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Abstract: The effect of additives of polydimethylsiloxanes (PDMS) with various molecular weights on
the morphology and rheological behavior of polyacrylonitrile (PAN) solutions in dimethyl sulfoxide
has been analyzed. It was shown that only partial compatibility of the PDMS with the lowest
molecular weight member of the homologous series studied—hexamethyldisiloxane—with PAN
solution takes place. All other PDMS samples form emulsions with PAN solutions. The coalescence
rate of PDMS drops depends on the viscosity ratio of the disperse phase and the continuous medium,
which determines both the duration of dispersion preparation and the conditions for processing
emulsions into fibers and films. An anomalous change in viscosity for a series of emulsions with
different concentrations of additives, associated with the slippage, was detected. The relaxation
properties of emulsions “feel” macro-phase separation. Modeling of the wet spinning process has
shown that the morphology of the deposited solution drop reflects the movement of the diffusion
front, leading to the gathering droplets in the center of the deposited formulation drop or to their
localization in a certain arrangement. It was shown that the emulsion jets upon stretching undergo
phase separation.
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1. Introduction

Introducing organosilicon compounds into polymer melts and solutions is a rather common
direction in modern polymer science and technology, as described in reviews (see, for example, [1]).
As a rule, this approach is stipulated by wishing to combine, in one product, carbon chain polymers
and silicate fragments that in some cases are important to reach the desired functional properties of the
hybrid materials in practice [2]. This approach is especially interesting for spinning fibers—precursors
of carbon fibers. The combination of carbon and silica carbide or oxycarbide structures a priori should
introduce into the properties of the final fibers the needed level of hydrophobicity and control of the
thermo-deformation characteristics.

For such dopes, it is difficult to achieve the total compatibility of components, which is why it
should be expected that the definite level of dispersity in solutions, as in final fibers, may present.
In addition, their important peculiarity is the presence in their compositions of one or more polymer
phases, which means to bear in mind the necessity of the detailed analysis of not only the rheological
properties but also the relaxation properties typical for macromolecular chains.

There exist different methods of introducing organosilicon compounds into polymer matrices.
This could be polymer synthesis in the presence of such additives [3], the sol-gel processes [4,5], the
mechanical mixing in solutions or melts [6,7], and the chemical grafting of silicon-containing groups
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to macromolecules [8–10]. For preparing hybrid composite films and fibers with included silicon
carbide [11,12], the most preferable host polymers are precursors of the carbon fibers—polyacrylonitrile
(PAN) and cellulose. Several papers devoted to hybrid fibers by means of addition to the matrix
polymer of tetraethoxysilane (TEOS) [7] and vinyltriethoxysilane [13] into dopes with the subsequent
carbonization of fibers-precursors were published. At thermal treatment, silanes transform to silicon
carbide particles distributed in a matrix of the carbon fiber.

PAN is the most popular polymer for preparing the high-tenacity carbon fibers due to specific
structural transformations at thermolysis, resulting in high carbon yields reaching 40% [14,15]. One
of the best solvents for PAN is dimethylsulfoxide (DMSO) [16], partially dissolving TEOS, and
this capability of the solvent allows the preparing of mutual solutions, as emulsions of the various
composition [4].

An interest to the addition of polydimethylsiloxanes (PDMS) to PAN and other polymers can
be explained by the unique features of silicon organic polymers, namely hydrophobicity, high chain
flexibility, and capability of transformation upon heat treatment to cyclic siloxanes, as well as to
silicon oxycarbide and silicon carbide in the presence of carbon [17]. The low glass transition point,
a wide range of molecular weights of produced PDMS, and high thermal stability lead to considering
them as important components for use as additives in hybrid fibers [6,12,18], membranes—including
composite membranes of different morphology [19,20]—and so-called “breathing” membranes with
decreased water uptake [21]. They also can be used for the modification of hollow fibers [19,22,23]
and functionalization of monolith fibers by coating with mixtures of PDMS with polypyrrole—for
realizing the electrical conductivity [24,25]. The member of the PDMS family most compatible with
PAN is hexamethyldisiloxane (HMDSO)—one of the well-known silicon organic oligomers. There are
indications [26] of its introduction into PAN as a component, reinforcing the effect of plasma treatment
for improving the surface characteristics of fibers.

The mixtures of incompatible PDMS solutions in acetone and PAN in dimethylformamide
were studied in [12]. From the obtained emulsions, the hybrid fibers were prepared by means of
electrospinning, and their structure and thermal properties were investigated. It was proved that
Si-C links form after heat treatment to 1000 ◦C. The fibers have a skin-core morphology with a
decreased silicon content in the skin compared with the average in the fiber volume. A similar effect
of non-homogeneous silicon distribution at the model coagulation of a drop of the PAN solution in
DMSO with TEOS additives by aqueous coagulants was observed in [4].

As a rule, an increase in molecular weight leads to a decrease in polymer solubility [27,28]. That
is why in the present paper, the influence of PDMS—at a wide range of molecular weights—on
the morphology of the dopes (solutions and emulsions), as well as on their evolution at interaction
with coagulants, their phase behavior at stretching homogeneous and heterogeneous jets, and their
rheological properties were analyzed. In the latter case, the main characteristics of the analysis were
the viscosity of the disperse phase, that could be either higher or lower than that of the matrix PAN
solution, and the relaxation properties. As a whole, this research was devoted to the development of
spinning regimes of hybrid fibers and films with controlled morphologies and properties.

2. Materials and Methods

2.1. Materials

Solutions of the ternary PAN copolymer (Good Fellow Co, Huntingdon, Great Britain)—containing
93.8% of acrylonitrile, 5.8% of methylacrylate and 0.3% of methylsulfonate—with a molecular weight
of 85 kg/mole and a polydispersity index of 2.1 in DMSO (ECOS-1, Moscow, Russia) have been studied.
As silicon organic components, linear PDMS of different molecular weights—HMDSO (ECOS-1,
Moscow, Russia), polydimethylsiloxane-5 (PDMS-5, Solins, Dankov, Russia), polydimethylsiloxane-100
(PDMS-100, Silane, Dankov, Russia), polydimethylsiloxane-400 (PDMS-400, Silane, Dankov, Russia),
and polydimethylsiloxane rubber (SKTN-E, Silane, Dankov, Russia)—were used. All of these objects
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were liquids and, depending on molecular weight, demonstrated either Newtonian or viscoelastic
behavior. Their characteristics are presented in Table 1.

Table 1. The characteristics of the polydimethylsiloxanes under consideration [29].

HMDSO PDMS-5 PDMS-100 PDMS-400 SKTN-E

Density, g/sm3 0.79 0.913 0.966 0.970
Viscosity, Pa·s 0.5·10−3 5.5·10−3 9.6·10−2 0.39

Mn, g/mole 162 384 ~7000 ~28,000

Preliminarily, under agitation for four hours at 70 ◦C, the 20% matrix solution of PAN in DMSO
was prepared. For the matrix solution, a stirrer with a J-like rotor and a 60 rpm speed (Heidolph
RZR-2020, Schwabach, Germany) was used. The same stirrer with a speed of 600 rpm was applied for
emulsions. Then, at a temperature of 50 ◦C and with agitation for one hour, the compositions based
on matrix PAN solution and HMDSO (0.1–20%), PDMS-5 (0.1–30%), PDMS-100 (0.1–5%), PDMS-400
(0.1–30%), and SKTN-E (0.1%–5%) were obtained. They were tested by optical and rheological methods.

For the investigation of composition behavior at extension deformation, the matrix 25% solution
and corresponding mixtures with PDMS were used.

An approach to the real regimes of the wet spinning was preliminarily chosen in model
conditions—by means of the optical analysis of the diffusion interactions of the composition drop,
modeling the cross-section of the jet/fiber surrounded with coagulant. In all cases, as the coagulant,
a mixture of water and DMSO at a 15:85 ratio was used.

2.2. Methods

2.2.1. Rotational Rheometry

The rheometer ThermoHaake RheoStress RS600 (Thermo Fisher Scientific Inc., Waltham, MA,
USA), with an operating unit cone and plate with a cone diameter of 60 mm and an angle of one degree,
was used for rheological measurements. In the steady-state mode of strain, the flow curves were
obtained in a shear rate range of 10−1–104 s−1. For determining the domain of linear viscoelasticity,
the complex modulus of elasticity and its components—the storage G’ and loss moduli G” in the
strain range of 0.01%–100% at constant frequencies of 6 and 500 rad/s—were measured. The frequency
dependences of both moduli in the linear domain of viscoelasticity were measured in a frequency
range of 0.6–628 rad/s. All measurements were performed at 25 ◦C.

2.2.2. Optical Microscopy

The polarization microscope Biomed 6 PO (Biomed, Moscow, Russia) for optical observations
of the composition morphology was used. For this purpose, a drop of solution was placed between
the slide and cover glasses at a gap thickness of ~100 µm. Images were obtained by the microscope
camera ToupTek E3ISPM5000 (ToupTek Photonics Co, Hangzhou, China), with a resolution of six dots
per micron.

2.2.3. Modeling of the Coagulation Process

For the estimation of the effects of the introduced additives on the coagulation of the PAN solution
caused by the action of the coagulant, a drop of composite solution was placed between the slide and
cover glasses and was surrounded with coagulant. For the exclusion of the interaction of the drop
with the moisture of air, this process was realized in a dry box at relative humidity of less 1%. Within
10 min from beginning the contact between the solution drop and coagulant, the morphology of the
deposited drop was analyzed by optical microscopy in transmitted light.

In addition, for more detail research of the coagulation kinetics and evolution of the diffusion zone
on the border between the solution and coagulant, a method of optical interferometry was used [4].
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This method was sufficiently informative, not only for the analysis of the phase separation of PAN
solution under the action of coagulant, but also for the location of droplets of silicon organic phase in
the course of PAN solution coagulation.

2.2.4. Modeling of Mechanotropic Spinning

The experiment involves stretching a solution drop produced by a syringe and transforming the
drop into the jet at different speeds (Figure 1). The most original element of this device is the system of
lighting. The light beam from a halogen lamp (150 W) passes through an optical fiber and is focused in
the center of a drop by means of a microscope objective. In other words, a stretching jet itself plays
the role of optical fiber. In addition, backlighting, to make clear the boundaries of a jet/fiber, was
applied. Videography started simultaneously with the moving of a needle with a drop of solution.
The resolution was 1920 × 1080 with a frequency of 60 shots per second. The objective used (produced
by LOMO, St-Petersburg, Russia) provides the necessary clarity and depth of vision.

Polymers 2020, 12, x FOR PEER REVIEW 4 of 21 

 

2.2.4. Modeling of Mechanotropic Spinning 

The experiment involves stretching a solution drop produced by a syringe and transforming the 
drop into the jet at different speeds (Figure 1). The most original element of this device is the system 
of lighting. The light beam from a halogen lamp (150 W) passes through an optical fiber and is focused 
in the center of a drop by means of a microscope objective. In other words, a stretching jet itself plays 
the role of optical fiber. In addition, backlighting, to make clear the boundaries of a jet/fiber, was 
applied. Videography started simultaneously with the moving of a needle with a drop of solution. 
The resolution was 1920 × 1080 with a frequency of 60 shots per second. The objective used (produced 
by LOMO, St-Petersburg, Russia) provides the necessary clarity and depth of vision. 

 
Figure 1. An experimental device for stretching a jet up to a definite length. 1—a fiber-optic 
illuminator along the jet axis; 2—back lighting; 3—a syringe with the solution; 4—a lens to focus the 
light into the center of an extended jet; 5—a camera; 6—a jet. This is according to [30,31]. 

The experiments were carried out according to the following scheme: 
• A drop of a solution with a volume of 10 μL was squeezed out of a syringe located at the 

bottom of the unit. 
• By moving the syringe, a drop was brought into contact with the upper plate of the optical 

fiber lens. 
• The droplet was stretched at a constant speed of 0.65 mm/min by moving the syringe to a 

distance of 11 mm. 
At the initial moment of the droplet stretching, the video recording process was started at a 

frequency of 60 fps on a Touptek XFCAM1080PHD camera (ToupTek Photonics Co, Hangzhou, 
China), coupled to a LOMO 4x lens, which allowed obtaining images with a resolution of 5.5 μm. 

3. Results and Discussion 

3.1. Morphology 

Low molecular weight oligodimethylsiloxanes are hydrophobic, nonpolar liquids with a very 
low energy of dispersion interaction [28], which significantly limits their solubility in polar aprotic 
solvents and, especially, in solutions of polar polymers. A study of the morphology of the obtained 
mixed systems showed that, depending on the molecular weight of polyorganosiloxane, the 
formation of three types of emulsion is possible. 

Emulsions of the First Type HMDSO is soluble in solutions of PAN in DMSO to a concentration 
of 1%. Mixtures in the concentration range of HMDSO from 2% to 5% are emulsions with a droplet 
size of the dispersed phase of the order of 2–4 microns (Figure 2), stable two days. With increasing 
concentrations above 5%, emulsions become unstable due to the low viscosity of HMDSO (0.5 Pa·s) 
and poor affinity for PAN solutions in DMSO, which is manifested in the coalescence of drops of 

Figure 1. An experimental device for stretching a jet up to a definite length. 1—a fiber-optic illuminator
along the jet axis; 2—back lighting; 3—a syringe with the solution; 4—a lens to focus the light into the
center of an extended jet; 5—a camera; 6—a jet. This is according to [30,31].

The experiments were carried out according to the following scheme:

• A drop of a solution with a volume of 10 µL was squeezed out of a syringe located at the bottom
of the unit.

• By moving the syringe, a drop was brought into contact with the upper plate of the optical
fiber lens.

• The droplet was stretched at a constant speed of 0.65 mm/min by moving the syringe to a distance
of 11 mm.

At the initial moment of the droplet stretching, the video recording process was started at a
frequency of 60 fps on a Touptek XFCAM1080PHD camera (ToupTek Photonics Co, Hangzhou, China),
coupled to a LOMO 4x lens, which allowed obtaining images with a resolution of 5.5 µm.

3. Results and Discussion

3.1. Morphology

Low molecular weight oligodimethylsiloxanes are hydrophobic, nonpolar liquids with a very
low energy of dispersion interaction [28], which significantly limits their solubility in polar aprotic
solvents and, especially, in solutions of polar polymers. A study of the morphology of the obtained
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mixed systems showed that, depending on the molecular weight of polyorganosiloxane, the formation
of three types of emulsion is possible.

Emulsions of the First Type HMDSO is soluble in solutions of PAN in DMSO to a concentration
of 1%. Mixtures in the concentration range of HMDSO from 2% to 5% are emulsions with a droplet
size of the dispersed phase of the order of 2–4 microns (Figure 2), stable two days. With increasing
concentrations above 5%, emulsions become unstable due to the low viscosity of HMDSO (0.5 Pa·s)
and poor affinity for PAN solutions in DMSO, which is manifested in the coalescence of drops of
HMDSO and their accumulation on the surface of the mixture. This effect can be explained by the
flotation process of HMDSO drops due to the difference in densities with the PAN solution.
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In this case, the droplet shape remains spherical and droplets have almost the same size distribution
regardless of the concentration of the additive (Figure 3).
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Figure 3. The morphology of mixtures of PAN solutions containing various amounts of HMDSO.

The flotation effect also occurs for emulsions of PAN solution with PDMS-5. This leads to a
sharp gradient in the content of the dispersed phase droplets in the bulk and on the surface. Figure 4
shows microphotographs of PAN solutions with various amounts of PDMS-5 in a flat cuvette. With an
increase in the concentration of PDMS, the number of drops first increases, and then sharply decreases.
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The fact is that, at a concentration above the critical level, intense coalescence of microdroplets occurs,
with the formation of large droplets that spill onto the surface of the solution. In other words, the
macro-stratification of a freshly prepared emulsion takes place, and large droplets are released from
the volume of the solution onto the surface, coalescing with the surrounding microdroplets of the
dispersed phase, causing a decrease in their concentration in the volume.Polymers 2020, 12, x FOR PEER REVIEW 6 of 21 
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Figure 4. The morphology of a 20% PAN solution containing a different amount of PDMS-5.

Emulsions of the second type are formed when higher molecular weight polyorganosiloxanes,
namely PDMS-400, but with a lower viscosity than the viscosity of the PAN solution are added. Over
the entire range of concentrations, emulsions are formed with a droplet size of 2–20 µm (Figure 5b),
and the distance between the droplets is significantly higher compared with emulsions with HMDSO
(Figure 5a). Emulsions with PDMS-5 are stable for more than three days, and with PDMS-100 for
two weeks.
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Figure 5. The morphology of a 20% PAN solution containing 5% HMDSO (A), PDMS-400 (B), or
SKTN-E (C).

Emulsions of the third type, namely multiple emulsions, are formed when polysiloxanes with
a viscosity higher than that of the matrix solution are added into solution. Systems with 5%
polyorganosiloxane are a mixture of conventional and double emulsions with droplet sizes of 2–4 and
20–70 µm, respectively, and the average diameter of the inner drops of the PAN solution in SKTN-E
drops is in the order of 3–5 µm. Such emulsions preserve stability for more than one year. A micrograph
of the PAN solution with SKTN-E is shown in Figure 5c.
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The preparation of samples for microscopic viewing based on a solution of PAN and highly
viscous PDMS-400 and SKTN-E with their content above 5%, by compressing the resulting thin layer
with a cover glass, leads to three important effects. The first consists of the appearance of extended
sequences of droplets forming rings relative to the center of the droplet (Figure 6). The second effect
consists of a concentration gradient of droplets of the dispersed phase along the radius of the droplet.
The periphery is more saturated with drops of PDMS-400 than the middle of the sample. Finally,
judging by the contrast of the periphery and the central parts of the preparation, it is possible to suppose
that compression and biaxial tension induce phase inversion: an emulsion with an polyorganosiloxane
dispersed phase is retained inside the droplet (A), and a PAN solution already acts as the dispersed
phase on the periphery (B).
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Figure 6. A micrograph of a drop of a PAN solution with 20% PDMS-400 in a narrow gap between
two pieces of glass. The morphology along the radius is shown in inserts A (the middle part) and B
(periphery).

The reasons for such a variety of morphologies of a single flattened droplet of the composition are
not yet clear, but as a possible explanation, we can hypothesize the role of the elastic strain developed
during the compression of an emulsion with a viscoelastic dispersion medium and a dispersed phase.
This hypothesis will be formulated in more detail in the analysis of the rheological properties of
the compositions.

Taking into account the large number of compositions under investigation before rheological
testing, their compositions, morphologies, and stabilities are collected in Table 2.

Table 2. Compositions under consideration: S—solution; E—emulsion; DE—double emulsion;
MSE—macro-phase separation.

Concentration
of Additive, %

Additive

HDMSO PDMS-5 PDMS-100 PDMS-400 SKTN-E

1 S1 E E3 E3 E4

2 E1

E1
E2 E3 E3 -

5 E2 E3 E3 DE4

10 MSE MSE E2 E2 -
20 MSE MSE MSE E2 -

Emulsion stability: 1 ~ 2 days; 2 ~ 3 days; 3 ~ 2 weeks; 4 – more than a year.
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3.2. Rheology

Before conducting rheological experiments, it is necessary to ensure the stability of the
heterogeneous objects under consideration. Based on visual and optical observations, we estimate
so-called static stability in time to perform measurements inside the period of static stability. In the
work with emulsions having rather mobile structures, it is important to standardize the preparation
of the specimens under equal conditions. The issue is that at the loading into operating unit and the
squeezing of the emulsion layer between the cone and plate, some disturbances of the initial structure
are induced. For preliminary conditioning, the following procedure, tested on emulsion containing 5%
of PDMS-100 in a 20% PAN solution, was performed: surveillance of the evolution of viscosity in time
(Figure 7).Polymers 2020, 12, x FOR PEER REVIEW 8 of 21 
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Figure 7. Evolution of the viscosity of the test emulsion with 5% of PDMS-100, measured at different
shear rates.

Three shear rates were applied. As is seen, the most indicative is the low shear rate, while for
the highest rate, an initial strong decrease of viscosity is observed. We need to keep in mind that for
heterogeneous systems, the start-up shearing causes a change in the emulsion structure, but then
viscosity values become constant in time, corresponding to measured values in the traditional sweep of
rates. In addition, according to [32], the following protocol of emulsion conditioning was preliminarily
tested on a chosen dispersion: 30 s shearing with a rate of 50 s−1 and storing for 2 min at 20 ◦C.
The reproducibility of the results for steady state and oscillatory shearing for at least five experiments
and the coincidence with usual shear rates sweep was tested and successfully proven. The following
flow curves for 20% PAN solution containing HMDSO, PDMS-5, PDMS-100, PDMS-400, and SKTN-E
in a sweep regime, taking into account the start-up time, were obtained (Figure 8A–E).

All systems under consideration, with the exception of highly concentrated emulsions containing
PDMS-100 and PDMS-400 with a concentration above 10%, exhibit a non-Newtonian character of flow.
For systems with PDMS-100 and PDMS-400, starting from a 10% concentration, a sharp decrease in
viscosity is observed at low shear rates, which may be due to the manifestation of viscoplastic behavior
or slip effects (Figure 8) [33]. A similar suggestion can be made about the sharp decrease in viscosity at
high shear rates. On these branches of the flow curves, the difference for systems containing different
amount of PDMS is very likely be explained by not only “interphase”, but also “instrumental” slippage
of the compositions relative to the measuring walls of the operating unit. This behavior is associated
with the concept of the “spurt” effect as a result of the forced transition of the surface layers of the
measured system to a rubber-like state under the influence of an intense mechanical field [34].
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Figure 8. Flow curves of PAN solutions with various amounts of additives (indicated in the graphs)
of polysiloxanes of various molecular weights: (A)—HMDSO, (B)—PDMS-5, (C)—PDMS-100, (D)—
PDMS-400, and (E)—SKTN-E.

Features of the rheological behavior of systems containing PDMS-100 and PDMS-400 are also
manifested in the concentration dependences of viscosity, presented in Figure 9.

If the introduction into solution of compatible up to concentrations of 1% HMDSO leads to a
decrease in viscosity, which is due to dilution of the system with a low-viscosity component, the further
stabilization of viscosity requires a special explanation. It is possible that a low-viscosity unstable
emulsion is separated into the phases of the solution and HMDSO, with the excess of the latter emitted
to the surface as a result of flotation, and the concentration of the additive in the volume remaining
constant. The obtained data correlate with the morphology of the emulsions presented in Figure 3.
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An increase in the molecular weight of polyorganosiloxanes leads to a loss of its compatibility with
PAN solutions, but the stability of emulsions increases substantially in proportion to the viscosity of
the additive. The other factors affecting the rheology of emulsions are the structure and dimensions of
the interfaces. It is understandable that we cannot not perform the direct measurements of the interface
structure and dimensions. The above-mentioned assumption is initiated by two sets of indirect data:
the morphology of the emulsions (Figures 4 and 5) and the concentration dependences of the viscosities
(Figure 9). These factors most clearly work for emulsions with PDMS-5. The presence of droplets of
polyorganosiloxane liquid in the system causes an increase in and subsequent stabilization of viscosity
at all concentrations studied. If the stage of viscosity growth can be explained by the formation of a
“network” of interfacial boundaries, then the stabilization can be explained by the same reasons as in
the case of HMDSO, i.e., the flotation of large droplets to the periphery of the stream and maintenance
of constant the residual composition of emulsions in the volume.

The addition to PAN solution of more viscous PDMS-100 and PDMS-400 causes a maximum in
the range of additive concentrations of 2%–5% and a subsequent decrease in viscosity. The increase
in viscosity may be due to the presence in the system of a component that is more viscous than
the matrix solution, but the subsequent decrease is most likely caused by interfacial slippage and
a shear-induced redistribution of droplets of the dispersed phase between the central part and the
periphery of the stream (see Figure 6). This can cause the appearance of a yield strength, the signs of
which are visible from the flow curves of these compositions. Finally, in the case of SKTN-E, the double
emulsion forms, that increases the interface density, and this effect causes strong viscosity growth
along the concentration axis. In some cases, the morphology of emulsions is changed drastically with
the changing concentration of the disperse phase due to coalescence, flotation, etc. In addition, we did
not consider as whole an influence, on viscosity, of the strength and the elasticity of interfaces. This
factor was also not measured, though it could be estimated by visualization of the shape of the disperse
phase droplets at flow, but in the frame of this paper, this kind of experiment was not performed.

Coming to the discussion of the results of dynamic measurements, it should be noted that in the
presence of polyoligosiloxanes, regardless of the type and concentration, there is virtually no effect on
the loss modulus of the compositions, while the values of the elastic modulus vary slightly depending
on the concentration of the PDMS and its molecular weights (Figure 10). However, these changes at
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the concentration scale are so small that they do not allow the reliable judging of structural changes in
the compositions.
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Figure 10. Frequency dependences of the elastic and loss moduli for PAN solutions containing PDMS.

The relaxation properties of the compositions turned out to be more informative. Earlier [4], we
evaluated the transition effect of PAN solution containing TEOS in emulsion by analyzing changes
in the intrinsic relaxation time. This approach made it possible to record the maximum relaxation
time in the region of phase separation and the appearance of interphase boundaries. In this work, a
similar behavior could be expected only for compositions with HMDSO, while for others, the main
phase change in the system is the macro-separation of emulsions into continuous phases. It was of
interest to find out whether this process affects the intrinsic relaxation time, i.e., what the features of
the evolution of relaxation times in emulsions with PAN solution matrix and PDMS components of
various molecular weights are.

Therefore, we consider the corresponding data for the increase in the relaxation time ∆λ relatively
to the corresponding relaxation characteristic of the neat PAN solution at different frequencies,
determined, in accordance with [35], by the equation:

λ =
G′∣∣∣η∗∣∣∣×ω2

(1)

where |η*| is the complex viscosity,ω is the angular frequency, and G’ is the storage modulus. Thus,
the relative relaxation time (∆λ) was calculated as the ratio of the corresponding times of the mixed
system (λPAN + DMSO + PDMS) and the initial solution (λPAN + DMSO) determined at the same frequency.

Figure 11 shows a series of ∆λ values at different frequencies for mixtures of a PAN solution with
polydimethylsiloxanes. As for partially soluble TEOS, which reduces ∆λ due to dilution in the range
of solubility concentrations [4], the addition of HMSDO reduces the specific excess relaxation time at a
concentration of up to 2%. This is followed by an increase in ∆λ due to the formation of an emulsion
with a slight maximum at 5% (the appearance of developed interphase boundaries).



Polymers 2020, 12, 815 12 of 20

Polymers 2020, 12, x FOR PEER REVIEW 11 of 21 

 

0.1 1 10 100
0.1

1

10

100

1000

G', G", Pа

ω, rad·s

   PDMS-400
 0% G'
 0% G"
 2% G'
 2% G"
 5% G'
 5% G"
 10% G'
 10% G"
 30% G'
 30% G"

0.1 1 10 100
0.1

1

10

100

1000

G', G", Pа

ω, rad·s

SKTN-Е
 0% G'
 0% G"
 0.3% G'
 0.3% G"
 1% G'
 1% G"
 5% G'
 5% G"

 
Figure 10. Frequency dependences of the elastic and loss moduli for PAN solutions containing 
PDMS. 

The relaxation properties of the compositions turned out to be more informative. Earlier [4], we 
evaluated the transition effect of PAN solution containing TEOS in emulsion by analyzing changes 
in the intrinsic relaxation time. This approach made it possible to record the maximum relaxation 
time in the region of phase separation and the appearance of interphase boundaries. In this work, a 
similar behavior could be expected only for compositions with HMDSO, while for others, the main 
phase change in the system is the macro-separation of emulsions into continuous phases. It was of 
interest to find out whether this process affects the intrinsic relaxation time, i.e., what the features of 
the evolution of relaxation times in emulsions with PAN solution matrix and PDMS components of 
various molecular weights are. 

Therefore, we consider the corresponding data for the increase in the relaxation time Δλ 
relatively to the corresponding relaxation characteristic of the neat PAN solution at different 
frequencies, determined, in accordance with [35], by the equation: 

𝜆 = 𝐺|𝜂∗|  × 𝜔      (1) 

where |η*| is the complex viscosity, ω is the angular frequency, and G’ is the storage modulus. Thus, 
the relative relaxation time (Δλ) was calculated as the ratio of the corresponding times of the mixed 
system (λPAN + DMSO + PDMS) and the initial solution (λPAN + DMSO) determined at the same frequency. 

Figure 11 shows a series of Δλ values at different frequencies for mixtures of a PAN solution 
with polydimethylsiloxanes. As for partially soluble TEOS, which reduces Δλ due to dilution in the 
range of solubility concentrations [4], the addition of HMSDO reduces the specific excess relaxation 
time at a concentration of up to 2%. This is followed by an increase in Δλ due to the formation of an 
emulsion with a slight maximum at 5% (the appearance of developed interphase boundaries). 

0 5 10 15 20
0.5

1.0

1.5

2.0

2.5

3.0 ω,rad·s-1

 628
 92
 19,9
 6,3
 2,9
 2
 1,3
 0,92
 0,63
 0,43

Δλ

C, HMDSO, %  
0 5 10 15 20

0.5

1.0

1.5

2.0

2.5

3.0 Δλ

C, PDMS-5, %  
0 5 10 15

0.5

1.0

1.5

2.0

2.5

3.0 Δλ

C, PDMS-100, %  
0 5 10 15 20

0.5

1.0

1.5

2.0

2.5

3.0 Δλ

C, PDMS-400, %  
(A) (B) (C) (D) Polymers 2020, 12, x FOR PEER REVIEW 12 of 21 

 

0 5
0.5

1.0

1.5

2.0

2.5

3.0 Δλ

C, SKTN-Е, %  
(E) 

 
Figure 11. The dependence of the specific relaxation time at different frequencies on the 
concentration of polysiloxanes in the PAN solution: (A)—HMDSO, (B)—PDMS-5, (C)—PDMS-100, 
(D)—PDMS-400, and (E)—SKTN-E. 

For systems containing PDMS-5, the relative relaxation time increases when the additive 
concentration is 5%, where the developed emulsion is formed, after which the macro-phase 
separation occurs, and the dispersed phase drops move to the surface, capturing smaller droplets 
along the way (see Figure 4). As a result, the number of droplets and the fraction of interphase 
boundaries in the volume decrease, which leads to a decrease in the relative relaxation time. 

Systems containing polydimethylsiloxanes of higher molecular weight than PDMS-100, form 
more stable emulsions, which are characterized by a higher density of interphase boundaries; 
therefore, with an increase in the concentration of these components, the relaxation time increases. In 
the case of PDMS-400, after a maximum at 5% of the additive, a decrease in Δλ at 10% and a 
subsequent increase proceeds. Judging by the flow curves, there is a tendency of this composition 
toward the appearance of a yield stress (Figure 8) and the presence of a maximum in the concentration 
dependences of viscosity (Figure 11). It is possible that the minimum Δλ at a concentration of the 
dispersed phase of ~ 10% is due to interfacial slippage, and that the subsequent increase in the 
intensity of the relaxation process is due to partial phase inversion and the implementation of a mixed 
morphology of the composition. A similar situation can occur for compositions with SKTN-E, for 
which phase inversion occurs at much lower contents of polyorganosiloxane compounds. 

3.3. Modeling the Wet Spinning Process 

As mentioned above, the introduction of a hydrophobic organosiloxane compound into a 
spinning dope of PAN and the preparation of composite fibers are most important from the point of 
view of the subsequent carbonization of such precursor fibers. It is possible that in the process of 
thermolysis, carbon fibers reinforced with silicon carbide particles can be obtained. However, such 
studies should be preceded by experiments on obtaining “white” composite fibers, because their 
morphology and structure determine the quality of carbon fibers. For this reason, some aspects of the 
spinning of the composite PAN fibers containing a polyorganosiloxane phase are considered. First of 
all, we were interested in the kinetics of the coagulation of heterophase solutions—in particular, in 
terms of the nature of the distribution of polydimethylsiloxanes over the fiber cross section. The 
experiments on a drop, simulating a cross section of a fiber surrounded by a coagulant, were 
performed. 

Data on the coagulation of solutions containing PDMS are presented in Figure 12. 

Figure 11. The dependence of the specific relaxation time at different frequencies on the concentration
of polysiloxanes in the PAN solution: (A)—HMDSO, (B)—PDMS-5, (C)—PDMS-100, (D)—PDMS-400,
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For systems containing PDMS-5, the relative relaxation time increases when the additive
concentration is 5%, where the developed emulsion is formed, after which the macro-phase separation
occurs, and the dispersed phase drops move to the surface, capturing smaller droplets along the way
(see Figure 4). As a result, the number of droplets and the fraction of interphase boundaries in the
volume decrease, which leads to a decrease in the relative relaxation time.

Systems containing polydimethylsiloxanes of higher molecular weight than PDMS-100, form
more stable emulsions, which are characterized by a higher density of interphase boundaries; therefore,
with an increase in the concentration of these components, the relaxation time increases. In the case of
PDMS-400, after a maximum at 5% of the additive, a decrease in ∆λ at 10% and a subsequent increase
proceeds. Judging by the flow curves, there is a tendency of this composition toward the appearance of
a yield stress (Figure 8) and the presence of a maximum in the concentration dependences of viscosity
(Figure 11). It is possible that the minimum ∆λ at a concentration of the dispersed phase of ~10% is
due to interfacial slippage, and that the subsequent increase in the intensity of the relaxation process is
due to partial phase inversion and the implementation of a mixed morphology of the composition.
A similar situation can occur for compositions with SKTN-E, for which phase inversion occurs at much
lower contents of polyorganosiloxane compounds.
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3.3. Modeling the Wet Spinning Process

As mentioned above, the introduction of a hydrophobic organosiloxane compound into a spinning
dope of PAN and the preparation of composite fibers are most important from the point of view of the
subsequent carbonization of such precursor fibers. It is possible that in the process of thermolysis,
carbon fibers reinforced with silicon carbide particles can be obtained. However, such studies should
be preceded by experiments on obtaining “white” composite fibers, because their morphology and
structure determine the quality of carbon fibers. For this reason, some aspects of the spinning of the
composite PAN fibers containing a polyorganosiloxane phase are considered. First of all, we were
interested in the kinetics of the coagulation of heterophase solutions—in particular, in terms of the
nature of the distribution of polydimethylsiloxanes over the fiber cross section. The experiments on a
drop, simulating a cross section of a fiber surrounded by a coagulant, were performed.

Data on the coagulation of solutions containing PDMS are presented in Figure 12.Polymers 2020, 12, x FOR PEER REVIEW 13 of 21 
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1% and 5% of HMDSO, PDMS-100, PDMS-400, and SKTN-E after the coagulation process.

Microscopy with bright-field illumination for the visualization of the dispersion drop surrounded
with coagulant was used for obtaining the pictures. The addition of 1% HMDSO does not visually
affect the coagulation process—the system remains homogeneous during the transformation of the
droplet from a liquid- to gel-like state. With an increase in the concentration of HMDSO to 5%, the
hydrophobic additive migrates to the center of the drop, leaving a neat solution at the periphery.
In the emulsion moving toward the center, droplets remain separated with a size of 1–4 µm, i.e.,
a decrease in the distance between them does not lead to intense coalescence. This phenomenon is
similar to that observed during the coagulation of PAN solution in DMSO with TEOS, which has
limited solubility in an amount higher than 10% [4] and, most likely, should lead to the formation of a
skin-core fiber morphology.

When the coagulation of compositions containing PDMS-5 is considered, the redistribution of
microdroplets of the dispersed phase along the drop diameter does not occur. Nevertheless, for a
system with 5% PDMS-5, droplet coalescence is observed, although the interdiffusion of the coagulant
(non-solvent) in and the solvent outside of the drop of the PAN solution proceeds smoothly—defects
and inhomogeneities caused by unsteady diffusion are not detected.

The most interesting situation is with the deposition of compositions by moderately viscous
additives PDMS-100 and PDMS-400, where there is a redistribution of the local positions of small
droplets of a dispersed phase from chaotic to ordered. This means the formation of extended sequences
of droplets while maintaining the constancy of their average content. There are several reasons for
this ordering. The first is the orientation of the droplets of the dispersed phase under the influence
of the diffusion front during the coagulation of the dispersed medium. The second possible reason
is the intense mechanical effect on the sample during the application of the emulsion drop from a
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tip of needle to a glass slide. In this case, part of the drop adheres to the surface of the glass, and
a small part is pulled out after the removing the needle. During such application and subsequent
compression of the sample, a complex stress state of the droplet (a combination of extension, squeezing,
and shear) is realized. It is possible that under such conditions, the elastic deformations of a viscoelastic
solution become significant, initiating the appearance of extended sections in the sample with relaxation
properties corresponding to almost elastic body. At their boundaries, the dispersed phase droplets are
concentrated. Such a mechanism of the ordering in heterophase systems was described in [36].

Apparently, this reason is the main one, since such clusters of droplets appear immediately
after sample preparation, and not as a result of the mutual diffusion of the solvent and coagulant
over time. Meanwhile, the ring ordering of droplets of the polyorganosiloxane phase occurs for
the same system at observation by optical microscopy, accompanied by a partial phase inversion
(Figure 6). Apparently, for PDMS-100 and PDMS-400 additives, the optimum ratio of the viscosities of
the dispersion medium and the dispersed phase is achieved, which contributes to the implementation,
upon tension and compression, of a certain level of elasticity of the matrix PAN solution and the
mobility of polyorganosiloxane droplets.

In the case of more viscous SKTN-E, the double emulsion becomes polydisperse with randomly
distributed droplets. No involvement of internal drops of the PAN solution in the coagulation process
was noticed. In the first approximation, the same applies to the polyorganosiloxane phase, but to verify
this conclusion, kinetic studies, using the method of optical micro-interferometry were carried out.
The version of the used micro-interferometry method consisted of the observation of interference fringes
in contacting along the interface of the emulsion and coagulant. In the case of partial compatibility
of interacting media, the interference bands are bending in the vicinity of interface, as a result of the
interdiffusion process proceeding in time and causing a change of the refraction indices.

The kinetics of the coagulation process of systems based on matrix PAN solution containing 5%
of HMDSO and PDMS-400 is presented in Figure 13. In mixtures with HMDSO, the interaction of
the initial composition with the coagulant is accompanied by a partial dissolution of the additive
in the PAN solution and the appearance of an additional phase of the ternary system with the own
fringes and specific pitch in the zone between the composition and the coagulant (shown by arrows on
interferograms). In this case, the droplets of HMDSO during the deposition process diffuse toward
the interphase border and concentrate near it. In the case of polydimethylsiloxanes incompatible
with the PAN solution, this phenomenon was not observed, i.e., drops of the second phase were not
redistributed in the volume during the interdiffusion of the coagulant and the solvent. Judging by
the bending of the interference fringes visible in the transparent coagulant, mass transfer occurred
only between the PAN solution in the composition and the coagulant (DMSO/water mixture). Some
changes, even in large drops of double emulsions, do not occur.

Thus, by varying the hydrophobic polyorganosiloxane additives with different molecular weights
and concentrations, it is possible to obtain composite fibers and films with various sizes of inclusion,
both with variable and uniform distributions over the cross section, and—consequently—over the
volume of the finished product. Such fibers were spun on a wet spinning stand shown in Figure 14,
using a die with 100 holes with a diameter of 80 µm using the same coagulant that was used in
experiments to simulate the deposition of a drop of the studied compositions (85% solution of DMSO
in water).

During the spinning process, it was possible to achieve a spinbond hood (the ratio of the speed of
the yarn on the first roller to the linear velocity of the solution jet flowing out of the die) of ~ 200%
and a spinning process speed of 15 m/min. The resulting fibers have a circular cross section and a
virtually defect-free surface. They are currently being investigated by various methods, including
X-ray diffraction, electron microscopy, and testing the mechanical characteristics.

In addition to the classical method of fibers spinning from polymer solutions using a coagulant,
i.e., wet spinning, there is also the so-called dry spinning method, during which the solvent either
evaporates from the jets of the solution due to high temperature, or is released on the surface of the
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spinning filament due to strong stretching. This method was called mechanotropic spinning, and
earlier [29], it was successfully applied for spinning fibers from neat PAN solutions. In this paper, it is
extended to PAN fibers containing polyorganosiloxane inclusions.
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Figure 14. A scheme of the wet spinning stand. 1—solution supply device; 2—a syringe; 3—dope;
4—coagulant; 5—complex yarn; 6—take-up roller (spinbond hood); 7, 9—flushing rollers; 8,
10—washing bath; 11—drying drums; 12—zone of thermal extension; 13—supporting rollers; 14—yarn
spreader; 15—winding roller.
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3.4. Modeling of Mechanotropic Spinning

Mechanotropic spinning was simulated by stretching a jet of a composite solution to a constant
length. The corresponding experimental results are presented in Figure 15. The images show the
comparative kinetics of the thinning of the liquid filament and the phase separation process according
to the mechanism described in detail in [30,31].
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Figure 15. The evolution of the shape of the stretched jets based on 25% PAN solutions with
polyorganosiloxane additives and the intensity of solvent release from jets. 1—the initial moment of time,
2—10 seconds, 3—30 seconds, 4—80 seconds after stretching the drop to a constant length. Additives:
A—the neat solution; B—1% HMDSO; C—5% HMDSO; D—1% PDMS-100; and E—5% PDMS-100.

The initial diameter of the droplet, depending on the viscosity of the solution, ranged from 350 to
500 microns. In the process of stretching the emulsions, it was noted that the droplets of the dispersed
phase are deformed only at the beginning of the stretching, in the cone zone, after which they relax to a
spherical shape, which does not change further in the thinning zone.
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For a PAN solution, a noticeable change in the shape of the jet begins from the 30th second
and is accompanied by the release of solvent to the jet surface. A formulation with 1% HMDSO is
as homogeneous as the PAN solution, but the thinning of the droplet and, accordingly, the onset
of macro-phase separation proceeds faster and more intensively compared to the solution without
additives. The system with 5% HMDSO is an emulsion with droplet sizes from 5 to 150 microns.
The speed of thinning of the jet in such a system increases significantly, and the onset of phase
separation occurs much earlier than for the neat PAN solution (~ 10 sec.), which is apparently due to
the dilution of the system with a low-viscous additive and a loss of stability as a result of a decrease
in the elasticity of the jet. For additives more viscous than PDMS-100, the rate of the thinning of the
liquid jet slows down due to an increase in viscoelasticity, but the kinetics of the process of solvent
release to the surface remain unchanged. This means that additives do not affect the stability of the
solid fiber formation upon the stretching the jets of the emulsions under investigation. From each of
them, it is possible to obtain solid fibers by a mechanotropic method, i.e., without the use of coagulant.

However, in this case, an additional feature appears, consisting in the delay of the phase separation
process after the end of the extension of the solution drop. In these images, for the zero-time moment,
the stopping time of the stretched drop was chosen. In other words, the strong extension induces
the micro-phase separation process, consisting, in appearance, of bright light scattering inside a jet.
However, from the viewpoint of fiber spinning, the most important stage is macro-phase separation,
i.e., the diffusion of micro-droplets of DMSO to the periphery of the spinning jet/fiber, the formation of
the thin surface film, and its transformation to the separate drops. These stages are shown in Figure 16.
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4. Conclusions

The effect of a number of oligodimethylsiloxanes and polydimethylsiloxanes of various molecular
weights added into PAN solution in DMSO on the morphology, rheological behavior of composite
solutions, and the processes of coagulation and phase separation under extension were studied. It was
shown that polyorganosiloxanes, with the exception of small additives of HMDSO, are incompatible
with PAN solutions, and as a result, the compositions are emulsions. Three different types of emulsion
are possible depending on the molecular weight and concentration of the additive:
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- In the case of HMDSO, a homogeneous emulsion is formed with a narrow distribution of
micron-sized droplets.

- The use of PDMS with a viscosity lower than the viscosity of the polymer solution results in
emulsions with a polydisperse droplet size distribution.

- If rubber-like SKTN-E is introduced into the PAN solution, the viscosity of which exceeds the
viscosity of the polymer solution, multiple emulsions are formed.

In the emulsions under consideration, the presences of interphase boundaries and their densities
have a decisive influence on the rheological behavior of the compositions, initiating, in some cases,
viscoplastic behavior, and, under macro-phase separation conditions, interfacial slip, rather than the
true flow of the compositions. During the formation of an emulsion, the appearance and density of
interphase boundaries leads to a change in rheological behavior, which is especially pronounced when
considering the increase in the intrinsic relaxation time of the compositions compared to the value
for the PAN solution, allowing us to determine the most optimal concentration of PDMS in the dope
for spinning.

The presence of hydrophobic polydimethylsiloxanes in the PAN solution affects the morphology
of the composition, which is realized during the coagulation process. During the coagulation, the
droplets of the dispersed phase of HMDSO migrate to the center of the solution drop, which simulates
the cross section of the spinning fiber. The droplets of polydimethylsiloxanes with a higher molecular
weight during the preparation of the sample form oriented chains of droplets due to the mutual
influence of diffusion front movement and a complex stress field during sample preparation.

Modeling the process of stretching a liquid filament showed that the addition of HMDSO
accelerates the thinning of the jet and phase separation. High molecular weight additives do not
significantly affect significantly the rate of phase separation of a liquid filament into an oriented
polymer and solvent that migrates to its surface.

Thus, in the course of the work, optimal formulations based on solutions of PAN and
polydimethylsiloxanes of various molecular weights, showing promise as dopes in the preparation of
carbon-silicon carbide fibers precursors, were developed.
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