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Abstract: Since diphtheria toxin (DT) is the main virulence factor of Corynebacterium diphtheriae and
C. ulcerans, the detection of DT in corynebacterial cultures is of utmost importance in the laboratory
diagnosis of diphtheria. The need to measure the level of DT production (LTP) arises when studying
the virulence of a strain for the purpose of diphtheria agent monitoring. To determine the LTP of
diphtheria agents, an immunoassay based on monoclonal antibodies (mAbs) has been developed.
A pair of mAbs specific to the fragment B of DT was selected, which makes it possible to detect
DT in a sandwich ELISA with a detection limit of DT less than 1 ng/mL. Sandwich ELISA was
used to analyze 218 liquid culture supernatants of high-, low- and non-toxigenic strains of various
corynebacteria. It was shown that the results of ELISA are in good agreement with the results of PCR
and the Elek test for the tox gene and DT detection, respectively. The diagnostic sensitivity of the
assay was approximately 99%, and specificity was 100%. It has been found that strains of C. ulcerans,
on average, produce 10 times less DT than C. diphtheriae. The mAbs used in the ELISA proved to be
quite discriminatory and could be further used for the design of the LFIA, a method that can reduce
the labor and cost of laboratory diagnosis of diphtheria.

Keywords: Corynebacterium diphtheriae; Corynebacterium ulcerans; diphtheria toxin; ELISA; monoclonal
antibodies; level of toxin production

1. Introduction

It is easy to get to the bottom of diphtheria—the disease is all about the diphtheria
toxin (DT). DT is a potent exotoxin of Corynebacterium diphtheriae and C. ulcerans, which kills
susceptible cells by inhibiting protein synthesis. Specifically, DT transfers the ADP-ribose
moiety of NAD to elongation factor EF-2, inactivating it. The ADP-ribosylation activity
of DT is determined by the A fragment, and B fragment is required for eukaryotic cell
receptor-binding. The toxin repressor (DtxR), a chromosomal regulatory protein, inhibits
DT production and derepresses it when Fe2+ corepressor is depleted. The phage-encoded
DT is the main virulence-associated factor in the disease, responsible for causing diphtheria
symptoms, i.e., fever, headache, general malaise, acute tonsillitis with a pseudomembrane
over the tonsils, nasopharynx, or even larynx, inflammation and swelling of the cervical
lymph nodes (“bull neck”), and systemic complications, including toxin-derived damage
to the myocardium, nervous system, and kidneys. Specific prevention of the disease
is the vaccination of children with diphtheria toxoid, and the main route of therapy is
the administration of hyperimmune equine antitoxic serum (antitoxin). Only toxigenic
strains of C. diphtheriae and C. ulcerans can cause classical respiratory diphtheria, while
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non-toxigenic strains are not able to do so [1]. Therefore, the accelerated indication of
toxin-forming corynebacteria in clinical material is of utmost importance in diphtheria
laboratory-based diagnosis, both for managing the individual patient as well as for public
health measures.

Laboratory diagnostic tests for toxigenicity of C. diphtheriae/C. ulcerans are based on
qualitative immunological methods [1]. We set ourselves the goal of developing a sensitive
and specific test to determine not only the presence, but also the amount of DT produced by
the corynebacterial culture. The need to measure the concentration of DT arises when, for
instance, studying a relationship between the level of toxin production (LTP) of strains of
diphtheria agent, which until recently included only C. diphtheriae, and now also includes
C. ulcerans, and the virulence of the strain. Thus, we found that the C. diphtheriae var.
gravis, ribotype ‘Sankt-Peterburg/Rossija’, MLST type ST8, the diphtheria epidemic clone
in Russia and other countries of the former USSR in the 1990s, caused more severe forms
of infection in unvaccinated children, compared with the 1980s, when the C. diphtheriae
var. mitis, ribotype ‘Otchakov’, MLST type ST5 was common, and also had a higher LTP.
LTP studies were performed using an indirect hemagglutination test with a diagnosticum
on sheep erythrocytes sensitized with diphtheria antitoxin, and the result was estimated
as the maximum dilution of the liquid bacterial culture, in which hemagglutination still
occurred [2]. The high level of DT production in the C. diphtheriae ST8 strains was explained
by the fact that this epidemic clone had the GCC-> GTC (A147V) mutation in the dtxR
gene, that, as shown by chemical mutagenesis studies, modified the regulatory functions of
the DtxR protein [3], which, in turn, could lead to an increase in DT expression. However,
another research group using the same LTP detection method found that the population
of the C. diphtheriae ST8 clone was heterogeneous, containing both strongly and weakly
toxigenic strains [4]. As can be seen from this example, studies devoted to the development
of a reliable method for the determination of LTPs are of importance in assessing the
pathogenic potential of corynebacteria.

ELISA remains a very robust and reliable method for the detection of various pro-
tein analytes. Previously, enzyme-linked immunosorbent and immunochromatographic
methods for detecting DT were developed, the sensitivity of which varied from 0.1 to
4 ng/mL [5–7]. These tests were based on a sandwich immunoassay with equine poly-
clonal antibodies as binding antibodies, and mouse monoclonal antibodies (mAbs) as
detecting antibodies. For the determination of LTP, we developed a sensitive immunoassay
based only on mAbs, since they have constant properties and, therefore, such a test is easier
to standardize.

In addition, we set out to determine whether the mAbs used in ELISA are discrimina-
tory enough to be used in the Lateral Flow Immunoassay (LFIA), a method that can reduce
labour and cost of laboratory diagnosis of diphtheria.

2. Materials and Methods
2.1. Bacterial Strains

A total of 218 strains of corynebacteria for this study (listed in Table S1 in Supplementary
Materials) were obtained from the German Conciliary Laboratory on Diphtheria (GCLoD)
culture collection. They were both of human and animal origin and isolated in Germany in
2011–2022. The presence of the toxin gene and the DT production were detected by RT-PCR
and the Elek test, respectively [8]. The bacterial strains were grown on Columbia Blood
Agar (Oxoid, Basingstoke, UK) for 24 h prior to testing.

2.2. Sample Preparation

ELISA testing was performed between February 2021 and January 2022. For ELISA
testing bacterial strains were cultured on Elek broth [6,7] for 6 h at 37 ◦C, after which the
bacterial cells were removed by filtration through a 0.22-µm-pore-size membrane (Merck
Millipore, Burlington, MA, USA). The culture supernatants were stored at −20 ◦C prior to
analysis in the ELISA.
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2.3. mAb Production and Purification

Cells of mAb-producing hybridomas were used to generate mAbs [9]. Briefly, the
producing cells were introduced into BALB/C mice, and preparative amounts of the
antibodies were isolated from the ascitic fluids of these mice. The mAbs from the ascitic
fluids were purified by affinity chromatography on protein-A-Sepharose (GE Healthcare,
Chicago, IL, USA). The ascitic fluid was diluted by four times with the starting buffer
(1.5 M glycine and 3 M NaCl, pH 8.9) and applied onto a column that was filled with the
affinity sorbent and equilibrated with the same buffer. The mAbs were eluted with a 0.1 M
citrate buffer with pH 4.0. The mAb-containing fractions were dialyzed against phosphate
buffered saline (PBS). The purity of the mAbs was defined by SDS-PAGE. The mAbs
antigen-binding activity was confirmed by indirect ELISA as described previously [9].

2.4. Sandwich ELISA

Purified mAbs were biotinylated using the EZ-Link Sulfo-NHS-LC-Biotin reagent
(ThermoFisher, Waltham, MA, USA) according to the manufacturer’s instructions. For
ELISA, binding antibodies (10 µg/mL in PBS) were adsorbed overnight at 4 ◦C in the wells
(100 µL per well) of a 96-well polystyrene high-binding plate (Costar-Corning, NY, USA).
Next, the plate washed 3 times with PBS with 0.05% tween-20 (PBST). Solutions of DT
(Sigma-Aldrich, St. Louis, MO, USA) were prepared in PBST with 1% BSA (PBST-BSA) or
in Elek broth at various concentrations and added by 100 µL to the wells of the plate with
adsorbed antibodies. PBST-BSA or Elek broth without the addition of toxin were used as
negative controls. The plate was incubated for 1 h at room temperature on a shaker. Then,
the plate was washed 3 times with PBST, 100 µL of a solution of detecting biotinylated mAbs
(1 µg/mL in PBST-BSA) was added to each well and incubated for 1 h at room temperature
on a shaker. After washing the plate 3 times with PBST, a solution of horseradish peroxidase-
labeled streptavidin (BD Biosciences, Franklin Lakes, NJ, USA) in PBST-BSA at a working
dilution of 100 µL per well was added and incubated 1 h at room temperature on a shaker.
At the end of the incubation, the plate was washed as described above, and 100 µL of the
peroxidase substrate, ortho-phenylenediamine (Sigma-Aldrich, St. Louis, MO, USA), was
added to each well at a concentration of 1 mg/mL in 1% citrate buffer, pH 4.5, containing
0.05% hydrogen peroxide. The reaction was stopped by adding 50 µL of 2 M sulfuric acid to
each well and the color intensity recorded spectrophotometrically (>Packard SpectraCount
BS10000, PerkinElmer, Waltham, MA, USA) by determining the optical absorbance at
490 nm.

For detection of DT production in cultures of corynebacteria, culture supernatants
were added to the wells of the plate with adsorbed binding antibodies, 100 µL per well. To
quantify DT in culture supernatants, samples were diluted 2–100 times with PBST-BSA. The
analysis was then carried out as described above. Each sample of the culture supernatant
was analyzed in at least duplicates.

2.5. Statistical Analysis

Statistical data processing was carried out using the R software environment [10]
and specialized packages. The drc extension package was used to construct calibration
curves and determine DT concentration in culture supernatants [11]. The limit of detection
of DT was calculated using the calibration curves and was defined as the concentration
of DT corresponding to an optical absorbance value two times higher than the average
optical absorbance value of the repeated (at least 10 times) negative control. Differences
between samples were tested using the Mann–Whitney U-test and considered statistically
significant at p < 0.05. ROC analysis by the pROC and ROCR packages was used for the
assessment of the accuracy of the method for detecting the toxin, as well as the determi-
nation of the threshold of sensitivity of the toxin in bacterial cultures [12,13]. Accuracy,
sensitivity, and specificity of qualitative test at each threshold was defined by the formulas:
(TP+TN)/(P+N), TP/P, and TN/N, respectively, where P—positive samples, N—negative
samples, TP—true positives, TN—true negatives [12].
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3. Results
3.1. Selection of Diagnostic Pair of mAbs

Purified anti-DT mAbs for this study were obtained using hybridoma-producing mAb
cells. The purity of mAbs preparations was at least 95% according to the data of SDS-PAGE
electrophoresis, and all the mAbs were active in indirect ELISA (data not shown).

The search of diagnostic pairs of mAbs for detection of DT in the sandwich ELISA
was carried out. For this, all mAbs were biotinylated and used as detecting antibodies
(labeled “biot”). Purified DT manufactured by Sigma was used as a standard. Only mAbs
C2G5 and E6B9 worked as a diagnostic pair in the sandwich ELISA. In the C2G5-E6B9biot
configuration, the detection limit for DT was 0.4 ± 0.1 ng/mL, so this pair of diagnostic
antibodies was used in further studies. It should be noted that both mAbs included in the
diagnostic pair were specific for the receptor-binding (B) fragment of DT (Table 1).

Table 1. Characteristics of monoclonal antibodies to diphtheria toxin (DT).

mAb ID Isotype DT Fragment Specificity

C2G5 IgG1 B
C12E5 IgG2b A
E4C4 IgG2a A
E6B9 IgG1 B
G2D9 IgG2a A
H10B3 n/d A

n/d—not determined.

3.2. Detection of DT in Elek Broth

Since the purpose of this work was to determine the DT in liquid bacterial culture, we
further studied the effect of the cultivation medium on the results of the analysis of DT. The
purified DT was diluted in a standard buffer and Elek broth, and the dose–response curves
were analyzed (Figure 1). The detection limit of DT in Elek broth was 0.3 ± 0.1 ng/mL.
Background signals in the buffer and Elek medium were not statistically different (p = 0.22).
Thus, Elek broth did not significantly affect the analysis parameters compared to the buffer.
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3.3. Sandwich ELISA for Determination of the DT in Bacterial Cultures

Further, we performed the ELISA for detection of the DT in liquid corynebacterial
cultures (Table S1 in Supplementary Materials). To determine the background value of the
optical absorbance, the average value of the optical absorbance in the samples of the non-
inoculated Elek broth was calculated (at least eight replications for each analyzed plate). Next,
the ratios of the optical absorbance in the analyzed samples to the background value of the
optical absorbance were calculated. Based on the calculated values, as well as the presence
of the DT gene and the Elek test results, ROC analysis was performed to determine the
predictive ability of the assay, as well as the optimal threshold value of the signal/background
ratio. The calculated AUC value was 0.99 (95% confidence interval (CI): 0.97–1.00), which
indicates a high predictive ability of the test (Figure S1A in Supplementary Materials). The
maximum signal/background ratio, which provides more than 99% accuracy of the qualitative
determination of the toxin, was 2.3 (Figure S1B in Supplementary Materials). Thus, the
samples for which the signal/background ratio was less than 2.3 were classified as negative,
the rest of the samples were classified as positive. For positive samples, a quantitative
analysis of DT was performed using calibration curves similar to the curve on Figure 1
(Table S1 in Supplementary Materials).

As can be seen from Table 2, the developed enzyme immunoassay made it possible
to detect DT with high accuracy in 218 corynebacterial cultures. At threshold 2.3, the
diagnostic sensitivity of the assay was approximately 99%, and specificity was 100%. For all
strains, except for one (C. ulcerans KL 1902, Table S1 in Supplementary Materials), the results
of the ELISA coincided with the results of PCR and the Elek test. All strains producing DT
in the Elek test, except for C. ulcerans KL 1902 (Table S1 in Supplementary Materials), were
ELISA-positive. The KL 1902 strain was tox+ and DT-positive, but ELISA-negative. DT-
gene-negative C. diphtheriae, C. ulcerans, and C. pseudotuberculosis (diphtheria clade), along
with cultures of non-diphtheria corynebacteria, as expected, were found ELISA-negative.
Non-toxigenic tox-gene positive (NTTB) C. diphtheriae and C. silvaticum strains were also
ELISA-negative.

Table 2. Confusion matrix for the results of qualitative DT detection by sandwich ELISA in corynebac-
terial cultures.

Total Samples: 218 ELISA: Negative ELISA: Positive

Negative samples *: TN = 114 FP = 0 Total: 114
Positive samples **: FN = 1 TP = 103 Total: 104

Total: 115 Total: 103
FN—false negative; FP—false positive; TN—true negative; TP—true positive. The evaluation was carried out at
a threshold signal/background ratio of 2.3. Note: the presence of the toxin gene was detected by RT-PCR; in the
absence of the tox gene, DT production in most cases was not determined, and strain was considered as negative
(*). In the presence of the tox gene, DT production was confirmed by the Elek test (**), and if toxin production was
not detected in the Elek test, then the strain was considered as negative (*).

The average concentrations of DT determined in ELISA-positive C. ulcerans cultures
(excluding a strain C. ulcerans M06-759) were significantly (10 times) lower than the concen-
trations of DT in cultures of C. diphtheriae: 85.0 and 894.0 ng/mL, respectively (p < 0.001).
C. ulcerans M06-759, compared to other strains of C. ulcerans, is unique in that it produces
an increased amount of DT (2514.8 ng/mL). The reasons for this phenomenon require
further study.

4. Discussion

The results of this study indicate the high efficiency of the developed ELISA. The only
discrepancy was the strain C. ulcerans KL 1902, which was producing DT by the Elek test
but not by the ELISA. This strain needs to be studied in detail, including by performing
whole genome sequencing. It might be speculated that there are some mutations in the
toxin gene that disrupt the folding of the toxin molecule and thereby prevent mAbs from
binding to the toxin.
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Among the 218 strains from GCLoD culture collection used in our study, 21 strains
of C. ulcerans were tox gene positive but initially negative in the Elek test and therefore
classified as NTTBs, which are known to circulate worldwide [1,2,4,8,14]. At the same
time, all of these 21 strains appeared weakly positive in ELISA. It has been suggested
that the current Elek test may not detect the toxin in low-toxigenic strains of C. ulcerans.
Such observations were first made about 20 years ago [15] by the author of this study
(A.S.). The clinical isolate C. ulcerans A6361 possessed the DT gene and was Elek test
negative. However, the ability of the isolate A6361 to express DT was disclosed using
a highly sensitive immunochromatographic strip (ICS) test, which was developed to replace
the Elek test [7]. As shown by external quality assessments of the European Diphtheria
Surveillance Network (EDSN), most of the laboratories participating in the study also
had difficulty testing low-toxigenic strains of C. ulcerans with the Elek method [16]. We
have made some changes to the immunoprecipitation Elek method (namely, type and
concentration of antitoxin, inoculum distance from the antitoxin disk, shape of the bacterial
plaques, and position of control strains) and developed a protocol for the optimised Elek
test with the capacity to detect all the toxigenic corynebacteria in our study, including those
21 strains with low toxin production [17]. It should be noted that using the previous (less
sensitive) modification of the Elek test [8], it was possible to detect every single toxigenic
strain of C. diphtheriae, even the weakly toxigenic reference strain NCTC 3984. Our study
makes this result understandable. The “weakly toxigenic” reference strain of C. diphtheriae
NCTC 3984 expresses only 4 times less toxin than the control toxigenic strain C. diphtheriae
NCTC 10648 (878.4 vs. 3370.0 ng/mL), while 21 true weakly toxigenic strains of C. ulcerans
have average level of toxin production 110 times (!) lower than that of C. diphtheriae NCTC
10648 (30.5 vs. 3370.0 ng/mL). It can be concluded that some strains of C. ulcerans produce
low levels of DT, which were not previously detected by the Elek test and therefore were
erroneously classified as non-toxigenic. Hence, ELISA can be used as a reference method to
identify isolates with questionable toxin production.

C. silvaticum (a recently described species of the diphtheria corynebacteria [18] with
a non-expressing DT gene) strains were ELISA-negative. Since the toxigenicity of these
GCLoD collection’s C. silvaticum cultures was assessed using the previous modification of
the Elek test, and that the genetic reason for the non-expression of the DT gene was not
revealed even by sequencing, the results of our study proved to be very useful, confirming
the lack of ability of C. silvaticum to produce a DT. It should be remembered that both ELISA
and Elek testing are in vitro methods, therefore, labeling C. ulcerans and C. silvaticum strains
as “poorly toxigenic” or “non-toxigenic” reflects only in vitro data; it cannot be excluded,
however, that they are able to produce a significant amount of DT when grown in vivo.

Given that toxigenic C. ulcerans were recently recognized as an emerging zoonotic
pathogen causing diphtheria-like infections in humans [1,8], the use of sensitive methods
for assessing DT production in weakly toxigenic C. ulcerans is now of importance. Despite
the fact that at present C. ulcerans do not cause either severe forms of infection or diphtheria
outbreaks, the pathogenetic role of corynebacteria with a low level of toxin production
should not be underestimated. The toxin is lethal for susceptible animals as well as
unvaccinated humans at doses of 100 ng/kg or less [19].

Moreover, in our recent study 18 allelic variants of the tox gene were found across the
291 tox+ C. diphtheriae isolates. Of these 18 allelic types, 8 contained non-synonymous SNP
changes, estimated to be of medium to high structural impact [20]. C. ulcerans have a much
higher level of tox gene variability. They carry about 30 non-synonymous mutations [15]
that significantly affect the molecular structure of C. ulcerans DT (data not shown). The
continually increasing toxin diversity does forecast a real possibility of vaccine escape
and antitoxin treatment failure in future. Thus, even if C. ulcerans strains are weak toxin
producers, mutated strains may become capable of causing disease in people vaccinated
against diphtheria.

To conclude, the ELISA is a suitable method for monitoring diphtheria agents by
determining LTP. However, using this method in routine practice to detect DT is quite
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laborious. Thus, there is an urgent need for a simple and reliable test for the rapid indication
of toxigenic corynebacteria that can be used in the conventional laboratory. This will
significantly reduce the diagnostic time, since it will no longer be necessary to send the
clinical specimen or cultures isolated from the patient to the diphtheria reference laboratory.
Such a method, for example, can be LFIA based on a pair of mAbs that performed well in
this ELISA study.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12092204/s1, Figure S1: ROC-curve (A) and threshold-
accuracy dependence curve (B) obtained as results of ROC analysis of ELISA results. AUC, 95% CI
for AUC, as well as the signal/background ratio threshold at maximal accuracy are shown. CI—
confidence interval. Table S1: The results of the detection of diphtheria toxin by sandwich ELISA in
corynebacterial cultures.
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