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Abstract 

Defective interfering particles (DIPs) are naturally occurring viruses that have evolved to parasitize other viruses. They suppress wild-
type (WT) virus infections through their role as intracellular parasites. Because most encode few or no viral proteins, they have been 
entertained as possible safe antiviral therapies—something that might be given to patients infected with the WT virus. Adding to their 
safety, they cannot reproduce except when co-infecting the same cells as the WT, so they pose no danger of evolving into independent 
disease agents. But this dependence on the WT also limits their therapeutic utility by restricting the timing at which their administra-
tion can be effective. To develop a qualitative sense of these constraints for acute viral infections, we use ordinary differential equation 
models to study the mass-action dynamics of DIPs and WT virus in the presence of adaptive and innate immunity that will otherwise 
clear the infection. Our goal is to understand whether the therapeutic administration of DIPs will augment or interfere with the immune 
response and, in the former case, we seek to provide guidance on how virus suppression is affected by infection and clearance parame-
ters, as well as by the timing of DIP introduction. Consistent with previous theoretical work, we find that DIPs can significantly suppress 
viral load. When immunity is present, the timing of DIP administration matters, with an intermediate optimum. When successful at 
viral suppression, DIPs even slow the immune response, but the combined effect of DIPs and immunity is still beneficial. Outcomes 
depend somewhat on whether immunity is elicited by and clears DIPs, but timing appears to have the greater effect. 
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Introduction 
Defective interfering particles (DIPs) are viruses that have evolved 
to parasitize other viruses and are thought to arise naturally 
through spontaneous deletions. They are known from many RNA 
viruses (Dimmock and Easton, 2014; Vignuzzi and L ópez, 2019; 
Alnaji and Brooke, 2020) and some DNA viruses (Horiuchi, 1983). 
They cannot reproduce on their own, requiring co-infection with 
the wild type (WT) into the same cell to produce progeny. They 
then vastly out-reproduce the WT by virtue of genomic modifica-
tions that enable them to usurp the WT proteins (small genome 
size, little or no gene expression, and extra regulatory signals). 
DIPs are subject to the usual density-dependent dynamics of 
all parasites, but the problem is more complicated because it 
involves three layers: cells, viruses as parasites of those cells, and 
DIPs as parasites of viral infections. One basic biological prop-
erty of DIPs is that they do not persist at low densities of the 
WT virus. 

As therapeutic agents, DIPs have two downsides that are rele-
vant for therapy. First most DIPs are specific to a single WT virus, 
often to just individual strains of the WT (Barrett and Dimmock, 
1986), although broader specificity has been noted with some 

DIPs of influenza A virus (Dimmock et al., 2008; Dimmock and 
Easton, 2014). WT viruses and their natural DIP variants typically 
have co-evolved in an antagonistic arms race that leads to high 
specificity (Horiuchi, 1983; DePolo, Giachetti and Holland, 1987). 
Thus, DIP therapy potentially needs to be developed for each viral 
type unless non-specific, broad-range DIPs can be identified. Sec-
ond, for most acute viral infections, rapid viral clearance or host 
death is the expected outcome in a short time frame. DIP use in 
acute infections must, therefore, be administered early enough 
to be effective but not so early that DIPs have decayed before 
infection. 

DIPs could be studied at two different biological scales: within-
cell processes and between-cell processes. Our focus here is on the 
latter, specifically with respect to (1) timing and (2) the suppressive 
effect of DIPs on viral densities. Furthermore, (3) we embed these 
processes in the host immune response. We apply simple mod-
els in the hope of capturing qualitative properties of DIP and viral 
dynamics. Simplicity is further justified because there are few 
empirical viral–DIP systems studied sufficiently to allow the direct 
model parameterization, although a few papers (e.g. Akpinar, 
Inankur and Yin (2016)) fit models to dynamic observations in vitro. 
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Our study in context 
Previous mathematical models of temporal DIP dynamics 
(Bangham and Kirkwood, 1990; Kirkwood and Bangham, 1994; 
Frank, 2000; Akpinar, Inankur and Yin, 2016) have discovered basic 
properties of DIP–WT interactions: (1) DIPs cannot be maintained 
unless the WT is at sufficiently high density; (2) in mass action 
models, DIPs and WT exhibit damped oscillations or, if sponta-
neous WT and DIP mutations are allowed, sustained oscillations; 
(3) with spatial structure, the speed and structure of virus–DIP 
plaque formation are strongly governed by the ratio of DIPs to WT 
virus in the single inoculating (co-infected) cell. 

Our work builds on this prior work but goes beyond by address-
ing DIPs in a therapeutic context, specifically a context in which 
the infection is eventually cleared by an immune response. This 
property fundamentally changes the behavior that can be studied 
because the viral endpoint is now extinction; the emphasis must 
be shifted to short-term dynamics and interaction with immunity. 
We provide ordinary differential equation (ODE) models that are 
intended to capture features of the time course of a continuous 
in vivo infection. For simplicity, we ignore the spatial structure, 
which has been shown to produce interesting spatiotemporal 
dynamics in partial differential equation (PDE) (Frank, 2000) and 
cellular automata (CA) (Akpinar, Inankur and Yin, 2016) models, 
but we do include the effects of innate and adaptive immunity, 
which we consider to be the main contribution of our paper. The 
time frame we imagine covers a period of a few weeks, espe-
cially in the presence of an immune response that can clear the 
virus. Other models (Bangham and Kirkwood, 1990; Kirkwood 
and Bangham, 1994; Frank, 2000) are more relevant for in vitro 
dynamics over a longer time, possibly involving repeated pas-
saging that pulses the dynamics with periodic dilutions of WT 
virus and DIPs, along with supplementation of uninfected cells. 
For these long-term in vitro studies, it is natural to include muta-
tions in both WT and DIP populations. Passaging and inclusion 
of mutations can contribute to more sustained oscillations in 
WT and DIP concentrations. In our short-term continuous mod-
els, mutation can be ignored as a first approximation and we 
observe damped oscillations that are consistent with ODE mod-
els in Frank (2000) when dead cells are replaced at a high rate; 
our models immediately replace dead infected cells with unin-
fected cells, thus maintaining a constant cell population size. 
Some other models in the literature (Thompson, Rempala and 
Yin, 2009; Thompson and Yin, 2010) focus on simple input–output 
relations or related difference equations for a few passages and 
are mostly meant to complement empirical results and estimate 
parameters. 

We see our models as providing big-picture guidance for empir-
ical work, as well as providing a starting point for more detailed 
models. Our goal is to attract an audience of empiricists, as 
well as some mathematical modelers, by using relatively simple 
mass-action differential equation models. We seek to gain some 
insight into DIP + WT dynamics and then, most importantly, to 
see how these dynamics interact with immune dynamics. One 
specific goal is to understand whether the therapeutic use of 
DIPs will enhance or interfere with immune system dynamics, 
and whether the timing of DIP therapy will influence the out-
come. Our assumptions are guided by empirical data. For example, 
Dimmock and Easton (2014) reported data that put the progeny 
of DIP + WT co-infected cells at >99 per cent DIPs. This per-
centage no doubt depends on the particular WT/DIP pairing, but 
it at least closely approaches our assumption of 100 per cent 
DIP progeny. Thus we chose to exclude a tiny amount of WT 

“leaking” from doubly infected cells, in agreement with other mod-
els (Kirkwood and Bangham, 1994; Frank, 2000); this omission 
probably has very little effect on dynamics. Getting the exact tiny 
fraction right for a particular example or running through a broad 
spectrum of possibilities is not the goal here, so we chose a sim-
plification that very closely matches empirical data and allows us 
to more clearly delineate certain effects without muddying the 
waters with nuances of detail. Similarly, we ignored stochastic 
effects and time delays because our interest was in broad patterns. 

Another simplification we employ involves immune system 
dynamics. One is invariably faced with the choice of speci-
fying many details for which no parameterization is possible 
(e.g. the many immune cell types, the interactions between 
cells and secreted molecular signals such as interferons, and 
the spatial structure) versus merely specifying innate and adap-
tive immunity as two quantities that respond to pathogen den-
sity. Pragmatism dictates the latter path, which is what we 
applied. 

Foundation: models lacking immunity 
We begin by introducing a model (and a reduced version of that 
model) that characterizes interactions between WT virus, DIPs, 
and uninfected cells, but without any immune dynamics. These 
components will be retained in our model with immunity. Study-
ing them separately, at first, will provide a baseline of WT suppres-
sion to be expected from DIPs alone. This will allow us to more 
accurately portray the effects of DIPs in the presence of immu-
nity. Moreover, we will see that our simple characterization of 
DIP–WT dynamics, which ignores free virus and other complex-
ities, manages to capture some of the key behaviors observed in 
other models. These behaviors include damped oscillations via 
predator–prey-like dynamics that accelerate DIP-based suppres-
sion of WT when WT densities are large. 

Two simple ODE models are presented in this section: a 
‘full’ model (Model 1) and a ‘reduced’ model (Model 2). Both 
ignore immunity but capture the basic dynamics between DIPs, 
WT virus, and cells. Both models describe fractions of cells 
that are infected with WT virus (V), co-infected with both DIPs 
and WT virus (B), and uninfected (E). The two models differ in 
whether they include (Model 1) or omit (Model 2) a term for 
cells infected with DIPs alone (D). By assumption 𝑉 + 𝐵 + 𝐷 + 
𝐸 = 1, whether D is included or not. The full model includes 
D > 0, but Model 2 is included because it simplifies analytical 
solutions. Model variables and parameters are summarized in 
Table 1. 

Model 1: Full DIP model 

  

  

  

      

Model 2: Reduced DIP model 

  

    

      



Table 1. Description of state variables and parameters common 
to all mathematical models (D = 0 and 𝛿𝐷 = ∞ are implicit in 
Model 2. 

Notation Description Values 

V Fraction of cells infected by WT virus [0,1] 
B Fraction of cells co-infected by WT virus [0,1] 

and DIPs 
D Fraction of cells infected by DIPs [0,1] 
E Fraction of uninfected cells [0,1] 
𝛽V Infection rate by WT virus 2, 3 
𝛽D Infection rate by DIPs 1-5 
𝛿V Death rate of cells infected with WT 1 

virus 
𝛿B Death rate of cells co-infected with WT 1 

virus and DIPs 
𝛿D Death rate of cells infected with DIPs 0.75-3 

Each mass-action term in the two models lists the ‘donor’ first 
and the ‘recipient’ second. For example, the VD term in Model 
1 corresponds to the virus from a V-infected cell infecting a D-
infected cell, turning the D-infected cell into a B-infected cell 
while not changing the V donor. These asymmetries allow main-
taining constant cell densities and match viral/DIP biology, such 
as the fact that a DIP-infected cell cannot infect other types of 
cells. Unlike previous models, we simplify the system by not track-
ing free virus. For example, the viral progeny from a V-infected 
cell are assumed to settle on cells of different types accord-
ing to their frequencies, and some viral progeny might degrade 
before infecting a cell. Thus, the 𝛽 terms combine burst size 
(or budding rate) and attachment and decay rates. We assume 
that co-infected cells produce only D progeny, in approximate 
agreement with empirical results (Dimmock and Easton, 2014) 
and providing a best case for DIP suppression of virus. Model 
2 is the simplest and can be obtained by letting 𝛿𝐷 → ∞ in 
Model 1. 

These differential equations follow the compartmental ‘SIS 
model’ approach from epidemiology, tracking frequencies (or den-
sities) of susceptible and infected hosts (in this case with two 
possible infecting strains) and ignoring the dynamics of free virus 
and free DIPs. There is added complexity over typical two-strain 
SIS (susceptible-infective-susceptible) models, however, in that 
the WT virus is a parasite of cells and the DIPs are parasites of 
WT viruses (and cells). 

Analytical properties of Models 1 and 2 
Using ‘hat’ and ‘tilde’ to indicate equilibrium values that come 
from Model 1 and Model 2, it is easy to see that the two boundary 
equilibria are the same for both models: 

• virus but no DIPs: (𝑉1, 𝐵̂1,𝐷̂1,𝐸1) = (1 − 𝛿𝑉 ,0,0, 𝛿𝑉 ),𝛽𝑉 𝛽𝑉 

(𝑉1, 𝐵̃1,𝐸1) = (1 − 𝛿𝑉 ,0, 𝛿𝑉 ), and 𝛽𝑉 𝛽𝑉 

• no virus and no DIPs: (𝑉2, 𝐵̂2,𝐷̂2,𝐸2) = (0,0,0,1), (𝑉2, 𝐵̃2,𝐸2) = 
(0,0,1). 

It is also easy to confirm that the interior (coexistence) equilib-
rium (𝑉3, 𝐵̃3, 𝐸3) for Model 2 is given by 

   
 

      
  

     

  
        

      

− 𝛿𝐵 This interior equilibrium exists when 1 − 𝛿𝑉 > 0. Thus, in𝛽𝑉 𝛽𝐷 

the case of coexistence of DIPs and WT virus in Model 2, we 
see that (at equilibrium) DIPs suppress WT virus by an amount 
𝑉1 − 𝑉3 = 1 − 𝛿𝑉 − 𝛿𝐵 , precisely the quantity that must be positive 𝛽𝑉 𝛽𝐷 

to guarantee long-term persistence of DIPs. The Jacobian at the 
interior equilibrium for Model 2 is 

    

      
     

 
 

From this, it is easily seen that the interior equilibrium, when 
it exists, is always asymptotically stable. Moreover, there are 
(damped) oscillations about the interior equilibrium whenever 

     
 

  

We were unable to find analytical expressions for the interior 
equilibrium (𝑉3, 𝐵̂3,𝐷̂3,𝐸3) in Model 1, but we can make several 
observations. First, since the first equation is the same in Models 
1 and 2, we see that the equilibrium values of B satisfy the same 
equation relative to the equilibrium uninfected fraction: 

   
     

  

 
 

 

 

 

  

 

 

  

Setting 𝐸 = 0 in each model yields equilibrium relations ̇

 
 

    
      

While these are not the same, they have the same interpretation 
(and one that is common in metapopulation models, where one 
deals with ‘occupied’ and ‘unoccupied’ patches): the equilibrium 
rate at which uninfected cells are created through the death of 
infected cells (𝛿 ̂ ̂ 

𝑉𝑉 + 𝛿𝐷𝐷 + 𝛿𝐵𝐵  in Model 1; 𝛿𝑉𝑉 + 𝛿 ̃
𝐵𝐵  in Model 2) 

is equal to the rate at which uninfected cells are lost through 
infection (𝛽 𝐸 𝑉𝑉  + 𝛽 ̃

 𝐵̂ ̂  𝐷 𝐸 in Model 1; 𝛽𝑉 𝑉 𝐸 in Model 2).

Numerical results of Models 1 and 2 
To comprehend model behavior in ways that cannot be under-
stood from the analyses, we provide numerical analyses. These 
are intended only to get the barest sense of the two models, as our 
main interest is in the model that includes immunity, developed 
in a following section. 

We first compare Models 1  and 2, which differ in whether DIPs 
are allowed to exist with or without co-infection by virus. DIPs can-
not reproduce without co-infection in both models, but allowing 
them to persist in an idle state prior to co-infection (Model 1) could 
have an effect. Fig.  1  displays short-term dynamics for the two 
models, side-by-side, for two sets of parameter values. The clear 
effect of allowing DIPs to persist in the absence of co-infection 
is to further suppress levels of WT virus. The figure also shows 
the expected damped oscillations in both models. All figures show 

̂ ̃

̂ ̃



 

  

 

 

  

  

Figure 1. (Model 1 and Model 2) Comparison of the temporal dynamics for Models 1 and 2 at two different values of the DIP growth parameter. To 

more clearly see levels of viral suppression, the dashed line denotes the equilibrium level of virus, 𝑉𝑤𝑜 = 1 − 𝛽
𝛿𝑉

𝑉 
, in the corresponding simple model 

without any DIPs. For each value of 𝛽D, Model 1 results in more viral suppression than Model 2 due to the ability of DIP-only infected cells to remain 
viable for a time. An increase in the value of 𝛽D (as seen from top to bottom) produces more oscillations and more viral suppression. The initial values 
are for Model 1 are 𝑉 (0) = 0.7, 𝐷(0) = 0.1, 𝐵(0) = 0.1, 𝐸(0) = 0.1. The initial values are for Model 2 are 𝑉 (0) = 0.7, 𝐵(0) = 0.1, 𝐸(0) = 0.2. The fixed 
parameters are 𝛽𝑉 = 2, 𝛿𝑉 = 1, 𝛿𝐷 = 1, 𝛿𝐵 = 1. 

the equilibrium frequency of virus in the absence of DIPs (dashed 
line), and suppression is evident. However, DIPs do not extin-
guish virus, as could be inferred from the equilibrium condition 
Equation (3). 

Fig. 2 displays dynamics for Model 1, this time starting with a 
lower initial V, and illustrates the effect of different death rates 
of DIP-only cells (𝛿D). The case of 𝛿𝐷 = ∞ is equivalent to Model 
2. There is a clear effect that increasing the longevity of DIP-
only cells increases suppression of the virus. Also, if we compare 
Panel (C) in Fig. 2 with Panel (A) in Fig. 1, both of which have the 
same parameter values but different initial V, we see that there is 
a stronger DIP response (and there are larger oscillations) when 
DIPs are introduced at higher levels of virus. This is consistent 
with previous empirical work (Thompson, Rempala and Yin, 2009) 
showing that DIP production is higher in the presence of larger 
virus densities. 

The trials shown in the first two figures are limited to com-
parisons of few parameter values. Fig. 3 shows a contour map 
of the suppressive effect of DIPs across a span of DIP ‘fecundity’ 
(𝛽D) and death (𝛿D) values. Here, the results show how much the 
equilibrium frequency of virus frequency is depressed by DIPs 
(necessarily never exceeding one)—comparing the equilibrium 

viral frequency in the absence of DIPs to that in the presence of 
DIPs. The strongest effect is of fecundity (𝛽D), but it is especially 
noteworthy that the magnitude of effect is substantial across 𝛽D 
in the interval [1,5]. 

These results merely support what already seems intuitive. The 
longer that ‘free’ DIPs can persist, the larger their impact on viral 
suppression. (The extreme is Model 2, in which they do not persist 
at all.) DIPs indeed suppress viral densities, but they do not extin-
guish the virus (both of which were well established in a previous 
work). We next add immunity to the model, which can clear the 
virus—with or without DIPs. 

Adding immunity 
Adding immunity to the system changes the kinds of outcomes 
possible. One major change is that, since we are considering 
acute infections, the virus will be cleared whether or not DIPs 
are present. This has two consequences to the analyses: (1) the 
impact of DIPs can be quantified in ways not possible above 
(e.g. there is a time to clearance and a finite cumulative 
viral density) and (2) the timing of DIP introduction (e.g. as a 



  

 

 

 

  

Figure 2. (Model 1) Temporal dynamics for different values of 𝛿D in Model 1. The dashed line represents the equilibrium value of V in the 

corresponding simple model without DIPs, here 1 − 𝛽
𝛿𝑉

𝑉 
= 1/2. The case 𝛿𝐷 = ∞ corresponds to Model 2, where we have analytical expressions for 

𝛿𝐵 equilibrium quantities. In particular, the equilibrium value of V when 𝛿𝐷 = ∞ is = 1/3, and we see that the equilibrium amount of virus 𝛽𝐷 

− 𝛿𝐵 suppression compared to when no DIPs are present in the model is 1 − 𝛿𝑉 = 1/2 − 1/3 ≈ .167. Passing to the full Model 1 and lowering 𝛿D results in 𝛽𝑉 𝛽𝐷 
further suppression of V. This additional suppression of V corresponds roughly to the level of D. The initial values are 𝑉 (0) = 0.1, 𝐷(0) = 0.1, 𝐵(0) = 0.1, 
𝐸(0) = 0.7. The fixed parameters are 𝛽𝑉 = 2, 𝛿𝑉 = 1, 𝛽𝐷 = 3, 𝛿𝐵 = 1. 

Figure 3. (Model 1) Relative suppression of WT virus by DIPs at equilibrium. We plot the relative difference, (𝑉𝑤𝑜 − 𝑉𝑤)/𝑉𝑤𝑜, between the equilibrium 

virus levels without DIPs (𝑉𝑤𝑜 = 1 − 𝛽
𝛿𝑉

𝑉 
) and with DIPS (V ), in the absence of any immune response, as a function of the parameters 𝛿D and 𝛽D. For w 

example, the level of WT virus can be reduced by 70 per cent by introducing DIPs with 𝛽𝐷 = 3,𝛿𝐷 = 0.75. The fixed parameters are 𝛽𝑉 = 2, 𝛿𝑉 = 1, 𝛿𝐵 = 1. 



 

 

 

 

 

  

 

  

  

  

  

Table 2. Description of state variables and parameters unique to 
Model 3. 

Notation Description Values 

I Innate immunity level [0,1] 
A 
kij 

Adaptive immunity level 
Killing rate of cell types 𝑗 ∈ {𝑉 , 𝐵,𝐷} by 

immune component 𝑖 ∈ {𝐼, 𝐴} 

[0,∞) 
0, 1 

sIj Activation rate of innate immunity by 
cell types 𝑗 ∈ {𝑉 ,𝐵, 𝐷} 

0, 0.1 

sA Activation rate of adaptive immunity 5 
in response to the level of innate 
immunity 

dI Decay rate of innate immunity 0.5 

therapeutic) now matters because the virus will be cleared even 
in the absence of DIPs. 

Another major effect of adding immunity is that it introduces 
a possible conflict with DIPs. Both DIPs and immunity act to sup-
press the WT virus, but both are also boosted by the presence of 
virus. Thus, DIPs work in concert with immunity to suppress the 
WT virus, but any suppression of virus by either DIP or immu-
nity feeds back to interfere with the continued expansion of both 
inhibitors. Moreover, both arms of the immune system may sup-
press DIPs, and both might even be stimulated by DIPs. Indeed, 
innate immunity has been found to be stimulated by DIPs in some 
systems (Rabinowitz and Huprikar, 1979; Yount, 2006; Yount et al., 
2008; Killip, 2013). These interactions could therefore operate in 
various ways, in the extreme, with immunity suppressing DIPs and 
rendering them ineffective or with immunity against virus being 
enhanced by DIPs and resulting in a more efficient clearance of 
the infection that lowers both the maximum and cumulative viral 
load. 

Model 3 extends Model 1 by adding simple characterizations of 
innate immunity, I, and of adaptive immunity, A. Thus, we con-
tinue to include free DIPs. Innate immunity responds quickly to 
virus and is self-limiting, whereas adaptive immunity responds 
more slowly but can expand indefinitely and persists indefinitely. 
Our formulation of both immunities adopts the characterization 
from a prior model (Antia, Ahmed and Bull, 2021). For conve-
nience, Model 3 is displayed so that new equations and terms 
that distinguish it from Model 1 are separated by spaces. Model 
variables and parameters unique to Model 3 are presented in 
Table 2. 

Model 3: DIPs + Immunity 

     

   

  

     

     

   

Our analyses of Model 3 focus on a few questions: 

1. How does immunity change the broad outcomes of infection 
in the presence of DIPs? 

2. How does the timing of DIP delivery affect their impact? 

3. How does the effect of immunity against DIPs affect the course 
of the virus? 

These questions are explored numerically. Although many of our 
figures display temporal dynamics, we also consider maximum 
viral density (maxV) and cumulative viral density over the life-
time of infection (area under the V curve or AUC). Our analyses 
are limited to initial conditions in which virus and immunity are 
both at low levels, as that initial state should represent the onset 
of an infection. 

Comparing the broad effects of DIPs and immunity 
Fig. 4 shows the separate and combined effects of DIPs and immu-
nity for a common set of initial conditions, with DIPs administered 
at the start of the infection. Effects of each, together and sepa-
rately, are evident. Adaptive immunity is somewhat slow to arise 
and, in the absence of DIPs, allows the virus to attain high lev-
els but causes viral extinction. In contrast, DIPs have an early 
effect but do not extinguish the virus. When applying the maxV 
criterion, the impression from this limited set of trials is that DIPs 
have the bigger effect in suppressing high viral loads. This figure is 
limited to DIPs being administered early in the infection, and the 
full spectrum of immunity is assumed—both adaptive and innate 
immunity are activated by and suppress both DIPs and virus. 

Effect of DIP parameters on viral suppression 
Contour plots of maximum viral load and cumulative viral load 
provide a sense of the importance of DIP parameter values in 
suppressing the virus when immunity is also present (Fig. 5). For 
DIPs to be highly effective, they especially need high fecundity, 
although a low death rate of free DIPs also helps. These patterns 
hold for both measures of viral suppression. 

DIP timing matters 
One challenge in applying DIPs therapeutically is in knowing when 
to apply them. If they decay rapidly in the absence of an infection, 
then advance treatment will not be practical. Instead, DIPs would 
often be administered after an infection was apparent, which 
could possibly be mid-term or late. It is thus important to know 
whether DIPs can be effective when delayed. As there are many 
variables to consider (timing and which components of immunity 
recognize and inhibit DIPs), we provide several figures of results. 

Fig. 6 plots two summary statistics (AUC and maxV) across a 
wide range of DIP introduction times. There are minima for both 
statistics that approximately coincide at just under time=4. Tim-
ing clearly matters, but perhaps it is surprising that the earliest 
possible introduction is not the best—DIPs start decaying if the 
virus is still rare. For further insight, Fig. 7 shows the dynam-
ics for four different introduction times. Trials vary in the extent 
of a ‘shoulder’ (i.e., viral rebound) in viral density. We interpret 
this shoulder as reflecting the separation of the effect of DIPs 
(which suppresses but does not clear) and immunity (which clears 
but whose effect is delayed). The time=5 panel shows the most 
pronounced shoulder, and the ascent of adaptive immunity is 
somewhat delayed compared to the other panels, an effect we 
interpret as due to the early suppression by DIPs. 

To develop a sense of how outcomes depend on parameter 
values, we offer two other figures. Fig. 8 summarizes the effects 
of two DIP introduction times (t = 0 and t = 4.6) when varying 𝛿D 
and 𝛽D. It is easily seen that the magnitude of effect of DIP tim-
ing depends on parameter values, although the relative effect 



 

 

   

  

Figure 4. (Model 1 and Model 3) Comparing the effects of DIPs and/or immunity against neither for the initial thirty time units. (A) Dynamics in the 
absence of DIPs and immunity. As noted in prior sections, virus (V) attains a steady state and is not eliminated. (B) Dynamics with DIPs and without 
immunity. In contrast to the absence of DIPs (A), oscillations occur and virus is greatly suppressed over the long term. Again, virus persists indefinitely. 
(C) Dynamics with immunity but without DIPs. The curves demonstrate the response of V and innate and adaptive immunity when V is introduced at 
a low concentration. Virus attains a high density early (as in (A)) but is eventually extinguished. (D) Dynamics with both DIPs and immunity. The effect 
of DIPs is evident in the early suppression of virus (compared to (C)), whereas the effect of immunity is evident in eventually extinguishing the virus. 
Initial values are 𝑉 (0) = 0.01, B(0) = 0, and (A) 𝐷(0) = 0.0, 𝐸(0) = 0.99, 𝐼(0) = 0.0, 𝐴(0) = 0.0; (B) 𝐷(0) = 0.1, 𝐸(0) = 0.89, 𝐼(0) = 0.0, 𝐴(0) = 0.0; (C) 𝐷(0) = 0.0, 
𝐸(0) = 0.99, 𝐼(0) = 0.02, 𝐴(0) = 0.02; (D) 𝐷(0) = 0.1, 𝐸(0) = 0.89, 𝐼(0) = 0.02, 𝐴(0) = 0.02. The fixed parameters are 𝛽𝑉 = 3, 𝛿𝑉 = 1, 𝛽𝐷 = 5, 𝛿𝐷 = 1, 𝛿𝐵 = 1, 
𝑘𝐼𝑉 = 1, 𝑘𝐴𝑉 = 1, 𝑘𝐼𝐵 = 1, 𝑘𝐴𝐵 = 1, 𝑘𝐼𝐷 = 1, 𝑘𝐴𝐷 = 1, 𝑠𝐼𝑉 = 0.1, 𝑠𝐼𝐵 = 0.1, 𝑠𝐼𝐷 = 0.1, 𝑑𝐼 = 0.5, 𝑠𝐴 = 5. 

Figure 5. (Model 3) Contour plots for AUC and maximum V (maxV) in the presence of DIPs and immunity. DIPs were introduced at time=0. (A) Area 
under the V(t) curve as a function of the parameters 𝛽D and 𝛿D. (B) The maximum viral load as a function of the fecundity and death parameters 𝛽D 
and 𝛿D. Both plots show a strong effect of fecundity interacting with the DIP death rate. The initial values for both plots are 𝑉 (0) = 0.01, 𝐷(0) = 0.1, B(0) 
= 0, 𝐸(0) = 0.89, 𝐼(0) = 0.02, 𝐴(0) = 0.02, and the fixed parameters are 𝛽𝑉 = 2, 𝛿𝑉 = 1, 𝛿𝐵 = 1, 𝑘𝐼𝑉 = 𝑘𝐴𝑉 = 𝑘𝐼𝐵 = 𝑘𝐴𝐵 = 𝑘𝐼𝐷 = 𝑘𝐴𝐷 = 1,𝑠𝐼𝑉 = 𝑠𝐼𝐵 = 𝑠𝐼𝐷 = 0.1, 
𝑑𝐼 = 0.5, 𝑠𝐴 = 5. The step size between the parameter values is 0.05 for both AUC and maxV. 

(red versus blue) is nearly always the same. Fig. 9 likewise cap- values of 𝛽D and DIPs introduced near the time of maximal effi-
tures the temporal abundance of virus under two times of DIP cacy, the shoulder of viral abundance becomes a second peak. 
introduction and for a large span of DIP fecundity (𝛽D). For large This second peak is a remnant of the oscillations observed in 



 

  

 

  

Figure 6. (Model 3) AUC and maxV with different timing of DIP introduction. DIPs are effective across a broad range of introduction times, but there is 
a clear optimum for both statistics. The statistic maxV becomes insensitive to DIP introduction after time=8, whereas AUC has some effect out to 
time=12. Initial values: No DIPs (with immunity): 𝑉 (0) = 0.01, 𝐷(0) = 0, 𝐵(0) = 0, 𝐸(0) = 0.99, 𝐼(0) = 0.02, 𝐴(0) = 0.02; Both DIPs and Immunity: 
𝑉 (0) = 0.01, 𝐷(0) = 0, 𝐵(0) = 0, 𝐸(0) = 0.99, 𝐼(0) = 0.02, 𝐴(0) = 0.02, with an abrupt change at the indicated time t, increasing D from 0 to 0.1 and reducing 
E by 0.1. The fixed parameters are 𝛽𝑉 = 2, 𝛿𝑉 = 1, 𝛽𝐷 = 3, 𝛿𝐷 = 1, 𝛿𝐵 = 1, 𝑘𝐼𝑉 = 1, 𝑘𝐴𝑉 = 1, 𝑘𝐼𝐵 = 1, 𝑘𝐴𝐵 = 1, 𝑘𝐼𝐷 = 1, 𝑘𝐴𝐷 = 1, 𝑠𝐼𝑉 = 0.1, 𝑠𝐼𝐵 = 0.1, 𝑠𝐼𝐷 = 0.1, 
𝑑𝐼 = 0.5, 𝑠𝐴 = 5. 

Figure 7. (Model 3) Viral and immune dynamics with DIP introduction at different times. Fig. 6 gave summary statistics of the effect of different DIP 
introduction times; this figure shows the full dynamics at four different introduction times. The main observation evident here is a strong shoulder of 
viral density when DIPs are introduced at the near-optimal time for suppression. By comparison across panels, this shoulder stems from DIPs 
suppressing but not clearing the infection, but there is a slightly delayed adaptive immune response. Initial values: in Panel (A), 𝑉 (0) = 0.01, 𝐷(0) = 0.1, 
𝐵(0) = 0, 𝐸(0) = 0.89, 𝐼(0) = 0.02, 𝐴(0) = 0.02; in Panels (B–D), 𝑉 (0) = 0.01, 𝐷(0) = 0, 𝐵(0) = 0, 𝐸(0) = 0.99, 𝐼(0) = 0.02, 𝐴(0) = 0.02, with an abrupt change at 
the indicated time t, increasing D from 0 to 0.1 and reducing E by 0.1. The fixed parameters are 𝛽𝑉 = 2, 𝛿𝑉 = 1, 𝛽𝐷 = 3, 𝛿𝐷 = 1, 𝛿𝐵 = 1, 𝑘𝐼𝑉 = 1, 𝑘𝐴𝑉 = 1, 
𝑘𝐼𝐵 = 1, 𝑘𝐴𝐵 = 1, 𝑘𝐼𝐷 = 1, 𝑘𝐴𝐷 = 1, 𝑠𝐼𝑉 = 0.1, 𝑠𝐼𝐵 = 0.1, 𝑠𝐼𝐷 = 0.1, 𝑑𝐼 = 0.5, 𝑠𝐴 = 5. 

Models 1 and 2 (immunity absent) and would not occur if immu- and are killed by both. (Of course, we have not used the most 
nity responded faster. extreme parameter values possible.) How much change in con-

trol of the virus will occur if DIPs are not stimulatory or killed? 
Immunity can act in a myriad of ways: does it matter? In Fig. 10, we compare several of these alternatives for two intro-

We have thus far modeled immunity as the most extreme pos- duction times. When comparing cumulative (AUC) and maxi-

sible: free DIPs stimulate both adaptive and innate immunity mal viral titers (maxV) across the different changes in immunity 



 

 
 

  

 

  

Figure 8. (Model 3) Measures of infection load caused by the virus (V) as a function of DIP parameters (𝛽D and 𝛿D) and the time of DIP introduction 
(early versus late). The top row plots total viral load (AUC) given by the AUC. The bottom row plots maximum viral load (maxV). For reference, the 
straight red lines indicate AUC and maxV in the model with immunity but no DIPs. The immune system always clears the virus. The middle (green) 
curves plot these quantities when DIPs are introduced at the start of the simulation, along with the virus; the lower (blue) curves correspond to 
waiting to introduce DIPs until the viral level has first reached 30 per cent (which occurs at t = 4.6). The graphs show that the introduction of DIPs 
lessens the severity of the infection relative to what it would be with only the immune response. Moreover, waiting to introduce DIPs until the virus 
has increased in frequency is more effective than introducing them at the beginning. The initial values are (red curve) no DIPs: 𝑉 (0) = 0.01, D(0) = 0, 
B(0) = 0, 𝐸(0) = 0.99, 𝐼(0) = 0.02, 𝐴(0) = 0.02; (green curve) DIPs at t = 0: 𝑉 (0) = 0.01, 𝐷(0) = 0.1, B(0) = 0, 𝐸(0) = 0.89, 𝐼(0) = 0.02, 𝐴(0) = 0.02; (blue curve) 
DIPs at t = 4.6: 𝑉 (0) = 0.01, D(0) = 0, B(0) = 0, 𝐸(0) = 0.99, 𝐼(0) = 0.02, 𝐴(0) = 0.02. In case (3), DIPs are administered at the time, t = 4.6, when V first 
reaches 0.3, i.e. 𝑉 (4.6) = 0.3; at this time, D jumps from 0 to D(4.6) = 0.1 and E is reduced by 0.1 to keep total cell density equal to 1. No other quantities 
are adjusted. The fixed parameters are 𝛽𝑉 = 2, 𝛿𝑉 = 1, 𝛿𝐵 = 1, 𝑘𝐼𝑉 = 𝑘𝐴𝑉 = 𝑘𝐼𝐵 = 𝑘𝐴𝐵 = 𝑘𝐼𝐷 = 𝑘𝐴𝐷 = 1,𝑠𝐼𝑉 = 𝑠𝐼𝐵 = 𝑠𝐼𝐷 = 0.1, 𝑑𝐼 = 0.5, 𝑠𝐴 = 5. 

Figure 9. (Model 3) Temporal behavior of V for different values of 𝛽D in cases where DIPs are introduced at t = 0 (left) and at t = 4.6 (right), with 
immunity ultimately clearing the virus. There is a compression of V that begins when 𝛽D reaches a value of approximately three. The effect of this 
compression is more noticeable when DIPs are added later (t = 4.6, which is when the virus first reaches level 0.3) than when they are added at the 
beginning. One also sees a smaller second wave of V when DIPs are added at the later time, for high values of 𝛽D. The initial values and fixed 
parameters are as in Fig. 8, except that we fix 𝛿𝐷 = 3 here. 

parameterization, the main effect is seen to be the timing of DIP Discussion 
delivery. These results clearly depend on the range of immune DIPs are parasites of viruses. They cannot reproduce unless their 
parameter values employed, but they at least reinforce the pos- host cell is also infected with the WT, functional virus. In essence, 
sible beneficial effect of DIPs and the importance of timing. a DIP is a parasite whose host is a virus-infected cell—thus a 



 

   

 

 

 

  

Figure 10. (Model 3) Effect of adding DIPs early (first row) or later (second row), when the immune system responds to DIPS and kills DIPs (first 
column), responds to DIPs but does not kill DIPs (second column), and neither responds to nor kills DIPs (third column). (A and D): the immune system 
responds to the presence of DIPs (𝑠𝐼𝑉 = 𝑠𝐼𝐵 = 𝑠𝐼𝐷 = 0.1) and kills DIP-infected cells (𝑘𝐼𝑉 = 𝑘𝐴𝑉 = 𝑘𝐼𝐵 = 𝑘𝐴𝐵 = 𝑘𝐼𝐷 = 𝑘𝐴𝐷 = 1); (B and E): the immune 
system responds to the presence of DIPs (𝑠𝐼𝑉 = 𝑠𝐼𝐵 = 𝑠𝐼𝐷 = 0.1) but does not kill DIP-infected cells (𝑘𝐼𝑉 = 𝑘𝐴𝑉 = 𝑘𝐼𝐵 = 𝑘𝐴𝐵 = 1,𝑘𝐼𝐷 = 𝑘𝐴𝐷 = 0); (C and F): 
the immune system does not respond to the presence of DIPs (𝑠𝐼𝑉 = 0.1,𝑠𝐼𝐵 = 0.1,𝑠𝐼𝐷 = 0) and does not kill DIP-infected cells (𝑘𝐼𝑉 = 𝑘𝐴𝑉 = 𝑘𝐼𝐵 = 𝑘𝐴𝐵 = 1, 
𝑘𝐼𝐷 = 𝑘𝐴𝐷 = 0). The initial values are 𝑉 (0) = 0.01, 𝐷(0) = 0.1, B(0) = 0, 𝐸(0) = 0.89, 𝐼(0) = 0.02, 𝐴(0) = 0.02 in the first row, and 𝑉 (0) = 0.01, 𝐷(0) = 0, B(0) = 0, 
𝐸(0) = 0.99, 𝐼(0) = 0.02, 𝐴(0) = 0.02 in the second row, with an abrupt change at t = 4.6 increasing D from 0 to 0.1 and reducing E by 0.1. The fixed 
parameters are 𝛽𝑉 = 2, 𝛿𝑉 = 1, 𝛽𝐷 = 3, 𝛿𝐷 = 1, 𝛿𝐵 = 1, 𝑑𝐼 = 0.5, 𝑠𝐴 = 5. We also ran the model in the first row, but with twice the response to DIPs: 𝑠𝐼𝐵 = 0.2 
instead of 0.1. This resulted in AUC values of 3.67, 3.47, 3.73 and maxV values 0.4, 0.4, 0.4. (Graphs not shown.) Thus a larger innate immune response 
to DIPs led to improved AUC values compared to the top row, but the maxV values did not improve. 

parasite of a parasite. They arise, persist, and evolve in the context 
of many natural infections, typically derived as genomic degen-
erates from the WT viral genome, and each kind of DIP is often 
specific to the virus it parasitizes (Horiuchi, 1983; DePolo and 
Holland, 1986; a; DePolo, Giachetti and Holland, 1987; Barrett and 
Dimmock, 1986; Marriott and Dimmock, 2010). Recently, how-
ever, the possibility of engineering DIPs has been demonstrated 
(Meng, 2017; Yao et al., 2021). DIPs have long been entertained as 
possible antiviral defenses. In addition to the obvious therapeutic 
benefit of suppressing the WT virus, they are commonly devoid of 
protein-coding genes so should—to a first approximation—have 
little potential for harm to any host they infect. 

The practicality of DIP therapy depends on many factors, and 
the intuition of even the most basic properties is difficult. Theoret-
ical explorations of DIPs are few and largely confined to DIP–virus 
interactions either under mass action or with spatial structure. 
Our main contribution here is to add an immune response to the 
dynamics, whereby the immune system alone can both control 
and eliminate the infection. The addition of DIPs thus faces sev-
eral challenges, including whether DIPs are added early enough 
to augment the clearance as well as whether DIPs might actually 
interfere with the immune response. 

Our study used the numerical solution of differential equation 
models to consider how DIPs influence an acute infection in the 
presence of immunity; baseline behavior was the effect of DIPs 
in the absence of immunity—the setting for most previous theo-
retical studies of DIP dynamics, and one necessary to understand 
the basic suppressive effect of DIPs. The main effect of immunity 

is to limit the time in which DIPs can have an effect. The gen-
eral message here is the intuitive one that DIPs can augment the 
immune response and be effective at suppressing both the maxi-
mal viral load and the cumulative load. However, the timing of DIP 
administration is critical, which is not a result that can be inferred 
from models lacking immunity. It is also noteworthy, although not 
surprising, that there were no phase transitions leading to quali-
tative changes in outcomes that could complicate the successful 
application of DIPs as a therapy. 

Our study did not address one potential problem that is likely 
to confront many DIP therapies: a possible mismatch between 
DIP and virus and evolution of that interaction. Experimental in 
vitro evolution studies have shown that DIPs and their viral hosts 
co-evolve rapidly (Horiuchi, 1983; DePolo, Giachetti and Holland, 
1987). For some systems, however, a robustness of certain DIPs to 
WT escape has been observed (Meng, 2017; Dimmock et al., 2008). 
For a DIP to be maximally effective, it must be well-matched to 
the virus being treated, but the virus being treated may quickly 
evolve to minimize the inhibition (whether within a single host 
or between hosts). The very preparation of the therapeutic DIP 
population needs to be tailored to its ‘host’ virus. Engineering 
platforms for DIP preparation may enable the preparation of rel-
atively pure DIP populations, but it may instead be desirable to 
produce mixtures of DIPs that anticipate and block viral escape. 
This problem offers interesting challenges for research. It is espe-
cially interesting, if not surprising, that an influenza DIP appears 
to be robust against escape by the WT virus (Easton et al., 2011; 
Meng, 2017). 



 

 

 

 

 

 

 

  

Data availability 
The R code used to generate the data in each of the figures is pub-
licly available on GitHub (https://github.com/banditakarki/DIPs-
project-Figures). 
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