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Genomic analysis begins with de novo assembly of short-read fragments in order to reconstruct full-length base sequences without
exploiting a reference genome sequence. Then, in the annotation step, gene locations are identified within the base sequences,
and the structures and functions of these genes are determined. Recently, a wide range of powerful tools have been developed
and published for whole-genome analysis, enabling even individual researchers in small laboratories to perform whole-genome
analyses on their objects of interest. However, these analytical tools are generally complex and use diverse algorithms, parameter
setting methods, and input formats; thus, it remains difficult for individual researchers to select, utilize, and combine these tools
to obtain their final results. To resolve these issues, we have developed a genome analysis pipeline (GAAP) for semiautomated,
iterative, and high-throughput analysis of whole-genome data.This pipeline is designed to perform read correction, de novo genome
(transcriptome) assembly, gene prediction, and functional annotation using a range of proven tools and databases. We aim to assist
non-IT researchers by describing each stage of analysis in detail and discussing current approaches.We also provide practical advice
on how to access and use the bioinformatics tools and databases and how to implement the provided suggestions. Whole-genome
analysis of Toxocara canis is used as case study to show intermediate results at each stage, demonstrating the practicality of the
proposed method.

1. Introduction

Recent technological advances in next-generation sequenc-
ing (NGS) have dramatically reduced the cost of producing
short reads of genomes of new species. Recent developments
in the various bioinformatics tools used for sequencing data
have enabled small-scale laboratories to perform analyses
such as preprocessing, de novo assembly, gene prediction, and
functional study.

While sequencing procedures have been made straight-
forward, genomic analysis has grown more difficult and
challenging. Several factors are responsible for this. First,
NGS techniques produce short reads; when these reads are

used for de novo assembly, the accuracy of the assembled base
sequences typically declines to the level of a draft genome.
Second, for newly sequenced genomes, there are no gene
models to serve as a reference; therefore, it is difficult to
ensure the accuracy of annotation. Third, annotation of the
same genome is performed by various research groups using
different analysis tools and annotation methods. This neces-
sitates combining all the results to obtain a final consensus
annotation. Fourth, genomic analysis is often conducted on
a small-scale by researchers who have little expertise in
bioinformatics and computational biology. Although small-
scale genomic analysis is currently within the reach of
nonexperts, it remains a challenging task [1].
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In this study, we describe the implementation of GAAP,
a genome analysis pipeline that enables small laboratories to
successfully perform genome assembly and annotation using
the relatively short-read data generated by cost-effective NGS
technologies. The proposed pipeline consists of a sequencing
stage, an assembly stage, and an annotation stage performed
using a range of proven tools and databases.

In a previous study [2], we determined the genomic
sequence of Toxocara canis (T. canis) using next-generation
sequencing, de novo assembly, and annotation. Here, we
use T. canis to illustrate the intermediate results of T. canis
genome analysis derived using the step-by-step protocol
for this pipeline. We provide guidance for each stage of
genomic analysis, describe the available software tools and
databases, and outline best-practice approaches. With our
system, researchers without background in IT can access
public software and biological databases to easily conduct
a complete genomic analysis including structures and func-
tions of genes of interest.

2. Methods and Results

Figure 1 shows a workflow of the GAAP pipeline described
in this study. The figure shows the flow of input/output data,
all software tools, and annotation databases used in this
system.The process of genome analysis is divided into stages
of sequencing, assembly, and annotation. In the sequencing
stage, an NGS platform is used to produce DNA/RNA reads,
and error-correction tools are used to refine the reads. In the
assembly stage, the sequencing reads are assembled to obtain
scaffolds, after which gap filling is performed to improve
the accuracy of the scaffolds. The annotation stage is further
divided into structural annotation and functional annotation.
In structural annotation, repeated sequences in the assembled
scaffolds are masked. Then, a gene prediction tool is used
to locate genes within the scaffolds, and the structures of
introns, exons, and untranslated regions (UTRs) constituting
these genes are determined. Finally, in functional annotation,
homology search and ontologymapping are performed using
structure-annotated sequences in order to determine the
functions of the genes.

2.1. Sequencing and Error Correction. The accuracy of
sequencing data directly affects the accuracy of assembly
results, analysis of gene structure and function, and
protein analysis. NGS platforms include Roche/454 (https://
sequencing.roche.com), Illumina (http://www.illumina.com),
SOLiD [3], Pacific Biosciences (https://www.pacb.com), and
Ion Torrent (https://www.lifetechnologies.com/iontorrent).
Sequence reads generated by these platforms possess different
characteristics such as read length, type, and rate of errors.
SOLiD and Illumina generate relatively short reads of 100-
300 bp with low rates of error. Conversely, Pacific Biosciences
generates long reads of over 15 Kbp, but has a proportionally
higher rate of error (Supplementary Table S1). For Illumina,
most errors are substitution errors; for Roche/454, Ion
Torrent, and Pacific Biosciences, most are indel errors. De
Bruijn assembly tools are known to be effective for correcting
substitution errors, while overlap-layout-consensus (OLC)

assembly tools are more effective for correcting indel errors.
Therefore, it is important to select the appropriate assembly
tool to fit the properties of sequencing data [4].

Typically, longer reads are more advantageous than
shorter reads because longer reads simplify the assembly
process and provide more accurate genome analysis. How-
ever, the long reads generated by platforms, such as Pacific
Biosciences, are very costly; this highlights the need to
generate a large number of paired-end reads of approximately
100 bp in length for assembly and annotation. In this study, we
assumed that the assembly and annotation processes would
use large-scale paired-end reads of approximately 100-bp
using Illumina.

When short reads are used, it is essential to generate
various read datasets in order to obtain accurate results for
genome analysis. If the read length is too short, it may
be impossible to determine whether the reads are actually
generated from repeat sequence regions; this increases the
rate of false positive overlap and can render genome analysis
based on short reads very difficult, incomplete, or impossible
[5–7]. For repeat sequence regions, which are poorly analyzed
using only short reads, it is important to ensure sufficient
coverage with reads of different insert sizes. For example,
reads with a very short insert size generate overlapping
paired-read sequences, whichmay result in reads longer than
the original read length. Mate-pair reads refer to paired-
end reads with a long insert size. While paired-end reads
have an insert size of 300–500 bp between the pairs, mate-
pair reads have an insert size of 2–10 Kbp. Mate-pair reads
are advantageous because they can improve the accuracy of
genome analysis; the information about the direction and
distance between two paired sequences can be used to detect
repeat sequences, errors, and structural variations during
assembly, or to generate longer scaffold sequences by joining
contig sequences.

After sequencing has been completed, read sequence data
and information about quality are conveyed to the user in a
text file using FASTQ format. However, raw-read data typi-
cally include numerous errors from the sequencing process;
therefore, these errors need to be removed by the correction
process. Correction tools can be broadly divided into k-
mer-based tools, suffix tree/array-based tools, and multiple-
sequence alignment (MSA)-based tools. K-mer based tools
extract all the substrings of length k (k-mers) from the reads
and correct the errors using k-mer frequencies. These tools
are useful for substitution errors [8–10]. Suffix tree/array-
based tools, such as SHREC [11] and HiTEC [12], are useful
for indel errors; here, suffixes are extracted from all reads and
their reverse complements, stored in a tree or array struc-
ture, and errors are corrected based on thorough statistical
analysis of suffixes. MSA-based tools, such as Coral [13] and
ECHO [14], retrieve all reads that share at least one k-mer
and perform a multiple-sequence alignment of these reads,
which probably come from same genomic locus. Using this
alignment, a consensus sequence is generated and used as
the new reference to be aligned with the remaining reads.
Once the MSA is completed, the reads are corrected for the
consensus sequence of the alignment.
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Figure 1: Overview of the genome analysis process of theGAAP pipeline system.The overall workflow of the system is shown, and all software
tools and annotation databases are summarized.

GAAP uses SOAPec (https://sourceforge.net/projects/
soapdenovo2/files/ErrorCorrection), which is a k-mer-based
error-correction tool. Table 1 shows how to use the SOAPec
commands. The error-correction process consists of two
stages: first, k-mer frequency spectrum is generated by
running KmerFreq AR on readlist.txt, which contains a list
of read files used as input data. Here, the options -k, -t,
and -p correspond to k-mer size, thread count, and prefix
of the output file, respectively. The output of KmerFreq AR
consists of: prefix.freq.cz, which is the k-mer frequency file;
prefix.freq.cz.len, which stores data on the length of each
block in the k-mer frequency file; and prefix.freq.stat, which
contains statistical information about k-mer frequency. Next,
errors are corrected by running Corrector AR. Here, the
options -k, -l, -r, and -t correspond to k-mer size, cutoff size
for removing low- frequency k-mers, minimum length of
reads, and thread count, respectively. The input files consist
of readlist.txt, prefix.freq.cz, and prefix.freq.cz.len from the

output of KmerFreq AR. The output of Corrector AR for
each read file consists of: ∗.cor.pair ∗.fq, which contains
paired-end reads and stores newly refined reads; ∗.cor.stat,
which stores statistical information; and readlist.txt.QC.xls,
which stores information on the read quality control.

In order to improve the accuracy of assembly
and annotation, GAAP uses Picard (https://broadinstitute
.github.io/picard) to remove duplicate reads. Tables 2 and 3
show examples of using the commands. First, as shown in
Table 2, the FastqToSam command is used to convert the
error-corrected FASTQ file, prefix.fq, into a SAM/BAM file.
Here, for the options F1 and F2, paired-end reads in two read
files are indicated by F1 and F2, while single-end reads in a
single file are indicated by F1. Option O is used to indicate
the output file, and SM is the sample name to be inserted into
the header of the SAM/BAM file. Next, the Markduplicates
command is used on the converted SAM/BAM read file,
as shown in Table 3, in order to remove duplicate reads.
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Table 1: SOAPec commands.

KmerFreq AR -k 17 -t 10 -p prefix readlist.txt
Corrector AR -k 17 -l 3 -r 50 -t 10 prefix.freq.cz prefix.freq.cz.len readlist.txt

Table 2: FastqToSam command.

java -jar picard.jar FastqToSam F1=forward reads.fq F2=reverse reads.fq
O=unaligned read pairs.sam SM=sample001

Table 3: Markduplicates command.

java -jar picard.jar Markduplicates I=unaligned read pairs.sam O=output duplicate.sam
M=output duplicate report.txt REMOVE DUPLICATES=true

Here, option I is the SAM/BAM read file generated from
the procedure in Table 2. Option O is the output read
file generated after removing duplicate reads. Option M
is the duplication metrics file, which stores information
summarizing the process of duplicate removal, including the
number of mapped reads and number of duplicate reads.
REMOVE DUPLICATES is used to choose whether to
output the duplicated reads to the file designated in option
O; if the value is true, the duplicates are not included in the
output

2.2. De Novo Assembly

2.2.1. Genome Assembly. De novo assembly refers to the
process of using short overlapping reads to obtain a genome
sequence for a species without a reference sequence. The
assembly process yields two different sequences: contigs and
scaffolds.

The de novo assembly methods using NGS techniques
are divided into the greedy graph method, overlap-layout-
consensus method, and the De Bruijn graph method [4].
These methods are used to search for the longest overlapping
regions between different reads; these regions are gradually
joined together to form contigs. Assembly tools that use
the greedy graph method include SSAKE [15], SHARCGS
[16], and VCAKE [17]. They follow a simple, but effective,
strategy in which the assembler greedily joins the reads that
are most similar to each other. However, because only local
information is considered at each step, the assembler can be
easily confused by complex repeats, leading to misassembled
contigs.

In the overlap-layout-consensus method, the relation-
ships between the reads can be represented as an overlap
graph; here, the nodes represent each of the reads, and an
edge connects two nodes if the corresponding reads overlap.
The algorithm determines the best path through the graph
that contains all the nodes; this is called a Hamilton path.
Assembly tools based on overlap-layout-consensus methods
include Newbler [18], Celera assembler [19], and Edena [20].

The De Bruijn graph shows a compact representation
based on k-mers, not reads; thus, high redundancy is
handled by the graph without affecting the number of

nodes. Each repeat is presented only once in the graph,
with explicit links to the different start and end points.
One advantage of this approach is that repeats are easily
recognizable, while in an overlap graph repeats are more
difficult to identify. This approach is adopted by several
leading assemblers, including SOAPdenovo2 (https://
github.com/aquaskyline/SOAPdenovo2) [10, 21], ALLPATHS
(http://software.broadinstitute.org/allpaths-lg/blog/?page id=12)
[22, 23], Abyss (http://www.bcgsc.ca/platform/bioinfo/
software/abyss) [24, 25], and Velvet (http://www.ebi.ac.uk/∼
zerbino/velvet) [26]. With these publicly available assembly
tools, large-scale, high-coverage data generally have to be
loaded into memory. Drawbacks to this include requirement
for a high-performance computer installed with a large
memory, and having very large temporal and spatial
overheads. The accuracy of assembly results is affected by
read insert size and k-mer size settings; therefore, optimal
parameter settings are crucial. GAAP employs four assembly
tools, SOAPdenovo2 [21], ALLPATHS-LG [23], Abyss 2.0
[25], and Velvet [26], which are widely used. User can adopt
one of these tools by considering the assembly quality,
memory requirement, and execution time [27–30].

(1) SOAPdenovo2. SOAPdenovo can perform assembly even
for large mammalian genomes while using relatively small
memory. In addition, its successor, SOAPdenovo2 (referred
to here as SOAPdenovo), includes improvements and new
features, including the new contig and scaffold construction
improvements [21].

Before running the SOAPdenovo command, it is first
necessary to generate a configuration file.The data are usually
organized as multiple read files generated from multiple
libraries. Table 4 shows an example of a configuration file,
which has multiple library sections. In this file, q1 and q2
indicate the read files with FASTQ formats prepared for
assembly. Max rd len represents the maximum read length,
while avg ins represents the mean insert size of the reads.
Reverse seq represents how the read sequences need to
be complementary reversed. The option value is set to 0
(forward-reverse) for paired-end reads with an insert size
of 500 bp or less, and is set to 1 (reverse-forward) for
paired-end reads with an insert size of at least 2 kbp. Rank

http://software.broadinstitute.org/allpaths-lg/blog/?page_id=12
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Table 4: SOAPdenovo configuration file.

[LIB]
max rd len=101
avg ins=170
reverse seq=0
asm flags=3
rank=1
q1=DNAread170 1.fastq
q2=DNAread170 2.fastq
[LIB]
max rd len=101
avg ins=2900
reverse seq=1
asm flags=2
rank=2
q1=DNAread2900 1.fastq
q2=DNAread2900 2.fastq

Table 5: SOAPdenovo command.

Soapdenovo all -s config.file -K kmerlength -o outprefix

value represents the order in which read files are used for
scaffold assembly. For example, read files with the same rank
value are used at the same time during assembly. Asm flags
indicates which parts of the assembly process use the read
file. Asm flags accepts the value of 1 (for contig assembly
only), 2 (for scaffold assembly only), 3 (for both contig and
scaffold assembly), or 4 (for gap closure only). In the example
in Table 4, using reads with an insert size of 170, asm flags is
set to 3. This means that the corresponding read data set will
be used to generate both contigs and scaffolds. After choosing
the settings, Table 5 shows how to run the SOAPdenovo
command using the configuration file. Here, -K is used to
set the k-mer length, and -o is used to set the corresponding
prefix of the output file name. The output of SOAPdenovo
consists of outprefix.contig files (which store the contigs) and
outprefix.scafSeq files, which store the scaffolds generated by
de novo assembly.

(2) ALLPATHS-LG. ALLPATHS-LG is able to perform de
novo assembly of large mammalian genomes [23]. It has been
designed to use reads generated on the Illumina platform,
and optimized for reads of approximately 100-bp. However,
ALLPATHS-LG (referred to here as ALLPATHS) requires a
minimum of 2 paired-end libraries – one fragment library
with overlapping paired-end reads and one jumping library
with long insert size.

Before running the ALLPATHS command, it is first
necessary to gather the read data in the appropriate formats,
and then add metadata to describe them. The perl script
PrepareAllPathsInputs.pl as shown in Table 6 can be used to
automatically convert a set of BAM, fasta, fastq, or fastb files
to ALLPATHS input files. Here, DATA DIR is the location
of the ALLPATHS DATA directory where the converted
reads will be placed, and PLOIDY option is used to generate

Table 6: Preparing ALLPATHS input files.

PrepareAllPathsInputs.pl DATA DIR=/data PLOIDY=1
IN GROUPS CSV=in groups.csv IN LIBS CSV=in libs.csv

Table 7: Running ALLPATHS command.

RunAllPathsLG PRE=<pre> REFERENCE NAME=test.genome
DATA SUBDIR=data RUN=run SUBDIR=test

the ploidy file. In addition, the user must provide two
metadata files (in groups.csv and in libs.csv), which describe
the locations and library information of the various files to
be converted, respectively. Each line in in groups.csv corre-
sponds to a BAM or fastq file to be imported, and ties each
file to a library. Each line in in libs.csv describes the detailed
information of each library. The options IN GROUPS CSV
and IN LIBS CSV determine where these data are found.

Table 7 shows how to run the RunAllPathsLG command
using the imported data. As ALLPATHS actually uses a
number of different k-mer sizes internally, the user can-
not adjust the k-mer size from the default value of 96,
unlike in many other assemblers. Here, the command-line
argument PRE is used to specify the location of the root
directory in which ALLPATHS pipeline directory will be
created. REFERENCE NAME is used to specify the REF-
ERENCE (organism) directory name, which should be set
to the same value of organism name as given in in libs.csv.
DATA SUBDIR is used to specify the location of the DATA
directory, which contains all the converted read data. The
RUN directory contains all the intermediate files, and the
SUBDIR directory is where the final assembly is generated,
along with some evaluation files. The results of the assembly
are given in the following two files, final.assembly.fasta
and final.assembly.efasta. Both these files contain the final
flattened and scaffolded assembly. The efasta, “enhanced”
fasta, file is a new format used by ALLPATHS and is based
on the standard fasta file format.

(3) Abyss. Abyss is a multistage de novo assembly tool
consisting of unitig (De Bruijn graph), contig, and scaffold
stages. The recently published program Abyss 2.0 includes
a Bloom filter-based implementation of the unitig assembly
stage, which reduces the overall memory requirements [25].
Table 8 shows how to run the Abyss command using the
paired-end reads. The input data are usually organized as
multiple read files generated from multiple libraries. The
names of the paired-end libraries and mate-pair libraries are
specified using the parameters lib and mp, respectively. A
pair of reads must be named with the suffixes 1 and 2 to
identify the first and second read. Table 8 shows an example of
assembling a dataset with two paired-end libraries (pea, peb)
and one mate-pair library (mp1). The parameter k specifies
the k-mer length, and name is used to set the corresponding
prefix of the output file name.The output of Abyss consists of
outprefix-contigs.fa (which stores the contigs) and outprefix-
scaffolds.fa, which stores the scaffolds generated by de novo
assembly.
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Table 8: Abyss command.

abyss-pe k=kmerlength name=outprefix lib='pea peb' mp='mp1'
pea='DNAread170 1.fastq DNAread170 2.fastq'
peb='DNAread400 1.fastq DNAread400 2.fastq'
mp1='DNAread2900 1.fastq DNAread2900 2.fastq'

Table 9: Velveth command.

velveth output directory/ hash length -fastq
-shortPaired DNAread170 1.fastq DNAread170 2.fastq
-shortPaired2 DNAread400 1.fastq DNAread400 2.fastq
-longPaired DNAread2900 1.fastq DNAread2900 2.fastq

(4) Velvet. Velvet takes in short-read sequences, removes
errors then produces unique contigs.The assembly process of
Velvet consists of two stages: first, velveth takes in a number
of read files, produces a hash index file, then outputs two files
(Sequences andRoadmaps) in the output directory, which are
necessary to the following program. Next, the core program,
velvetg, builds andmanipulatesDeBruijn graphs for genomic
sequence assembly. Table 9 shows how to use the velveth
commands. The hash length (also known as k-mer length)
corresponds to the length of the words being hashed. Here,
the -fastq refers to the format of the read data. Supported
read categories are short (default), shortPaired, short2, short-
Paired2 (same as shortPaired, but for a separate insert-size
library), long, and longPaired. Table 10 shows how to use the
velvetg commands.Theparameters -cov cutoff, -exp cov, and
-ins length correspond to the coverage cutoff value, expected
short-read k-mer coverage value, and expected insert length
of the paired-end reads, respectively. If the scaffolding option
is set to “yes” (default), Velvet tries to scaffold contigs. This
command produces a fasta file which contains the sequences
of contig and scaffold, and outputs some statistics.

(5) Gap Filling. Because the scaffolds are created by chaining
multiple contig sequences, there may be gap regions between
contigs in the scaffold sequences. In GAAP, GapCloser (https://
sourceforge.net/projects/soapdenovo2/files/GapCloser) is
used for filling gaps in the assembled scaffolds to increase
the accuracy of assembly. GapCloser performs gap filling by
realigning reads to the assembled scaffolds while considering
relationships between paired-end reads. Table 11 shows an
example of using the GapCloser command. Option -a refers
to the assembled scaffold file, and option -b refers to the
config file. The config file has the same format as that used in
the example in Table 4. Option -o refers to the final output
file from running GapCloser, and option -l refers to the
maximum read length. The final output file, genome.fasta,
stores the new gap-filled scaffold sequences (Supplementary
Figure S1).

2.2.2. Transcriptome Assembly. Assembly software, based on
the De Bruijn graph method, has been developed for
assembling RNA reads such as Trinity (http://trinityrnaseq
.github.io) andOases (http://www.ebi.ac.uk/∼zerbino/oases).
GAAP uses Trinity, which generally shows relatively good

performance. Trinity is composed of three modules: Inch-
worm, Chrysalis, and Butterfly. Inchworm, which is the
assembly module, first generates a k-mer graph for RNA
reads. Next, it generates the contigs by traversing the graph
in a grid fashion. Chrysalis, which is a clustering module,
constructs the clusters by combining contigs generated from
alternative splicing or similar gene regions, and builds the De
Bruijn graphs for each cluster. Finally, Butterfly optimizes the
De Bruijn graphs and then traverses the optimized graphs to
generate transcripts [31].

Table 12 shows an example of using the Trinity command.
Here, the --seqType option refers to the format of the read
data, where fa stands for fasta, and fq stands for fastq. When
running Trinity, it is essential to accurately indicate the
direction of the strand for the RNA reads. The --SS lib type
option refers to the direction of the reads, where F is forward
and R is reverse. The results file is trinity.fasta. This file stores
the assembled transcript identifiers, lengths, paths in the De
Bruijn graphs corresponding to the transcripts, and transcript
sequences (Supplementary Figure S2).

2.3. Genome Annotation. Genome annotation refers to the
process of identifying and attaching all the relevant features
on a genome sequence. Genome annotation is divided into
structural annotation and functional annotation. Structural
annotation is the process of using assembled base sequence
data to identify gene locations and structure, such as exons,
introns, UTRs, and codons constituting these genes. Func-
tional annotation refers to the process of identifying bio-
chemical and metabolic activity, and cellular and physiologi-
cal functions of gene products.

2.3.1. Structural Annotation

(1) Repeat Identification. Repeats are found throughout
genomic sequences and range from as small as 2 bp
(simple repeats) to as large as 10 Kbp (interspersed
repeats). Prior to gene prediction, it is important to
mask repetitive elements, including low-complexity regions
and transposable elements, because repeats will cause
predictions of false homology.The repeats in input sequences
should be masked by repeat-masking tools [32] such as
RepeatMasker (http://repeatmasker.org) and RepeatRunner
(http://www.yandell-lab.org/software/repeatrunner.html).
Of these, RepeatMasker is widely used and employs a
library of repeats drawn from Repbase (http://www.girinst
.org/repbase/update/index.html) to recognize and mask
repeat sequences [33]. Table 13 shows an example of using
the RepeatMasker command. The --species option indicates
the name of the species in repeat library to be used for repeat
masking. The input file, genome.fasta, contains scaffold
sequences generated by the assembly and gap filling process.

(2) Ab Initio Gene Structure Prediction. After repeat
masking, elements of gene structure, such as introns, exons,
coding sequences (CDSs), start codons, and end codons,
are predicted. To predict gene structure, Ab initio gene
predictors use precalculated parameter values; these
include distributions of intron-exon lengths and codon
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Table 10: Velvetg command.

velvetg output directory/ -cov cutoff auto -exp cov auto -ins length 170 -ins length2 400
-ins length long 2900 -scaffolding yes

Table 11: GapCloser command.

GapCloser -a scaffold.scafSeq -b config.file -o genome.fasta -l readlength

frequencies obtained from structural information on
gene models such as Caenorhabditis elegans, Drosophila
melanogaster, and humans. However, unless the newly
sequenced genome is closely related to a gene model for
which the precalculated parameters are available, the gene
predictor needs to be trained on the genome that is under
study. Augustus (http://augustus.gobics.de) and SNAP
(http://korflab.ucdavis.edu/software.html) are representative
examples of ab initio tools [34, 35]. Table 14 shows an
example of using the Augustus command, which is available
in GAAP. The input file is a repeat masked scaffold file,
and the --species option is used to set the name of a similar
species whose genomic information can be used for structure
prediction. In order to generate the results file in gff3 format,
the --gff3 option should be set to “on”.

(3) Evidence-Driven Prediction of Gene Structure. Most ab
initio gene prediction tools can only find CDS structures,
but cannot find UTRs or alternatively spliced transcripts.
Thus, several recent methods are being used to predict gene
structure based on external evidence. The evidence-driven
method uses results, obtained by aligning expressed sequence
tags (ESTs), protein sequences, and RNA-Seq data to a
genome assembly, as external evidence. This method aims to
improve the quality of gene prediction by integrating outputs
of existing software tools (some of which are gene predictors)
based on evidence alignments.

MAKER is an example of a representative evidence-
driven structure prediction tool [36, 37]. MAKER (http://
www.yandell-lab.org/software/maker.html) is a pipeline tool
that combines several software tools in one; these tools
includeRepeatMasker, Exonerate, SNAP,Augustus, andBlast.
Various parameters, which need to be set in MAKER con-
figuration files, include maker exe.ctl, maker bopts.ctl, and
maker opt.ctl. Maker exe.ctl sets the installation pathways
for the programs used to run each program contained
within MAKER (RepeatMasker, Exonerate, SNAP, Augustus,
and Blast). Maker bopts.ctl sets the thresholds for statistics
filtering in the programs Blastn, Blastx, and Exonerate.
Maker opt.ctl contains information on the location of input
files and on some of the parameters controlling decision
making during the gene prediction. If trained gene predictors,
such as SNAP and Augustus, are used in MAKER, they can
be described in snaphmm and augustus species options as
shown in Table 15.

After setting all the relevant parameters to run MAKER,
the maker command can simply be run as shown in Table 16.

However, in order to obtain even more accurate anno-
tation results, the prediction results obtained from MAKER

are used to train SNAP and Augustus, and results obtained
through training are then reinput into MAKER; this process
is repeated 3-4 times. Figure 2 summarizes the method of
running MAKER in GAAP.

The workflow is as follows:
(Step 1) First, download the data (scaffolds, tran-
scripts, proteins) from NCBI or wormbase for a
species whose genome is similar to the genome to be
annotated. Then, run the MAKER using only these
data.
(Step 2) The results from MAKER in previous step
are used to train SNAP and Augustus. An hmm file
from SNAP, and a species file corresponding to the
new genome from Augustus, are generated as a result
of this training.
(Step 3) The hmm file and species file generated in
Step (2) are reinput into MAKER, along with final
scaffolds and transcripts obtained from assembly and
repeat sequence masking. Here, the hmm file and
species file can be described in maker opt.ctl, as
shown in Table 15.
(Step 4) Steps (2)-(3) are repeated several times to
obtain more accurate annotation results.

The results file from MAKER is in the gff3 format, and
stores information about the number of genes predicted in
the corresponding scaffolds, the locations of these genes, and
the introns, exons, and CDSs (Supplementary Figure S3).
The results obtained via MAKER can be inspected visually
usingGBrowse (https://sourceforge.net/projects/gmod/files),
which shows gene structure predicted by each of the
individual programs (SNAP, Augustus, Exonerate, Blast),
as well as the final gene structure predicted by MAKER
(Supplementary Figure S4).

(4) Evidence-Based Consensus Gene Prediction. When vari-
ous gene prediction methods and tools are used to derive
gene structure from a genome, it is essential to combine
these results and obtain the single consensus gene structure.
Consensus gene prediction tools include EvidenceModeler
(EVM) (https://evidencemodeler.github.io), GLEAN (https://
sourceforge.net/projects/glean-gene), and Evigan (http://www
.seas.upenn.edu/∼strctlrn/evigan/evigan.html). These tools
extract a consensus gene structure by estimating the types
and frequencies of errors generated by each source of gene
evidence, and then choosing a combination of evidence that
minimizes such errors [38, 39].

GAAP employs EVM, which is widely used. EVM com-
bines various gene evidences, such as gene predictions and

http://korflab.ucdavis.edu/software.html
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Table 12: Trinity command.

Trinity --seqType fq --max memory 50G --left RNAread 1.fq --right RNAread 2.fq
--SS lib type FR

similar_genome.fasta

similar_transcript.fasta

similar_protein.fasta

genome.fasta

trinity.fasta

Maker

Maker

similar_maker.gff3

final_maker.gff3

SNAP

Augustus

similar_snap.hmm

similar_species

Figure 2: Workflow of running MAKER in GAAP. First, MAKER is run using scaffolds, transcripts, and proteins from similar species, and
the results are used to train SNAP and Augustus. Next, the trained results are reinput into MAKER, along with assembled scaffolds and
transcripts, to obtain the final annotation results.

Table 13: RepeatMasker command.

RepeatMasker --species species.name genome.fasta

protein/transcript alignments, into weighted consensus gene
structures. EVM allows the user to weight each evidence
using a weights file. As shown in Table 17, the weights
file consists of three columns: evidence class, type, and
weight. The evidence class can be one of the following:
ABINITIO PREDICTION, PROTEIN, or TRANSCRIPT.
ABINITIO PREDICTION can use ab initio gene structure
prediction tools, such as Augustus, Twinscan, SNAP, or
GlimmerHMM. To improve the accuracy of annotation,
EVM can use the results, obtained by aligning EST, full-
length cDNA, or protein to the assembled genome, to extract
consensus genes. In this case, PROTEIN can use a tool, such
as GeneWise, to align a protein sequence to a genome for
protein homology detection. TRANSCRIPT can use a tool,
such as PASA, to align a full-length cDNA sequence to a
genome. Weight refers to the weight value to be applied to
each type of evidence. After preparing the weights file, EVM
is run.

The process of running EVM consists of four phases:
partitioning, execution, combining, and conversion. In the
partitioning phase shown in Table 18, the input file is
partitioned into smaller units, depending on factors such
as memory capacity. Here, --genome is used to set the
assembled genome file, --gene predictions are used to set
the predicted gene structure file, --protein alignments are
used to set the protein file, and --transcript alignments are
used to set the transcript file. A summary of the partitions
is provided in the partitions list.out file (parameter to --
partition listing). In the execution phase shown in Table 19,
a command list is generated first to enable executing EVM

commands in parallel, in a grid computing environment, to
improve performance. Next, the commands in the command
list are executed. Here, --weights sets the weights file, and
--output file name sets the output file for EVM results. In
the combined phase shown in Table 20, the results for
each small partitioned dataset, obtained in the execution
phase, are joined into a single final result. Finally, in the
conversion phase shown in Table 21, the final result file from
the combining phase is converted into a standard gff3 format.
After running the conversion phase, an evm.out.gff3 file is
generated (Supplementary Figure S5). The conversion phase
is optional.

(5) Postprocessing to Add UTR Annotation. The Program
to Assemble Spliced Alignments (PASA) can update any
gene structure annotations by correcting exon bound-
aries, and adding UTRs and alternatively spliced models
based on assembled transcriptomic data. GAAP uses PASA
(http://pasapipeline.github.io) to update the EVM consensus
gene predictions, adding UTRs and modeling alternatively
spliced isoforms.

PASA is run as follows. First, before running PASA, the
gff3 result file, obtained from EVM (evm.out.gff3), is stored
within a relational database (MySQL) (Table 22). In the
database generation command, option -c is used to set the
config file, option -g to set the assembled genome file, and
option -P to set the final annotated results file (EVM results
file). As shown in Table 23, the name of the database is set by
theMYSQLDBoption in the PASA config.file. In the example,
the name of the generated database is myPasaDB.

The PASA execution command is shown in Table 24.
Option -c refers to the config file, -g to the assembled
genome file, and -t to the assembled transcriptome file. In
this study, we used trinity.fasta, which stores the transcripts
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Table 14: Augustus command.

augustus --species=species.name --gff3=on genome.fasta > output.file

Table 15: An example of maker opt.ctl in MAKER.

#-----Genome
genome=genome.fasta
#-----EST Evidence
est=trinity.fasta
#-----Protein Homology Evidence
protein=#protein sequence file in fasta format
#-----Gene Prediction
snaphmm=similar snap.hmm
augustus species=similar species

Table 16: MAKER command.

maker

Table 17: EVM weights file.

ABINITIO PREDICTION augustus 1
ABINITIO PREDICTION maker 1
PROTEIN genewise protein alignments 5
TRANSCRIPT PASA transcript assemblies 10

assembled using Trinity. The results of PASA contain UTR
information and protein sequence information in #PROT
lines (Supplementary Figure S6).

2.3.2. Functional Annotation. Functional annotation is the
process of attaching biological information to gene or protein
sequences. Functional annotation can be divided into Blast-
based homology search and gene ontology-based GO term
mapping.

(1) Homology Search. To investigate gene function or
predict evolutionary associations between related sequences,
newly assembled sequences are compared with gene
sequences with known functions to find sequences with
high homology. Tools for homology search include Blast
(https://blast.ncbi.nlm.nih.gov), TopHat (https://ccb.jhu
.edu/software/tophat), and GSNAP (http://research-pub
.gene.com/gmap). Blast2GO (https://www.blast2go.com)
[40] is a pipeline tool that provides local and cloud-based
methods of running Blast; these are named LocalBlast
and CloudBlast, respectively. Because Blast performance
is affected by the number and length of query sequences,
it is preferable to use CloudBlast when performing a mass
sequence alignment.

In GAAP, protein sequences obtained from the final
results of PASA are used as query sequences, and Blastp
is performed using the CloudBlast method provided in
Blast2GO. In the result of Blastp, the meaning of each field
is as follows: SeqName is the name of the query sequence;
Description is a description of themapped sequences; Length

is the length of the query sequence; #Hits is the number
of sequences mapped to the query sequence; e-value is the
significance of the highest ranked mapped sequence; sim
mean is themean similarity of themapped sequences; #GO is
the number of mapped terms in GO ontology; GO list is the
list of mapped terms in GO ontology; Enzyme list is the list of
enzymes searched using GO terms; and InterPro Scan shows
annotation data for the query sequence searched in a protein
database (Supplementary Figure S7). In addition, Blast2GO
provides various statistics about Blast results. For example,
analyzing distribution statistics of top-hit species enables the
user to find species most similar to the assembled genome.

(2) GO Term Mapping. Mapping is the process of retrieving
GO terms associated with Hits (mapped sequences) obtained
via Blast search. Gene ontology stores information about
gene-related terms and relations between genes. Gene ontol-
ogy is classified into three categories: biological process ontol-
ogy, molecular function ontology, and cellular component
ontology. GO database is a relational database to store and
manage annotations describing information such as gene
ontology, gene products, as well as functions and activity
sites of gene products. GO database can be downloaded from
AmiGO (http://amigo.geneontology.org/amigo).

In GAAP, we retrieve the GO terms by running the
mapping tool provided in Blast2GO. By clicking the ID of a
mappedGO term, it is possible to obtain detailed information
about a GO term via linkage to the AmiGO site (Supplemen-
tary Figure S8). Blast2GO also provides the statistics of GO
term frequency. Based on frequency distribution of mapped
GO terms, we analyze the enrichment of GO categories
(Supplementary Figure S9).

The analysis tool, provided in Blast2GO, can be used to
analyze enzyme codes involved in Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and predict interac-
tions between gene products. The KEGG pathways are net-
work diagrams that represent interactions between numerous
molecules and showmetabolic activities.The nodes displayed
as squares in the pathway diagrams represent enzymes;
colored nodes represent enzymes that were retrieved from the
genome assembled using GAAP. Here, #Seqs is the number
of retrieved sequences associated with metabolic actions,
and #Enzs is the number of retrieved enzymes related to
metabolic activities (Supplementary Figure S10).

3. Discussion and Conclusions

We have designed and proposed GAAP, an assembly and
annotation pipeline for whole-genome analysis. GAAP is
composed of three stages of sequencing, assembly, and anno-
tation. In this report, we detailed the analysis process at each
stage. We described how to build analysis tools and databases
thatmeet the needs of researchers.We also provided practical
advice on how to set command-line parameters and explore
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Table 18: EVM partitioning command.

EvmUtils/partition EVM inputs.pl --genome genome.fasta
--gene predictions gene predictions.gff3 --protein alignments protein alignment.gff3
--transcript alignments transcript alignment.gff3
--segmentSize 100000 --overlapSize 10000 --partition listing partitions list.out

Table 19: EVM execution command.

EvmUtils/write EVM commands.pl --genome genome.fasta --weights weights.file
--gene predictions gene predictions.gff3 --protein alignments protein alignment.gff3
--transcript alignments transcript alignment.gff3
--output file name evm.out --partitions partitions list.out > commands.list

EvmUtils/execute EVM commands.pl commands.list

Table 20: EVM combining command.

EvmUtils/recombine EVM partial outputs.pl --partitions partitions list.out --output file name evm.out

Table 21: EVM conversion command.

EvmUtils/convert EVM outputs to GFF3.pl --partitions partitions list.out
--output evm.out --genome genome.fasta

Table 22: PASA database generation command.

scripts/Load Current Gene Annotations.dbi -c config.file -g genome.fasta -P evm.out.gff3

Table 23: PASA configuration file.

# MySQL settings
MYSQLDB=myPasaDB

the input/output data formats. The user guide is available at
the GAAP website (http://GAAP.hallym.ac.kr).

Factors such as read length, read depth, insert size,
and data quality affect the quality of genome assemblies.
For the sequencing stage, we described how to carefully
prepare sequencing data and how raw-read data are refined
by using error-correction tools such as SOAPec andMarkdu-
plicates. For the assembly stage, we explained how contig
and scaffold sequences for new species are generated using
de novo assembly tools such as SOAPdenovo2, ALLPATHS-
LG, Abyss 2.0, and Velvet without reference sequences. We
also described how reliable gap filling is performed by
using the GapCloser tool. The annotation stage was further
divided into structural annotation and functional annotation.
In structural annotation, we showed how to mask repeat
sequences with RepeatMasker, and how to locate genes in
scaffolds and identify introns, exons, and UTR structures
within these genes using gene structure prediction tools such
as Augustus, MAKER, EVM, and PASA. For the functional
annotation step, we presented methods for identifying gene
functions by homology search and ontology mapping using
Blast2GO.

As a case study, a whole genome of T. canis was gen-
erated and deposited into GenBank, and is available at:
http://www.ncbi.nlm.nih.gov/nuccore/LYYD00000000. The
results of T. canis genome analysis derived using GAAP can
be summarized as follows [2]. In the assembly stage of T.
canis, N50 of the DNA sequences was 108 Kbp, and 10,853
scaffolds were obtained with a total length of 341 Mbp. The
N50 of the RNA sequences was 940 bp, and 81,629 transcripts
were obtained with a total length of 53,047 Kbp. In the gene
structure prediction stage, 20,178 genes and 22,358 protein
sequences were identified. Of the 22,358 protein sequences,
4,992 were newly observed in T. canis. Using homology
search, gene ontology, and KEGGpathway analysis, we found
that T. canis genes were most similar to those ofAscaris suum
[41], and 127 enzymatic pathwayswere analyzed.These results
obtained for T. canis were used to show the intermediate
results generated at each stage of GAAP.

To the best of our knowledge, this is the first single
pipeline encompassing generation of NGS read data, refine-
ment, assembly, and annotation. Each step of the process is
described in detail in this report. In this study, we compared
and summarized various public software and biological
databases required for each stage of the pipeline. For such
software, we evaluated the commands, input/output data
formats, and parameter settings. We also used a specific case
study to show the intermediate results obtained at each stage.
The pipeline described in this study enables a researcher
without expertise in IT to perform a complete genome
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Table 24: PASA execution command.

scripts/Launch PASA pipeline.pl -c config.file -A -g genome.fasta -t trinity.fasta

analysis.This is conducted by using each stage of the pipeline,
examining intermediate results, and exploring the analyzed
information for the generation of new ideas and hypotheses.
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Supplementary Materials

Supplementary Table S1: comparison of all next-generation
sequencing (NGS) Instruments (https://genohub.com/ngs-
instrument-guide). Supplementary Figure S1: an example of a
scaffold file generated after running GapCloser. The scaffold
identifier and sequences in the scaffold are stored. Supple-
mentary Figure S2: a transcript file generated after running
Trinity. The assembled transcript identifier, length, pathways
in the De Bruijn graph corresponding to the transcript,
and transcript sequence are stored. Supplementary Figure
S3: example results file from MAKER. The output file from
MAKER is in gff3 format and stores information about the
predicted gene locations within the relevant scaffold, as well
as introns, exons, and coding sequences (CDSs) constituting
the genes. Supplementary Figure S4: visualization ofMAKER
results using GBrowse. The black areas show predicted gene
structures from programs used in MAKER such as SNAP,
Augustus, Exonerate, and Blast. The blue area shows gene
structures obtained in MAKER via integration of individual
prediction results. Supplementary Figure S5: EVM results.
Gene structures predicted using EVM store information
on gene locations, as well as exons and coding sequences
(CDSs) constituting the genes. Supplementary Figure S6:

PASA results. The yellow portion shows information on
new untranslated regions (UTRs) that have been added
to gene-structure prediction results. In addition, protein
sequence information can be examined in the #PROT line.
Supplementary Figure S7: results screen from running Blastp
in Blast2GO. SeqName is the name of the query sequence;
Description is a description of themapped sequences; Length
is the length of the query sequence; #Hits is the number
of sequences mapped to the query sequence; e-value is the
e-value of the highest ranked mapped sequence; sim mean
is the mean similarity of the mapped sequences; #GO is
the number of mapped terms in gene ontology (GO); GO
list is the list of mapped terms in GO; Enzyme list is the
list of enzymes searched using GO terms; and InterPro
Scan is annotation data for the query sequence searched
in a protein database. Supplementary Figure S8: detailed
information on gene ontology (GO) terms retrieved from
the AmiGO site. Clicking the ID of a mapped GO term
shows detailed information on the GO term via linkage
with the AmiGO site. Clicking “show” provides a graph that
shows the relationships between the GO term of interest
and related GO terms. The square nodes in the graph
represent the terms, and the edges indicated by arrows
represent relationships between the nodes. Supplementary
Figure S9: ontology-based functional annotation results. The
distribution of gene ontology (GO) terms mapped based
on biological process ontology, molecular function ontology,
and cellular component ontology. Supplementary Figure S10:
analysis of enzymes involved in purine metabolism. #Seqs
is the number of sequences, retrieved from BLAST, which
are associated with relevant metabolic activities; #Enzs is the
number of retrieved enzymes related to themetabolic activity.
The square nodes in the pathway diagram represent enzymes
involved in the corresponding pathway. The colored nodes
represent enzymes identified from the assembled genome.
(Supplementary Materials)
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Schrenzel, “De novo bacterial genome sequencing: millions of
very short reads assembled on a desktop computer,” Genome
Research, vol. 18, no. 5, pp. 802–809, 2008.

[21] R. Luo, B. Liu, Y. Xie et al., “SOAPdenovo2: an empirically
improved memory-efficient short-read de novo assembler,”
GigaScience, vol. 1, no. 1, article 18, 2012.

[22] J. Butler, I. MacCallum, M. Kleber et al., “ALLPATHS: de
novo assembly of whole-genome shotgunmicroreads,” Genome
Research, vol. 18, no. 5, pp. 810–820, 2008.

[23] S. Gnerre, I. MacCallum, D. Przybylski et al., “High-quality
draft assemblies of mammalian genomes from massively par-
allel sequence data,” Proceedings of the National Acadamy of
Sciences of the United States of America, vol. 108, no. 4, pp. 1513–
1518, 2011.

[24] I. Birol, S. D. Jackman, C. B. Nielsen et al., “De novo transcrip-
tome assembly with ABySS,” Bioinformatics, vol. 25, no. 21, pp.
2872–2877, 2009.

[25] S. D. Jackman, B. P. Vandervalk, H. Mohamadi et al., “ABySS
2.0: resource-efficient assembly of large genomes using a Bloom
filter,” Genome Research, vol. 27, no. 5, pp. 768–777, 2017.

[26] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo
short read assembly using de Bruijn graphs,” Genome Research,
vol. 18, no. 5, pp. 821–829, 2008.

[27] D. Earl, K. Bradnam, J. S. John et al., “Assemblathon 1: a com-
petitive assessment of de novo short read assembly methods,”
Genome Research, vol. 21, pp. 2224–2241, 2011.

[28] K. R. Bradnam, J. N. Fass, A. Alexandrov et al., “Assemblathon
2: evaluating de novo methods of genome assembly in three
vertebrate species,” GigaScience, vol. 2, no. 1, p. 10, 2013.

[29] T. Chu, C. Lu, T. Liu, G. C. Lee,W. Li, andA. C. Shih, “Assembler
for de novo assembly of large genomes,” Proceedings of the
National Acadamy of Sciences of the United States of America,
vol. 110, no. 36, pp. E3417–E3424, 2013.

[30] A. R. Khan, M. T. Pervez, M. E. Babar, N. Naveed, and M.
Shoaib, “A comprehensive study of de novo genome assemblers:
current challenges and future prospective,” Evolutionary Bioin-
formatics, vol. 14, p. 117693431875865, 2018.

[31] M. G. Grabherr, B. J. Haas, M. Yassour et al., “Full-length
transcriptome assembly fromRNA-Seq datawithout a reference
genome,”Nature Biotechnology, vol. 29, no. 7, pp. 644–652, 2011.

[32] C. D. Smith, R. C. Edgar, M. D. Yandell et al., “Improved repeat
identification and masking in Dipterans,” Gene, vol. 389, no. 1,
pp. 1–9, 2007.

[33] J. Jurka, “Repbase Update: A database and an electronic journal
of repetitive elements,” Trends in Genetics, vol. 16, no. 9, pp. 418–
420, 2000.

[34] M. Stanke, A. Tzvetkova, and B. Morgenstern, “AUGUSTUS
at EGASP: using EST, protein and genomic alignments for
improved gene prediction in the human genome,” Genome
Biology, vol. 7, pp. S11.1–8, 2006.

[35] I. Korf, “Gene finding in novel genomes,” BMC Bioinformatics,
vol. 5, Article ID 59, 2004.

[36] B. L. Cantarel, I. Korf, S.M. C. Robb et al., “MAKER: an easy-to-
use annotation pipeline designed for emergingmodel organism
genomes,” Genome Research, vol. 18, no. 1, pp. 188–196, 2008.

[37] C. Holt and M. Yandell, “MAKER2: an annotation pipeline
and genome database management tool for second-generation
genome projects,” BMC Bioinformatics, vol. 12, no. 1, 2011.

[38] B. J. Haas, S. L. Salzberg, W. Zhu et al., “Automated eukaryotic
gene structure annotation using EVidenceModeler and the
Program to Assemble Spliced Alignments,” Genome Biology,
vol. 9, no. 1, p. R7, 2008.

[39] Q. Liu, A. J. Mackey, D. S. Roos, and F. C. N. Pereira, “Evigan:
A hidden variable model for integrating gene evidence for
eukaryotic gene prediction,” Bioinformatics, vol. 24, no. 5, pp.
597–605, 2008.

[40] A. Conesa, S. Götz, J. M. Garćıa-Gómez, J. Terol, M. Talón,
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