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Hyperscanning studies using functional Near-Infrared Spectroscopy (fNIRS) have been
performed to understand the neural mechanisms underlying human-human interactions.
In this study, we propose a novel methodological approach that is developed for fNIRS
multi-brain analysis. Our method uses support vector regression (SVR) to predict one
brain activity time series using another as the predictor. We applied the proposed
methodology to explore the teacher-student interaction, which plays a critical role in
the formal learning process. In an illustrative application, we collected fNIRS data of the
teacher and preschoolers’ dyads performing an interaction task. The teacher explained
to the child how to add two numbers in the context of a game. The Prefrontal cortex
and temporal-parietal junction of both teacher and student were recorded. A multivariate
regression model was built for each channel in each dyad, with the student’s signal
as the response variable and the teacher’s ones as the predictors. We compared the
predictions of SVR with the conventional ordinary least square (OLS) predictor. The
results predicted by the SVR model were statistically significantly correlated with the
actual test data at least one channel-pair for all dyads. Overall, 29/90 channel-pairs
across the five dyads (18 channels 5 dyads = 90 channel-pairs) presented significant
signal predictions with the SVR approach. The conventional OLS resulted in only 4 out
of 90 valid predictions. These results demonstrated that the SVR could be used to
perform channel-wise predictions across individuals, and the teachers’ cortical activity
can be used to predict the student brain hemodynamic response.
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INTRODUCTION

Hyperscanning is a neuroimaging acquisition concept that
consists of simultaneously measuring the brain activities of two
or more individuals while interacting to assess the interpersonal
neural synchrony (INS) (Mukamel et al., 2005; Hasson et al.,
2012; Wang et al., 2018; Balconi et al., 2019). Functional near-
infrared spectroscopy (fNIRS) has gained attention in this field,
as it is a modern neuroimaging technique with advantages
for naturalistic experiments (Balardin et al., 2017; Curtin
and Ayaz, 2018). It is less susceptible to movement artifacts
than electroencephalography (EEG) and functional magnetic
resonance image (fMRI). It allows the investigation of individuals’
brains in less constrained movement conditions, such as daily
life tasks (Ayaz et al., 2013; Pinti et al., 2018a,b; Barreto et al.,
2020). These advantages make fNIRS an attractive neuroimaging
modality to investigate the brain and explore some populations,
such as children, who usually present more movement and
require fewer constraints during the experiments (McDonald
and Perdue, 2018). Hyperscanning studies with fNIRS have
brought new insights about the adult-child brain synchronization
that could not be explored before due to these limitations
(Piazza et al., 2020). For instance, studies that demonstrated
neural coupling across parent-child in cooperation tasks and
research that showed the effects of stress in the parent-child
brain synchronization (Reindl et al., 2018; Azhari et al., 2019;
Miller et al., 2019). Those studies required an unconstrained
environment since the infant/child cannot be entirely quiet to
avoid movement artifacts, in the case of EEG, or even they cannot
go inside an fMRI device.

Another field that benefited from the synergy of device
portability and hyperscanning acquisition to investigate subjects’
neural coupling is Education. For many years, the relationship
between teacher and student has been investigated only in
behavioral studies (Battro et al., 2013). A lack in the literature
needs to be fulfilled about the neural correlates related to
such a meaningful interaction (Battro, 2010). Recent studies
have focused on this matter (Dikker et al., 2017). The first
study investigating the teacher-students neural coupling was
based on performing a Socratic dialog task (Holper et al.,
2013). The authors found a correlation between the student’s
and teacher’s hemodynamic signals only when the transfer
of knowledge was successful. Another study investigated the
teacher-learner process through an fNIRS hyperscanning of
the pre-frontal cortex (PFC) of teachers and students playing
a video game (Takeuchi et al., 2017). They showed evidence
that the teacher’s left PFC might be involved in integrating
the teacher’s teaching process, and the student’s learning state.
fNIRS hyperscanning was also applied to record dyads’ brain
activity while learning-teaching a new song (Pan et al., 2018).
In this case, brain synchronization occurs when learners
observe the instructor’s vocal behavior. Zheng et al. (2018)
have demonstrated that teacher-student interaction is a complex
process supported by the prediction-transmission hypothesis.
According to this, the teacher will predict the state of the
student(s) understanding theory before starting any teaching
strategy (Kline, 2015). Although this is a theoretical hypothesis

that has been considered to explain some aspects of the
teaching-learning process, Zheng et al. (2018) introduced the
possibility of using the hyperscanning approach to investigate
the brain mechanisms that may underlie it. Their research
demonstrated neural evidence supporting this hypothesis and
indicated that the interbrain synchronization between teacher
and student might enhance the teaching results (Zheng et al.,
2018; Sun et al., 2020).

The methodological framework used to analyze the data
from the fNIRS hyperscanning studies usually relies on
classical approaches such as correlations, wavelet transform
coherence (WTC), and general linear model (GLM) analysis
(Scholkmann et al., 2013; Tachtsidis and Scholkmann, 2016).
Typically, those methodologies are applied to investigate the
interbrain synchronization (IBS) between the neural signals of
the dyads executing cooperation or competition tasks such as
the one performed by Cui and Reiss (2012) and Babiloni and
Astolfi (2012). For example, two out of the five studies of
brain synchronization applied correlations analysis between the
oxyhemoglobin (HBO2) time series of teachers and students
(Holper et al., 2013; Takeuchi et al., 2017). The other three
applied the WTC to the hemodynamic measurements to estimate
the IBS of teachers and students (Pan et al., 2018; Zheng
et al., 2018, 2020). However, the advance of computational
processing power and machine learning techniques has allowed
alternative methods to provide a deeper understanding of the
neural mechanisms underlying such complex processes.

In this proof-of-concept study, we aim to contribute
to the methodological field of hyperscanning data analyses.
We attempted to predict the brain of one subject using
the other subjects’ brain signals as predictors. We chose
the teacher-student interaction to illustrate the usefulness of
this methodology according to the prediction-transmission
hypothesis. We intended to find hemodynamic correlates that
might be related to this hypothesis. We exploit the possibility
of predicting a student’s brain hemodynamic response using the
teacher’s hemodynamic signals as predictors. We applied two
regression models, the support vector regression (SVR) and the
ordinary least square (OLS) to the HBO2 from the PFC and
temporal-parietal junction (TPJ) of teachers and preschoolers
realizing a teaching-learning task.

METHODS

Participants
We collected brain signals from eight healthy pairs of teacher-
student. Four adults (two males) age from 21 to 28 years; eight
children (four boys) aged between 3 and 5 participated in the
experiment. Children were recruited by advertisements in a
public school close to the university where the experiment was
performed. The teachers were tutors from a Science Museum
at the University of São Paulo. Three pairs of subjects were
excluded due to difficulties during data acquisition, either due
to the inability to follow the experimental task or sensor
signal unusable in at least one dyad participant. A local ethics
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committee approved the research, and all participants (teachers
and children’s parents) signed a written consent form.

Experimental Task
The experimental task aims to emulate the teacher-student
interaction as described in Brockington et al. (2018). In this task,
the teacher presents the mechanisms to sum two numbers by
playing a space-race game with the student. The teacher certified
that the child could count from 1 to 12 and then explained how
to add two natural numbers using matchsticks. They began the
race by throwing two dice of six faces, the player who got the
highest sum of the outcomes from the two dice started the game.
They continued the race by walking the steps according to the
sum of the dice numbers. All dyads performed the same task. It
was a continued task without a resting period and lasted around
15 min per dyad.

fNIRS Acquisition and Preprocessing
We used a NIRScout (NIRx Medical Technologies, New York,
NY, United States) sampling rate of 7.81 Hz device, with 16
sources and 16 detectors to simultaneously collect the teachers’
and students’ hemodynamics brain data. For each participant,
optodes were positioned in the PFC (channels from 1 to 8) and
the TPJ (channels from 9 to 18), Figure 1. The first was chosen
because it is involved with executive functions related to counting
and simple mathematical operations (Artemenko et al., 2018).
The second is related to social features such as empathy and
memorization (Brockington et al., 2018). The data was collected
using NIRSTAR acquisition software. We preprocessed the fNIRS
signals to reduce the effects of artifacts. First, we made a visual
inspection to detect signals irregularities that could be related to
artifacts or data collection problems. Data with irregularities such
as missing channels and saturated values were discarded. Second,
we applied a bandpass filter (0.01 Hz < freq. < 0.2 Hz) on the
raw data to remove low-frequency systemic artifacts and cardiac
and respiratory cycles. We then calculated the HBO2 variations
by using the modified Beer-Lambert law with the whole time
series as a baseline and differential path lengths (DPF) 7.25
and 6.38 for the wavelengths of 760 and 850 nm, respectively.
Calculations were performed with a home-made MATLAB script
from our research group.

The Predictive Models
We used two regression models to predict the signals of students
using the teachers’ signals as predictors. The first is the SVR, an
approach used to create predictive models for continuous data.
One of SVR’s advantages is the power to treat high dimensionality
and multicollinearity data, providing greater prediction of unseen
data (Awad and Khanna, 2015). The second is the traditional
OLS, a more conservative approach that requires assumptions
such as homoscedasticity and the absence of the residuals’
autocorrelation. These assumptions may not always be satisfied
with fNIRS signals (Huppert, 2016).

Several studies of ML and fNIRS have demonstrated that
model’s accuracy is higher when using HBO2 signals to
classification and prediction models (Bogler et al., 2014; Song
et al., 2016; Liu and Ayaz, 2018; Rojas et al., 2019). Therefore,

the predictive models were performed over the HBO2 signals
of students Si and teachers Ti,with i = 1,2,3. . .0.18 (number of
fNIRS channels). We considered the whole task in the analysis,
which is approximately 7,000 time-points (∼15 min× 7.81). We
trained the models with the first 50% of the data

{
Str

i , Ttr
i
}

, and
the other 50%

{
Sts

i , Tts
i
}

was used for prediction (i.e., testing
the models’ performance). For each pair of student-teacher, the
SVR (with linear kernel) and OLS multivariate models were
built with the student’s data from each channel j = 1,2,3. . .18
being the response variable, and the signals of the 18 teacher’s
channels the predictors (Equation 1). It gave us one model for
each fNIRS channel, resulting 18 models per student-teacher pair
with prediction performed via SVR, and 18 models predicting via
OLS. We applied them to the teachers’ test Tts

i data to predict the
students’ signals Spr

i (Equation 2).

Str
j =

18∑
i=1

(wi ∗ Ttr
i )+ b (1)

SPr
j =

18∑
i=1

(wi ∗ Tts
i )+ b (2)

As the accuracy metric, we computed the Spearman
correlation coefficient (which is robust against outliers) between
the predicted Spr

i and the test Sts
i signals of the students, for

each fNIRS channel. We tested the statistical significance of the
correlation via a null distribution built by using a bootstrap
approach (see Figure 2). We first found the lag in which the
autocorrelation of the teacher’s HBO2 time-series were close to
zero. The lag varied for each teacher-student dyad being (35, 37,
30, 51, and 83 points), for the respective dyads (1,2,3,4,5). We
used this value to truncate the teacher’s time series in blocks,
following the rule number of blocks = time series length

lag . The blocks
were shuffled and rebound. This procedure minimized the
temporal dependency between the teachers’ and students’ signals.
The training, predicting, and testing modeling were repeated
1,000 times with the teacher’s resampled HBO2 signals as
the predictors; and a null distribution of the correlations
coefficients was built. The p-value was calculated as the ratio
between the values computed with bootstrapped data higher
than the calculated with original signals, and the total number
of coefficients computed with bootstrapped data. The SVR
computations were performed using the package e1071 of the R
software (Meyer et al., 2019). A scheme describing the procedure
is depicted in Figure 2.

RESULTS

The student’s signals predicted with the SVR model SPr
j were

statistically significantly correlated with the measured test data
recordings Sts

i for all five teacher-student dyads, for a significance
level of 0.01 (Figure 3A). A few channels lost their significant
results after a false discovery rate (FDR) correction. Considering
the uncorrected values, we found correlations in the signals from
different channels located in the TPJ. All dyads had at least two
signals from channels of this region correlated with predicted
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FIGURE 1 | fNIRS montage. (Left) Participants during an experiment with fNIRS sensors attached (Middle and Right). fNIRS cortical measurement locations
visualized on the brain surface, on prefrontal and temporal-parietal cortices. Red and blue circles represent light sources and detectors, respectively. EEG 10—10
international system positions are also depicted. The black lines and numbers are the fNIRS channels. The same montage was used for both student and teacher
heads.

FIGURE 2 | Scheme of the bootstrapping approach. The two circles depict the student and teacher’s head. Green and orange circles represent the fNIRS sources
and detectors. Full lines represent channels. For simplicity, we only include the SVR in this picture (Training the Model). However, the procedure with OLS is
analogous.

signals. For instance, signals from channels 11 and 15 of dyad
I, channels 9 and 16 of dyad III, channels 9 and 10 of dyads IV,
and channels 13 and 15 of dyad V showed these results. Dyad II
had signals from almost all channels (9,10,11,12,13,16, and 17)
of the TPJ associated with the predicted data; the only exception
was the channels 14,15 and 18. The SVR predictions of signals
from the prefrontal cortex were significantly correlated to the test
data of dyad II and V. These results were verified in almost all

channels of both dyads, except for channels 1 and 3 of dyad II;
see Table 1. However, for the correlation corrected values (FDR,
significance level = 0.01), dyads II and V kept the significant
results, while the few outcomes related to dyads I, III, and IV lost
the statistical significance.

On the other hand, only a few predictions performed with
OLS showed significant results, for a significance level of 0.01
(Figure 3B). Predicted signals of the prefrontal cortex (channel
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FIGURE 3 | Representation of channels with significant signal’s predictions. (A,B) depict the channels predicted by the SVR and OLS models, respectively. Red lines
represent channels with a statistically significant correlation between test and predicted data (without FDR corrections). Channels with significant outcomes after
FDR corrections are presented in bold letters at Table 1. Dashed yellow represents the general channels. Blue and red circles are the source and detectors.
Numbers from I to V represent the student-teacher dyads.

7) from pairs I and II were statically significantly correlated
with the real data, while pair III showed this outcome in
channels 10 and 16 from the TPJ. The OLS predictions showed
significant associations with real data only in three out of five
pairs of subjects, while SVR predicted associations for all pairs
of however, the statistical significance of these results does not
survive after the FDR correction.

Some channels showed negative correlations between
SVR/OLS predictions and test data. However, these values
are not statistically significant. The Spearman coefficients of
correlations between OLS and SVR predictions and test data,
with their corrected and uncorrected p-values, are shown in the
Supplementary Material. Tables 2 and 3, respectively.

DISCUSSION

This study aimed to test whether the teachers’ signals can predict
a students’ brain hemodynamic. We applied the machine learning
algorithm SVR and compared the results with predictions
performed via the traditional OLS. The SVR yielded significant

results for all dyads, while OLS presented statistically significant
correlations with the test data of only two. The results with
SVR and the OLS differed in the number of dyads and fNIRS
channels. SVR predicted a total of 29/90 signals across the five
pairs of individuals (18 channels x 5 dyads = 90 signals), while
OLS predicted only 4/90. When considering multiple corrections,
these numbers go to 23/90 for the SVR, and no significant
results for OLS.

The fact that SVR predicted more statistically significant
results than the OLS might be explained by the conceptualization
of its estimator. It follows the principle of maximal margin. It
does not care about the prediction as long as the error is less
than , which is the highest deviation of the prediction function
f (x) from the target value y i. These features, combined with the
fact that the cost parameter can penalize the regression, provide
the SVR power to avoid over-fitting and give more generalization
to the test data (Smola and Schölkopf, 2004; Awad and Khanna,
2015). These finds are supported by other studies that used
SVR to predict hemodynamic brain signals. For instance, Liu
et al. (2015) argued that SVR is more suitable than OLS to
predict human deep-brain regions’ activity using fNIRS since
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TABLE 1 | Correlation between SVR and OLS predictions and test data.

Channel Dyad I Dyad II Dyad III Dyad IV Dyad V

1 0.25**

2 0.28** 0.23*

3 0.30**

4 0.26** 0.18*

5 0.31** 0.36**

6 0.18* 0.22*

7 0.12* (OLS) 0.17* 0.14* (OLS) 0.33**

8 0.24** 0.19*

9 0.29** 0.15* 0.17*

10 0.31** 0.23* (OLS) 0.22*

11 0.18* 0.30**

12 0.23**

13 0.23**

15 0.15* 0.21*

16 0.28** 0.16* 0.20* (OLS)

17 0.30**

Spearman coefficients of correlations between the signals predicted and test data. The OLS predictions have the abbreviation (OLS) next to the value of correlation. Only
statistically significant results are presented; ** p-value ≤ 0.001; *p-value ≤ 0.01. Bold letters represent channels with significant outcomes after FDR corrections.

TABLE 2 | Spearman Correlation between OLS predictions and Test data.

Ch Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5

S P FDR S P FDR S P FDR S P FDR S P FDR

1 −0.039 0.78 1.00 0.056 0.66 0.89 0.029 0.34 0.50 0.002 0.53 0.92 0.024 0.30 0.94

2 −0.043 0.74 1.00 0.041 0.32 0.89 0.156 0.04 0.13 0.067 0.25 0.92 −0.133 0.80 0.94

3 −0.036 0.60 1.00 −0.026 0.79 0.89 0.053 0.06 0.17 0.101 0.21 0.92 −0.064 0.47 0.94

4 −0.075 0.93 1.00 −0.026 0.70 0.89 0.111 0.23 0.46 0.069 0.31 0.92 −0.110 0.62 0.94

5 −0.008 0.33 1.00 0.081 0.07 0.62 0.157 0.03 0.13 −0.074 0.37 0.92 −0.147 0.92 0.94

6 −0.062 0.86 1.00 −0.038 0.50 0.89 −0.043 0.84 0.89 0.007 0.46 0.92 −0.152 0.90 0.94

7 0.117 0.01 0.13 0.140 <0.01 0.05 0.030 0.36 0.50 −0.037 0.33 0.92 −0.173 0.90 0.94

8 0.031 0.30 1.00 −0.058 0.51 0.89 0.016 0.75 0.84 −0.165 0.97 0.97 −0.124 0.85 0.94

9 −0.110 0.90 1.00 −0.077 0.76 0.89 0.039 0.43 0.52 −0.070 0.75 0.97 −0.193 0.91 0.94

10 0.005 0.30 1.00 −0.026 0.44 0.89 0.226 <0.01 0.04 0.156 0.10 0.92 −0.022 0.36 0.94

11 −0.125 0.97 1.00 0.021 0.49 0.89 0.149 0.10 0.24 −0.132 0.92 0.97 −0.130 0.94 0.94

12 −0.193 0.95 1.00 −0.048 0.49 0.89 0.179 0.03 0.13 −0.104 0.96 0.97 −0.103 0.82 0.94

13 −0.030 0.69 1.00 −0.068 0.77 0.89 −0.229 1.00 1.00 −0.080 0.81 0.97 −0.061 0.60 0.94

14 −0.086 0.80 1.00 0.011 0.56 0.89 −0.013 0.37 0.50 −0.052 0.56 0.92 −0.036 0.36 0.94

15 −0.096 0.92 1.00 −0.137 1.00 1.00 0.059 0.26 0.47 −0.097 0.84 0.97 −0.062 0.67 0.94

16 −0.217 1.00 1.00 −0.015 0.60 0.89 0.200 <0.01 0.04 −0.054 0.69 0.97 −0.080 0.87 0.94

17 0.029 0.31 1.00 −0.014 0.49 0.89 0.070 0.39 0.50 0.051 0.26 0.92 −0.088 0.61 0.94

18 −0.012 0.42 1.00 −0.110 0.89 0.94 0.066 0.11 0.24 −0.030 0.48 0.92 −0.106 0.69 0.94

Abbreviations in the table stand for: Ch, Number of the fNIRS Channel; S, Spearman Correlation between the predicted (Si
pr ) and the test (Si

ts) signals; P, P-value of the
Spearman correlation; FDR, P-value corrected by the False Discovery Rate (FDR); Underlined numbers, P-value ≤ 0.01.

SVR defines the weights to reflect the contributions of the features
better than the OLS. Zhang et al. (2014) compared the SVR and
OLS application to synthetic data to predict voxel-based lesion-
symptom mapping (VLSM). They verified that SVR presented
higher sensitivity and specificity for detecting the lesion-behavior
relationship than the OLS.

This proof-of-concept study is focused on developing and
testing a new methodological approach and not designed to

investigate the specific brain areas involved in the teaching-
learning process. However, it is relevant to note that all dyads
showed a relationship between training and testing data of the
TPJ, a brain area known to be involved in social cognition and
processes underlying empathy and social interactions (Zheng
et al., 2018). For instance, Zheng et al. (2018) found that
interpersonal neural synchronization (INS) between the student’s
and teacher’s TPJ varied with the teaching strategy; an increase of
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TABLE 3 | Correlation between SVR predictions and Test data.

Ch Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5

S P FDR S P FDR S P FDR S P FDR S P FDR

1 −0.010 0.57 0.72 0.083 0.14 0.17 0.094 0.06 0.18 0.139 0.04 0.162 0.246 <0.01 0.00

2 −0.090 0.91 0.91 0.283 <0.01 0.00 −0.004 0.51 0.66 0.072 0.20 0.321 0.228 <0.01 0.01

3 −0.012 0.60 0.72 −0.007 0.55 0.58 0.057 0.22 0.42 0.088 0.13 0.299 0.294 <0.01 0.00

4 0.031 0.30 0.68 0.262 <0.01 0.00 −0.007 0.52 0.66 0.109 0.10 0.255 0.178 0.01 0.02

5 0.005 0.50 0.70 0.311 <0.01 0.00 0.068 0.16 0.35 −0.087 0.89 0.94 0.360 <0.01 0.00

6 −0.067 0.86 0.91 0.185 <0.01 0.00 0.092 0.08 0.20 0.139 0.05 0.162 0.216 <0.01 0.01

7 0.013 0.46 0.70 0.174 0.01 0.01 −0.055 0.80 0.84 0.078 0.17 0.321 0.331 <0.01 0.00

8 0.022 0.39 0.70 0.236 <0.01 0.00 0.031 0.32 0.53 0.057 0.21 0.321 0.195 <0.01 0.01

9 0.120 0.04 0.26 0.293 <0.01 0.00 0.154 0.01 0.11 0.171 0.01 0.108 0.061 0.21 0.27

10 0.016 0.42 0.70 0.309 <0.01 0.00 −0.039 0.73 0.82 0.219 <0.01 0.036 0.060 0.23 0.27

11 0.176 0.01 0.06 0.300 <0.01 0.00 −0.234 1.00 1.00 −0.040 0.70 0.791 −0.276 1.00 1.00

12 0.044 0.22 0.67 0.228 <0.01 0.00 0.113 0.04 0.18 0.056 0.20 0.321 0.127 0.04 0.07

13 0.080 0.12 0.43 0.232 <0.01 0.00 0.113 0.06 0.18 −0.023 0.62 0.745 0.099 0.10 0.15

14 0.000 0.50 0.70 0.067 0.15 0.18 0.132 0.03 0.17 −0.152 0.98 0.979 0.009 0.46 0.52

15 0.152 0.01 0.06 −0.024 0.64 0.64 0.044 0.23 0.42 0.034 0.35 0.485 0.215 <0.01 0.01

16 0.090 0.09 0.42 0.276 <0.01 0.00 0.161 <0.01 0.05 0.004 0.50 0.638 −0.025 0.64 0.68

17 0.036 0.30 0.68 0.301 <0.01 0.00 −0.011 0.59 0.71 0.109 0.09 0.255 0.064 0.21 0.27

18 −0.033 0.70 0.79 0.032 0.30 0.34 0.007 0.45 0.66 0.138 0.03 0.162 0.159 0.02 0.04

Abbreviations in the table stand for: Ch, Number of the fNIRS Channel; S, Spearman Correlation between the predicted (Si
pr ) and the test (Si

ts) signals; P, P-value of the
Spearman correlation; FDR, P-value corrected by the False Discovery Rate (FDR); Underlined numbers, P-value ≤ 0.01.

INS between the right TPJ of the teacher and anterior superior
temporal cortex of the student was associated to better teaching
outcome. The fMRI study about predictions of human decisions
in a poker game showed that signals from the TPJ provided
unique information about the upcoming decision (Carter et al.,
2013). Based on that, our finds give evidence to confirm that
this region plays a fundamental role in the cognition process
underlying student-teacher interaction.

On the other hand, only two out of the five pairs presented
statistically significant correlations between training and test
data from the pre-frontal cortex. This area is related to the
cognitive process related to learning and has been evaluated
with fNIRS in diverse tasks before (Wood and Grafman, 2003;
Ayaz et al., 2012; Singh et al., 2018; Nozawa et al., 2019).
Additionally, when performing the task, the dyads recruits several
executive functions such as attention and inhibitory control
during the verbal communication. Those functions are related to
the PFC activity (Gvirts and Perlmutter, 2020; Kelsen et al., 2020).
Furthermore, considering that our task consists of a teaching-
learning process of adding two numbers less or equal to six, the
discrepant results across the dyads might be explained by the
differences in the cognitive workload of each child performing the
task. It may require different engagement levels with the teachers
for learning how to add the numbers leading to the different
results found here (Sun et al., 2020; Zhang et al., 2020).

Some limitations must be considered in this study. The sample
size is small so that more studies with a higher number of
participants are necessary regarding the generalization of the
results. We did not have 3D-digitizers to map the optodes
locations on the participants’ heads. The use of 3D-digitizers in
Pinti et al. (2019) follow-up study could add more information

for comparing homologous brain areas and homogeneity of the
regions across subjects. Although short-channels data contribute
to reducing physiological noise, we did not perform this
measurement due to our fNIRS device limitations. Nonetheless,
we tried to reduce those effects by applying filters to our
data (Yücel et al., 2021). We adopted the conservative band-
pass approach to filter the fNIRS data and avoid excessive
modifications in the signals, which could mask relevant aspects
during the prediction procedures. This choice was made because
different filtering methods might interfere with the outcomes
(Huppert, 2016; Pinti et al., 2019). While we applied band-pass
filter to reduce the physiological noise, the fNIRS signal can
be still confounded by motion artifacts. Therefore, other filters
might be useful according to the features of the data (Brigadoi
et al., 2014). Additionally, given the limited number of sensors,
we could only investigate cortical regions within the prefrontal
and right TPJ regions. Nevertheless, other areas may also play
a role in the teacher-student interaction, and future studies
may explore other cortical areas with high-density sensors. Also,
fNIRS provides information about cortical areas, restricting the
investigation of subcortical regions that may also be relevant to
the teacher-student interaction (Kostorz et al., 2020). Additional
physiological signals have been shown not to contribute to the
mental state decoding (Liu et al., 2017). However, such signals
(e.g., heart rate, heart rate variability, and skin conductance)
could bring relevant information about the participant’s arousal
in this context and contribute to the prediction model.

Our proposed methodology demonstrated the possibility
of using the teacher’s fNIRS signals to predict the student’s
brain hemodynamic response. According to previous work,
teaching outcomes are improved according to the teacher-student
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brain synchronization, and it is theoretically supported by the
prediction-transmission hypothesis (Kline, 2015; Zheng et al.,
2018). Preliminary results suggest that our proposed approach
can be used to better understand the brain synchronization
during the teacher-student interaction in which, speculatively,
the teacher and student behaviors may be continuously updated
according to their brain state predictions. Regardless, future
research with a larger sample size and a broader number of
fNIRS should continue to investigate which brain areas of the
teacher are related to the students’ brain prediction. It can be
achieved by considering the weights/contribution of each channel
in teacher’s cohort in/to predicting student’s brain response.
It will add more information about the neural mechanisms
underlying the teaching-learning process and give experimental
evidence for theoretical frameworks such as the prediction-
transmission hypothesis.
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