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Summary 
Western blot analysis showed that a monoclonal antibody against recombinant mouse CD14 
(mCD14), designated rmC5-3, specifically reacted with mouse macrophage cell line J774, but 
not myeloma cell line NS1. Fluorographic and immunocytochemical analysis demonstrated specific 
binding of rmC5-3 with mouse resident macrophages, inflammatory monocytes and neutrophils, 
and macrophage cell lines. Immunohistochemical staining using rmC5-3 showed that CD14- 
positive Kupffer cells (KC) were small in number in the liver in nonstimulated mice. The number 
of stained KC, which were rich in the midzonal and periportal regions, gradually increased with 
time after intraperitoneal injection of lipopolysaccharide (LPS), peaked 6 h after injection, and 
returned to normal by 20 h after injection. Staining intensity over time was proportional to 
the number ofKC. A slight increase in mCD14 expression was observed in peritoneal macrophages 
2 h after LPS administration in vivo using flow cytometric analysis, mCD14 mRNA became 
detectable at 1 h after the intraperitoneal injection of LPS (20 gg/mice), and the level dramatically 
increased with time, peaking at 3 h, and sharply dropped at 6 h. The resident peritoneal macrophages 
demonstrated a constitutively high mCD14 mRNA expression, which slightly increased 2 h 
after LPS (100 ng/ml) stimulation in vitro. The level of mCD14 expression in macrophages did 
not increase after intraperitoneal injection of LPS (20 gg/mice). 

K uPffer cells (KC) are one of the members of monocytic 
lineage and are located in the sinusoids of the liver, the 

organ containing the largest pool of mononuclear phagocytes 
(1). Portal blood, which carries nutrients together with a 
number of stimuli, perfuses the sinusoids. KC share many 
functions with macrophages. Stimuli to KC as well as mac- 
rophages trigger signals for the production of a variety of 
bioactive substances such as TNF-o6 IL-loL and -B, IFN-a 
and -/3, prostaglandins, leukotrienes, platelet activating factors, 
and nitric oxide (2-10), all of which act locally and systemi- 
cally to regulate cell functions. LPS from gram-negative bac- 
teria is the most important stimulant that could consistently 
be maintained in the portal blood. KC, therefore, can be ex- 
pected to have a special function for handling LPS entering 
the liver via the hepatic portal circulation in the forefront 
of the liver. 

Macrophages have a central role in mediation of the bio- 
logical effects of LPS. First, LPS-stimulated monocytic cells 
produce monokines such as TNF-o~ and IL-1. Second, they 
can eliminate and detoxify LPS from the blood. Several binding 
sites for LPS on the cell surface of macrophages have been 
reported. LPS can also interact with the macrophage mem- 
brane after binding to plasma proteins. A 60-kD acute-phase 
protein called LPS-binding protein (LBP) has been shown 

to bind to the lipid A moiety of LPS (11). LPS-LBP com- 
plexes are a ligand for a 55-kD phosphatidylinositol-linked 
protein CD14 on macrophages. LPS-LBP complexes can stim- 
ulate production of TNF-c~ by macrophages at concentra- 
tions far below those required for stimulation by LPS alone 
(12, 13). KC have also been shown to have CD14, although 
features of expression of CD14 on KC have not been inves- 
tigated because of the limited animal probes available for 
CD14 (14). 

We previously cloned the mouse CD14 (mCD14) cDNA 
and gene (15, 16). In this communication, we raised a mAb 
against mCD14 and observed expression features of mCD14 
in KC compared with macrophages. 

Materials and Methods 
Animals. Lou rats and BALB/c mice were bred and maintained 

in our animal facilities in conventional and specific pathogen-free 
(SPF) conditions. 7-8-wk-old male BALB/c mice were used for in 
vivo experiments. Nude mice were purchased from Shizuoka An- 
imal Center (Hamamatsu, Japan). 

Cell Lines. Murine macrophage cell lines J774 and aHINS-B3 
(15), and murine myeloma cell line NS1 were used. 

Preparation of Antigen. A mCD14 cDNA done, designated 
MS7X (17) and encoding the entire mature mCD14 sequence, was 
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used for the construction of the cDNA to be inserted into the ex- 
pression vector. This plasmid was cleaved with NcoI and BamHI, 
and the cDNA fragment was isolated, and inserted into the NcoI 
and BamHI sites of pET-11d (18). Escherichia coli K12 strain HB101 
was used as the host for initial cloning of the resulting plasmids 
and for maintaining the plasmids. Plasmids expressing mCD14 were 
propagated in an E. coli strain BL21(DE3), derivative of BL21 cells 
[F- ompT rB- naB-]. Cultures were grown at 37~ for 4 h in 
M9ZY medium supplemented with ampicillin (100/xg/ml). In- 
duction was commenced by 1 mM isopropyl-/3-D-thiogalato- 
pyranoside (IPTG) when the medium containing the cells reached 
an OD660 of  ~0.6. The temperature was maintained at 37~ for 
2 h until induction was terminated by rapidly cooling the cells to 
4~ by the addition of crushed ice. 

Bacterial cells were harvested by centrifugation, and disrupted 
with sonicators. Sonicates were spun at 12,000 rpm for 5 min and 
the supernatants and pellets were recovered for analysis. Aliquots 
were lysed in sample buffer (15% glycerol/4.5% SDS/1 mM 2-ME/ 
93.5 mM Tris-HC1/0.25% bromophenol blue, pH 6.8) and heated 
for 2-3 min at 100~ the proteins separated on polyacrylamide 
gels either were stained with Coomassie brilliant blue or were elec- 
trophoretically transferred to nitrocellulose sheets and allowed to 
react with rabbit anti-mCD14 peptide antisera (anti-pmCD14) fol- 
lowed by anti-rabbit IgG conjugated with peroxidase (19). The 
immunoblots were washed, and allowed to react with horseradish 
peroxidase-conjugated goat anti-rabbit IgG (H and L chain-specific; 
Cappel Laboratories, Cochranville, PA) followed by substrate. The 
major band with an apparent molecular mass of 50 kD was efficiently 
induced. Analysis of the samples obtained from a larger scale demon- 
strated that recombinant mCD14 (rmCD14) was sequestered into 
inclusion bodies in E. coli. 

The inclusion bodies were solubilized with 6 M urea in lysis 
buffer (50 mM "Iris [pH 8.0]/1 mM EDTA/100 mM NaC1) for 
1 h at room temperature. After centrifugation, the supernatant was 
added with SDS loading buffer supplemented with 2-ME, and sub- 
jected to SDS-PAGE. The 50-kD band was excised from the gel 
stained with Coomassie blue and electrically eluted. The eluted 
samples were precipitated with trichloracetic acid, solubilized with 
acetone, and dried. After solubilization of the dried samples with 
Tris buffer containing 0.02% SDS and 0.1% 2-ME, the sample 
was dialyzed against decreasing concentration of urea solution (4- 
0.5 M) and finally against PBS. 

Produca'on of Monoclonal Anti-rmCD14 Antibody. Lou rats received 
multiple subcutaneous injections of rmCD14 emulsified with 
Freund's complete adjuvant in footpads, both thighs, and the back 
and nape of the neck. 2 wk later, each rat was intraperitoneally 
injected with rmCD14 in PBS. These procedures were repeated. 
Spleen cells taken from the rats 3 d after the final sensitization were 
hybridized with mouse myeloma line SP2/O-Ag14 by using poly- 
ethylene glycol (PEG 4000; Boehringer Mannheim, Tokyo, Japan) 
as described previously (20). Hybridomas were selected in the 
medium containing hypoxanthine, aminopterin, and thymidine. Ag- 
specific clones were screened by ELISA and cloned at least twice 
by limiting dilution. Stable clones were expanded in vitro in medium 
supplemented with 5% bryclone (Dainippon Seiyaku Co., Tokyo, 
Japan). Antibodies thought to be specific for the rmCD14 on the 
basis of initial screening were examined by ELISA. One mAb desig- 
nated rmC5-3 was selected for the present experiments. The mAb 
was isotyped as IgG1 by ELISA. Ascites were collected from peri- 
toneal cavities of nude mice given 107 cloned cells after treatment 
with pristane (Wako, Tokyo, Japan) 1 wk previously. 

Western Blot Analysis. Purified rmCD14 were prepared as above. 
J774 and NS1 cells (1.5 x 106) were lysed with lysis buffer con- 

taining 1% NP-40, 5 mM PMSF, and 10 #g/ml leupeptin. The 
samples were electrophoresed on 10% polyacrylamide minislab gels 
using the buffer system as described previously (19). Protein was 
transferred to the nitrocellulose membrane using the semidry trans- 
blot system (Nihon Eido Co., Tokyo, Japan). Blots were blocked 
with 3% bovine serum albumin solution in PBS for 2 h at room 
temperature and were sequentially incubated with rmCS-3 (1:200) 
at 4~ overnight. After three washes with PBS, the membrane 
was treated with 12SI-labeled affinity purified antibody to rat IgG 
(Amersham International, Little Chalfort, UK) (1:500) for 2 h at 
room temperature. After further washing, the nitrocellulose mem- 
branes were exposed to X-omat film (Eastman Kodak Co., Roch- 
ester, NY). 

Immunohistochemistry. Immunostaining was carried out on 
acetone-fixed smears prepared from resident and peptone-induced 
peritoneal exudate cells and Carnoy-fixed liver sections using an 
indirect immunoperoxidase staining technique. Briefly, binding of 
rmC5-3 to cells and sections was detected using horseradish perox- 
idase-conjugated rabbit anti-rat IgG (H and L chain-specific), fol- 
lowed by substrate. Smears and sections incubated in the absence 
of primary antibody or with an irrelevant primary antibody were 
included as negative controls. 

Fluorographic Analysis. Mouse macrophage cell lines J774 and 
aHINS-B3, mouse resident peritoneal cells and peritoneal cells after 
stimulation with LPS (20 #g/mice) were stained with rmC5-3 fol- 
lowed by fluoresceinated rabbit anti-rat Ig, and the analysis was 
performed using FACS IV | (Becton Dickinson Immunocytometry 
Systems, Mountain View, CA). 

Preparation of Cells and Tissues. Resident and inflammatory ex- 
udate peritoneal cells were obtained from nontreated mice and mice 
that received intraperitoneal injection with 10% proteose peptone 
(Difco Laboratories, Detroit, MI) 24 h previously, respectively. The 
liver was taken from nontreated mice and mice intraperitoneally 
injected with LPS (Sigma Chemical Co., St. Louis, MO) (20-600 
/~g/mice) 1-20 h previously, respectively. Resident peritoneal mac- 
rophages were cultured in DMEM supplemented with 10% FCS 
on plastic petri dishes for 1 h, followed by washing with DMEM. 
The peritoneal macrophages were stimulated with LPS (100 ng/ml) 
for 1-24 h. LPS-induced peritoneal cells were obtained from mice 
after intraperitoneal injection with LPS (20 #g/mice) 1-24 h previ- 
ously, and the macrophage fraction was prepared as above. 

Northern Blot Analysis. Northern blot hybridization was per- 
formed as previously described (19). Briefly, total RNA prepared 
from tissues and cells was electrophoresed through a 1.5% agarose- 
6% (vol/vol) formaldehyde gel and blotted onto a nylon membrane. 
The membranes were exposed to UV for 7 min and then prehybri- 
dized and hybridized with 3-5 x 106 cpm/rnl of 32p-labeled RNA 
probe prepared from mCD14 cDNA MS7X (16). 

Relative expressions of mCD14 message measured using BAS1000 
bioimaging analyzer (Fuji Film, Tokyo, Japan) were determined 
after normalization to levels of 3-actin mRNA. 

Results 

Western Blot Analysis of Reactivity of mAb rmCS-3. To ex- 
amine reactivity of rmC5-3 with cells, rmC5-3 was tested 
for its ability to react with purified rmCD14, and lysates pre- 
pared from J774 and NS1 ceUs by Western blotting, rmC5-3 
reacted with purified rmCD14, and detected a band in ly- 
sates from J774 cells but not from NS1 cells (Fig. 1). Immu- 
nocytochemical and flow cytometric analysis using rmC5-3 
demonstrated specific binding of rmC5-3 with mouse resi- 
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Figure 1. Western blot analysis of reactivity of rmC5-3. Samples were 
electrophoresed on 10% polyacrylamide gels. Purified recombinant mCD14 
(lane I); lysates from NS1 cells (lane 2); lysates from J774 cells (lane 3). 

dent macrophages, inflammatory macrophages and neutro- 
phils, and mouse macrophage cell lines J774 and aHINS-B3 
(data not shown). 

Immunohistochemical Analysis of tke Liver and Flow Cytometric 
Analysis of Peritoneal Macrophages Using rmC5-3. Immuno- 
histochemical staining using rmC5-3 was performed for the 
liver from untreated SPF BALB/c male mice. A few cells mor- 
phologically thought to have characteristics of KC were stained 
with rmCS-3 (Fig. 2 A). The numbers of stained KC, which 
were rich in midzonal and periportal regions, gradually in- 
creased with time after intraperitoneal injection of LPS (20-600 
/~g/mice), peaking 6 h after injection and returned to normal 
by 20 h after injection (Fig. 2, B and C). Staining intensity 
over time was proportional to the number of KC. mCD14- 
positive KC were slightly larger in number in nonstimulated 
conventional mice than in nonstimulated SPF mice, and gradu- 
ally increased after LPS stimulation as for in SPF mice (not 
shown). 

Resident peritoneal cells and cells collected from 2 to 6 h 
after intraperitoneal injection of LPS (20 #g/mice) were stained 
with rmCS-3 and subjected to flow cytometric analysis. The 
peritoneal cells contained mainly two size populations, and 
the larger population, thought to consist of mainly macro- 
phages, was analyzed. The cells from the 2-h-old site showed 
slightly higher expression of mCD14 than resident cells, 

Figure 2. Effect of LPS stimulation on mCD14 expression in KC. (A). 
Immunohistochemical staining of the normal liver. (B). Immunohistochem- 
ical staining of the liver 3 h after LPS stimulation. (C). Immunohistochem- 
ical staining of the liver 6 h after LPS stimulation, indicating central vein 
(c); portal vein (p). Original magnifications are x400. 

whereas those from the 6-h-old site showed no enhanced ex- 
pression (data not shown). 

Nortkern Blot Analysis of mCDI4 mRNA in the Liver and 
Macrophages. mCD14 mRNA in the normal liver is below 
the limits of detection using Northern blot analysis. To confirm 
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mRNA expression. The results revealed that the levels of 
mCD14 mRNA increased to about 1.7 times of the level of 
resident macrophages 3 h after LPS stimulation (Fig. 4 A). 
The resident macrophage fraction prepared from nonstimu- 
lated peritoneal cells after a 1-h incubation on petri dishes 
contained about 40% of macrophages. Percentages of mac- 
rophages in the macrophage fraction prepared from perito- 
neal ceils after intraperitoneal injection of LPS (20/zg/mice) 
1-24 h LPS earlier followed by incubation on petri dishes 
for 1 h was comparable with that in the resident cell prepara- 
tion. The levels of mCD14 mRNA in macrophage fraction 
did not increase after LPS injection (Fig. 4 B). 

Figure 3. Effect of LPS on mCD14 mRNA expression in the liver. Total 
RNA (20/~g/lane) from the liver was electrophoresed in a 1.5% formalde- 
hyde gel, blotted onto nylon membrane, and hybridized with a 32p-labeled 
antisense mCD14 RNA probe. Lanes contained 1KNA from the liver after 
the various stimulation times by LPS (20/~g/mice) in vivo. 

the observation of increased mCD14-positive KC detected 
by immunohistochemical analysis, it is necessary to determine 
whether the increase was accompanied by an increase in the 
mR.NA level and compare the time course of expression of 
protein and m R N A  levels. Northern blot analysis revealed 
that mCD14 m R N A  became detectable at 1 h after the in- 
traperitoneal injection of LPS (20/zg/mice), and that the level 
increased with time, peaked at 3 h, and sharply &dined at 
6 h (Fig. 3). An early rise of m R N A  expression would ex- 
plain enhanced mCD14 synthesis at 6 h. Increase in the ex- 
pression of mCD14 m R N A  by LPS was found in a dose- 
dependent fashion (not shown). 

CD14 has been shown to increase or decrease after stimu- 
lation with LPS in human monocytes (21-23). The effect of 
LPS on CD14 m R N A  expression in macrophages was tested 
in vitro and in vivo. We compared mCD14 m R N A  expres- 
sion in peritoneal macrophage fraction before and after stim- 
ulation with LPS (100 ng/ml) in vitro for 1-24 h. The resi- 
dent macrophage fraction demonstrated constitutive mCD14 

Discuss ion 

Of all macrophage functions, one of the most important 
is probably for KC to react to microorganisms and stimulating 
substances carried by the portal blood. In particular, it is im- 
portant for KC to develop a specialized strategy to detect and 
detoxify LPS because LPS are the stimulators most frequently 
encountered by KC. Here, we demonstrated that the number 
of mCD14-positive KC cells was very smaU, but the number 
of positive KC and the intensity of staining of mCD14 greatly 
increased, peaking at 6 h after LPS administration using per- 
oxidase antiperoxidase technique. Furthermore, we revealed 
that the level of expression of mCD14 mRNA in the liver 
markedly increased, peaking 3 h after LPS stimulation. The 
level of upregulation increased by more than a factor 30. He- 
patocytes showed no mCD14 expression, mCD14 expression 
in macrophages in the liver should be comparable with that 
in peritoneal macrophages. In addition, the increase in the 
expression of mCD14 mRNA by LPS in macrophages was 
relatively small. Enhanced levels of mCD14 mRNA expres- 
sion in the liver, therefore, are most likely to reflect that in 
KC. In contrast, peritoneal macrophages constitutively ex- 
press mCD14, and showed low levels of increase in mCD14 
2 and 6 h after intraperitoneal injection of LPS (20/zg/mice). 
Similarly, peritoneal macrophages showed constitutively high 
levels of mCD14 mRNA expression, which showed low levels 
of enhancement 2-3 h after LPS stimulation in vitro. Taken 
collectively, KC show unique features in the mCD14 expres- 

Figure 4. Effect of LPS on mCD14 
mPdqA expression in macrophages. (A) 
mCD14 mRNA expression in macro- 
phages stimuhted with LPS (100 ng/ml) 
in vitro. Lanes contained RNA from 
macrophages after the various stimula- 
tion times. (B) mCD14 mKNA expres- 
sion in macrophages stimulated with 
LPS (20 #g/mice) in vivo. Lanes con- 
tained RNA from macrophages after 
the various stimulation times. 

1674 CD14 Expression in Kupffer Cells 



sion in nonstimulated and stimulated conditions when com- 
pared with peritoneal macrophages. 

It has been reported that human CD14 is strongly expressed 
in KC in the liver specimen surgically prepared from normal 
humans (14). In contrast, immunohistochemical analysis re- 
vealed that the majority of KC in nonstimulated SPF mice 
did not express detectable levels of mCD14. The number of 
mCD14-positive KC remained slightly larger in nonstimu- 
lated conventional mice than in nonstimulated SPF mice. 
Therefore, the discrepancy may reflect the technical differ- 
ences used in these studies, or the differences between human 
and mouse. In any event, the number of mCD14-positive 
KC is gradually increased after intraperitoneal LPS stimula- 
tion, peaking at 6 h irrespective of breeding condition. 

The increase was found in the midzonal and periportal area. 
KC have been reported to show functional heterogeneity (24). 
Periportal KC showed a higher phagocytic and lysosomal en- 
zyme activities as compared with midzonal and perivenous 
KC, suggesting slight differences in the localization between 
KC capable of expressing mCD14 by LPS stimulation and KC 
with a high endocytic activity. It has been shown that liver 
parenchymal cells show the metabolic zonation (25). Heter- 
ogeneity of KC may possibly be paralleled with such zonation. 

The mechanism of difference of mCD14 expression between 
KC and peritoneal macrophages remains unclear. Profound 
respiratory burst defect (26) has been shown for KC which 
derive from monocytes whose capacity to mount a respira- 
tory burst is a general characteristic. The respiratory burst 
defect of KC is suggested to be due to a deactivation mecha- 
nism (27). On the other hand, expression of mCD14 in KC 
is an upregulation of function. Therefore, other reasons should 

be considered for the presence of such a phenotype of macro- 
phages. Peritoneal macrophages contained the cells that could 
be induced to express mCD14 by LPS, although their con- 
tent should be low because the enhancement of mCD14 
mRNA expression was small. If such cells represent a dis- 
tinct macrophage lineage, KC may arise from them. 

Enhanced expression of CD14 by LPS (10-2-10 ng/ml) in 
vitro has been reported using whole blood human mono- 
cytes. The upregulation was suggested not to accompany pro- 
tein synthesis because it was not affected by cycloheximide 
(21). The enhancement peaked 1-3 h after LPS administra- 
tion. Thus, features and mechanisms of CD14 expression in 
monocytes are different from our present results. The differ- 
ence may be attributed to that of species and source of mac- 
rophages (monocytes) and techniques used in these studies. 
Other reports show that high doses of LPS (100 ng/ml) down- 
regulate the expression of CD14 in human monocytes (22, 
23). Wright (22) demonstrated that the downregulation oc- 
curred 18 h after LPS stimulation. The data could be com- 
parable with the present results that LPS (100 ng/ml) down- 
regulates the expression of mCD14 mRNA at 24 h in vitro. 
Bazil and Strominger (23) showed the downregulation of 
CD14 expression 1-3 h after LPS stimulation. However, it 
is difficult to compare the results with our data because the 
decrease of CD14 is assigned to shedding and no data is avail- 
able for the production of CD14. IFN-3' downregulates the 
expression of CD14 in mature monocytic cell lines and blood 
monocytes (28, 29). Since LPS induces IFN-y in vivo, the 
effect of IFN-3, could affect the expression of mCD14 by LPS 
in vivo. 
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