω)

H(ω) = ∇ω

∑

a

πω(a|sk)logπω(a|sk).
(10)

Entropy H(ω) is added to avoid immature conver-
gence and encourage exploration in agent training process.
IMPALA algorithm can be used to concurrently train for
multiple tasks with one set of weights due to efficiency of
the architecture.

4 Experiments

4.1 Data

Wecollect daily historical stockprices andvolumesdata from
Ho Chi Minh Stock Exchange (HSX) for equity and Ha Noi
Stock Exchange (HNX) for derivatives. We use data of the
stockmarkets fromSeptember 25, 2017, toMay 21, 2020, for

Table 1 Evaluation Periods

First trading date Last trading date

1 2019-05-17 2019-06-20

2 2019-06-21 2019-07-18

3 2019-07-19 2019-08-15

4 2019-08-16 2019-09-19

5 2019-09-20 2019-10-17

6 2019-10-18 2019-11-21

7 2019-11-22 2019-12-19

8 2019-12-20 2020-01-16

9 2020-01-17 2020-02-20

10 2020-02-21 2020-03-19

11 2020-03-20 2020-04-16

12 2020-04-17 2020-05-21

Fig. 3 Model architecture for policy and value networks

our training and evaluating purposes. The time range covers
high fluctuation of price periods as impact of market events.

4.2 Data prepossessing and network architecture

Training data from raw inputs rather than handcrafted fea-
tures are often recommended for feeding data to deep neural
networks to achieve higher performance Krizhevsky et al.
(2012). Likewise, researches show that reinforcement learn-
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Table 2 Market returns of
selected stocks in percentage

FPT GAS SSI MSN NVL VN30F1M

Period 1 −0.15% −7.41% −3.49% −6.04% −1.88% −4.14%

Period 2 4.79% 5.01% 2.82% −4.36% 5.4% 2.22%

Period 3 12.54% −9.09% −15.86% −4.82% −0.83% −0.8%

Period 4 9.06% 6.43% 1.16% 7.72% 5.83% 4.95%

Period 5 1.42% −1.65% 3.51% −3.83% −2.36% 1.32%

Period 6 −1.05% 2.67% −3.02% −6.17% −5.81% −0.65%

Period 7 −2.29% −7.69% −11.96% −23.29% −5.65% −6.1%

Period 8 2.7% −2.08% 0% 0.89% −0.18% 2.78%

Period 9 −1.58% −6.38% −3.81% −9.91% −1.45% −2.14%

Period 10 −15.15% −36.36% −24.3% −4.72% −5.9% −20.99%

Period 11 4.41% 18.93% 14% 22.89% 1.37% 4.53%

Period 12 15.23% 11.86% 9.47% 7.05% 2.9% 12.85%

Table 3 Performance of
proposed RL trading system in
percentage

FPT GAS SSI MSN NVL VN30F1M Portfolio

Period 1 2.5% −3.48% −2.99% −5.33% −2.67% 6.54% 2.07%

Period 2 1.06% 3.02% 1.35% −3.76% 2.89% 1.65% 1.28%

Period 3 11.47% −2.01% −11.91% −1.11% −1.61% 1.9% 0.43%

Period 4 5.11% 0.06% 2.44% 6.84% 5.32% −1.35% 1.3%

Period 5 −1.66% −5.18% −0.16% 0.29% −2.85% 4.38% 1.23%

Period 6 −0.92% 2.66% −0.2% 0.6% −4.04% 1.63% 0.06

Period 7 −0.72% −0.9% −6.72% −10.38% −0.95% 6.33% 1.2%

Period 8 0.85% −2.03% −0.65% 6.99% 5.32% 0.74% 1.42%

Period 9 2.16% 1.79% −1.98% −9.91% −0.75% 2.93% 0.6%

Period 10 −12.37% −21.19% −2.83% −0.34% −3.99% 19.17% 5.53%

Period 11 11.03% 11.19% 6.45% 17.61% −0.84% −0.74% 4.17%

Period 12 4.35% 3.82% 11.83% 2.63% 0.36% 11.2% 7.89%

ing can exceed human capabilities without human expert
data or domain knowledge Mnih et al. (2013), Silver et al.
(2017).As a result, in this study, instead of applying advanced
quantitative finance theories to develop trading and hedging
strategy, daily return data of each asset collected from HSX
and HNX exchanges are used as main components of envi-
ronment observation. Specifically, we conducted a set of 12
different periods for out-sample evaluation.We use data from
September 25, 2017, to May 16, 2019, for training, and from
May 17, 2019, toMay 21, 2020, for evaluation (see Table. 1).
We also provide position and unrealized profit of each asset
(P&L) in portfolio to our neural network.

Actor–critic-based algorithms use policy and value net-
works. We can use policy network and value network
separately or combine these two networks. We choose the
combined architecture due to improvement of computa-
tional efficiency. Furthermore, we use LSTMHochreiter and
Schmidhuber (1997) beside dense layer in the shared net-
work.

As suggested in Fig. 3, we use a shallow network archi-
tecture for this study. In detail, in terms of shared network,
a trajectory is feed to the first fully connected hidden layer
with 256 units and applies tanh activation function. The next
hidden layer is stateful LSTM with 256 unit. The tanh func-
tion is also applied to the LSTM layer. Finally, policy and
value heads are fully connected linear layer for single output
of each action and state value, respectively.

4.3 Result

We use same network architecture and hyper-parameters all
trading agent without tweaking. The agent learns to decide to
longbuyor short sell assets on its own. For instance, agent can
cut loss or hold positions overnight without any constraint.

Our experiment uses discrete actions. For equity, trad-
ing agent can hold, buy, or sell stocks without considering
amount of volume. Stocks are only sold after T+2 settlement.
Likewise, derivatives trading agent can hold, long, or short
futures contracts. However, the agent can trade continuously
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Fig. 4 Cumulative return of portfolio and VN30 Index in percentage from May 17, 2019, to May 21, 2020

Input : Selected valid action π(a) of learned agent π ,
Transaction fee F , Price of asset m, Asset p in portfolio
P , Total time step T

Output: Portfolio value PV
for t=1 to t=T do

for p in P do
if π(at ) ← 0 then

Hold position;
else

if π(at ) ← 1 then
Trade return rp ← Long buy at mt ;

else
Trade return rp ← Short sell at mt ;

end
rp -= F ;
PV += rp;

end
end

end
Algorithm 1: Simulation of stock market environment

as it is T+0 settlement market. We include transaction fees
for every trade return (see Algorithm. 1). For every agent,
reward can be 1 if overall profit of an episode is positive and
-1 in case of negative profit. In addition, we discount reward
for every long position of agent in futuremarket to encourage
hedging.

Finally, we use RLLib Liang et al. (2017) with 32 workers
to train the agent. RMSProp algorithm is used as optimizer
for training.

4.3.1 Buy and Hold Strategy Baseline

We compare our proposed trading strategy result with perfor-
mance of buy and hold strategy to determine effectiveness of
the approach. During the evaluation periods, the stockmarket
is highly volatile due to impact of COVID-19 pandemic. Buy
and hold strategy may lead to negative return (see Table. 2).

4.3.2 Multi-Agent Reinforcement Learning

Learned deep RL agent was deployed to trade out-of-sample
market data fromMay 17, 2019, to May 21, 2020. The result
shows that the learned agent can protect portfolio by short
selling in futuresmarket. In addition, in some cases, our agent
can cut loss and achieve higher performance than market
return in equity market even market plunged as traders had
panic-sold out of COVID-19 pandemic fear (see Table. 3).

Specifically, VN30 Index was lost about 300 points (33%)
during the first three months (Period 9, Period 10, Period
11) of 2020 (see Fig. 1). In terms of equity trading, every
stock in portfolio had negative market return in the periods.
In equity market, after transaction and commission fees, the
RL agent cannot maintain positive return. In contrast, our
agent executed many orders for opening and closing position
to hedge equity assets dynamically in futures market. It leads
to positive return of the portfolio (see Fig. 4). The portfolio
profit did not decrease when the market rebounded due to
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dynamic hedge strategy. However, in some cases, the agent
cannot achieve higher performance than return of market.

As a result, we show that ourmethod can reduce losses and
achieve positive profit in trading. Furthermore, the trading
data also suggest that dynamic hedging strategy for equity
in portfolio is feasible in cross-hedging case. The futures
trading agent generated far profit than losses. Overall, during
evaluation periods, our deep RL agent earned about 30%
profit of portfolio value and maintains positive return in case
market collapsed systematically.

5 Conclusion

This study proposed a feasible approach for cross-hedging
in trading without domain knowledge by applying deep rein-
forcement learning.Our result also suggests that the approach
can cut loss efficiently whenmarket is in selling panic as hap-
pening in COVID-19 event. Overall, the proposed method
can generate positive profitwith dynamic hedge strategy. The
result is desirable as our approach earns higher performance
than the risk-free rate Hancock and Weise (1994).

It is important to develop a deterministic behavior of agent
to maintain reliable outcome. In future work, we should fur-
ther study stability and safety in reinforcement learning for
trading.
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