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Hoechst-tagged Fluorescein
Diacetate for the Fluorescence
Imaging-based Assessment of
Stomatal Dynamics in Arabidopsis
thaliana
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In plants, stomata regulate water loss through transpiration for plant growth and survival in response
to various environmental stressors; and simple methods to assess stomatal dynamics are needed

for physiological studies. Herein, we report a fluorescence-imaging-based method using fluorescein
diacetate tagged with Hoechst 33342, a nuclear staining chemical probe (HoeAc,Fl) for the qualitative
assessment of stomatal dynamics. In our method, the stomatal movement is inferred by simple
monitoring of the fluorescence intensity in the nucleus of the stomata.

Stomatal dynamics influence plant transpiration, gas exchange, drought tolerance, and defense!; and stomatal
movement takes place in response to several environmental stimuli, such as blue light, red light, low CO,, and
chemicals. The signaling mechanisms that underly stomatal movement have attracted the attention of plant phys-
iologists®=°, and there has been a great deal of research interest into the development of chemical tools for the
study of stomatal movements®!2. For example, in pioneering work, Cutler et al. reported pyrabactin, a synthetic
agonist of abscisic acid (ABA) receptors, which led to their identification and the development of stomatal closing
agents®'%; and Kinoshita ef al. identified several small molecules that affect stomatal movements from a chemical
library’. However, to speed the development of molecules capable of affecting stomatal movements, simple and
high-throughput methods for chemical screening are urgently needed. Stomatal movements are currently eval-
uated by either the direct monitoring of stomatal aperture under the microscope, or analyses of thermal images,
that reflect the degree of transpiration from stomata!*-16. Although these methods are robust and reliable, the
former is time-consuming and low throughput, the latter requires the special equipment'’.

Herein, we report a simple and convenient method for the assessment of stomatal closing/opening in
Arabidopsis thaliana based on fluorescent live imaging by Hoechst-tagged acetylfluorescein (HoeAc,Fl, Fig. 1a).
Our method enables objective assessment of stomatal dynamics by simple monitoring of the fluorescence inten-
sity of HoeAc,Fl in the nucleus of the stomata.

Results and Discussion

HoeAc,Fl is a fluorescent stain comprising Hoechst 33342 and fluorescein diacetate moieties, and was originally
developed for nuclear staining of mammalian cells'®!®. We discovered the guard cells of closed stomata can be
selectively stained by application of HoeAc,Fl to the plant (Fig. 1b). Therefore, we proposed that HoeAc,Fl could
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Figure 1. (a) Chemical structure of HoeAc,Fl which comprises Hoechst 33342 and fluorescein diacetate
moieties. (b) Schematic illustration of selective staining of the nucleus in the closed stomata by HoeAc,Fl.
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Figure 2. (a,b) Differential interference images (DIC) and fluorescent (tdTomato or Fluorescein) microscopic
images of HoeAc,Fl-stained stomata of Pss¢ ::H2B-td Tomato;s:: H2B-tdTomato in the dark (a) or light (b)
conditions; only the closed stomata were stained with HoeAc,Fl (the stomatal aperture was 2.15um), whereas
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opened stomata were not (the stomatal aperture was 4.70 um) (see images in the fluorescein channel). The

scale bars, 10 pm. (c) Relationship between stomatal apertures and fluorescent intensity of the nucleus of
HoeAc,Fl-stained guard cells in the dark (black circle) or light condition (blue diamond). (d) Dotted plot of the
fluorescence intensity of HoeAc,Fl-stained stomata in the dark (black circle) or light (blue diamond) conditions.
Bars represent mean fluorescence intensity (1 = 30). Significant differences were evaluated by one-way ANOVA/
Tukey HSD post hoc test (p < 0.01).
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Figure 3. (a) Stomatal aperture of Col-0 during the staining process with HoeAc,Fl in the dark (0-90 min) and
stomatal opening process in the light condition (total incubation time was 120-210 min, which is incubated

for 30-120 min in the light condition). Error bars represent mean and SD (n=25). (b) Dotted plot of the
fluorescence intensity of staining process in the dark (0-90 min) and stomatal opening process in the light
condition (total incubation time was 120-210 min, which is incubated for 30-120 min in the light condition)
of HoeAc,Fl. Bars represent mean fluorescence intensity (n=25). (c) Stomatal aperture of Col-0 during the
staining process with HoeAc,Fl in the light (0-120 min) and stomatal closing process in the dark condition
(total incubation time was 150-300 min, which is incubated for 30-180 min in the dark condition). Error bars
represent mean and SD (n=25). (d) Dotted plot of the fluorescence intensity of staining process in the light
(0-120 min) and stomatal closing process in the dark condition (total incubation time was 150-300 min, which
is incubated for 30-180 min in the dark condition) of HoeAc,Fl. Bars represent mean fluorescence intensity
(n=25). Significant differences were evaluated by one-way ANOVA/Tukey HSD post hoc test (p < 0.01).

constitute a useful chemical tool for the assessment of stomatal dynamics by simple monitoring of the intensity of
the fluorescence of the nuclei of the guard cells.

Our studies commenced with the evaluation of the exact intracellular localization of HoeAc,Fl using the
stomata of red fluorescent protein-fused histone protein-overexpressing plants (P;ss:: H2B-tdTomato), wherein
the red fluorescence of H2B-tdTomato is localized in the nuclei®®. After closure of the stomata by leaving the
plant in the dark, the stomata were stained with HoeAc,Fl. The characteristic green fluorescence of HoeAc,Fl
was observed from the nuclei of almost all of the closed stomata, co-localizing with H2B-tdTomato (Fig. 2a). In
contrast, when the stomata were treated in the light, almost no fluorescence was observed from HoeAc,Fl-stained
stomata (Fig. 2b). The exact correlation between fluorescence intensity and stomatal aperture showed that the
visible fluorescence was only observed from stomata with an aperture of less than about 2.5-3 um (Fig. 2c, three
representative images of closed or open stomata are shown in Fig. S1, and fluorescence images of various stomata
having different apertures are shown in Fig. S2). This threshold of the stomatal aperture is very close to the pre-
viously reported standard of aperture for determining opened/closed stomata, wherein stomata with an aperture
of 1-3 um are said to be closed; and those with an aperture of 2-6 um are said to be open°. The mean fluorescence
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Figure 4. Fluorescent microscopic images of stomata of Col-0 stained by Hoechst 33342 (20 ug/mL, (a) or
DAPI (20 ug/mL, (b) in the dark (top) or light (bottom) conditions. The scale bars, 10 um.

intensity of the nucleus in guard cells in the dark conditions was significantly higher than that in the light condi-
tions (Fig. 2d), clearly demonstrating that HoeAc,Fl can only stain closed stomata. From the time course of the
staining process with HoeAc,Fl, 60-90 min of incubation in the dark is enough to obtain the robust fluorescence
intensity (Fig. 3a,b). After staining, the fluorescence intensity in nucleus was gradually decreased in the light con-
dition according with gradual opening of stomata (Fig. 3a,b). In contrast, after incubation in the light condition,
the fluorescence intensity increased in accordance with the stomatal closure under the dark. That is, the stomata
gradually closed from 90 min (210 min in total, Fig. 3c) and completely closed around 150 min (270 min in total,
Fig. 3¢). Concurrently, the fluorescence intensity increased from 90 min (210 min in total, Fig. 3d) and reached
plateau around 150 min (270 min in total, Fig. 3d). These results clearly demonstrated that the nuclear staining
by HoeAc,Fl is reversible and depends on the stomatal dynamics. Similar results were obtained using Hoechst
33342, which was also found to stain closed but not open stomata, although some nonspecific staining was also
observed at the edge of the stomata (Fig. 4a). This result strongly suggests that the unique localization property
of HoeAc,Fl can be attributed to the Hoechst 33342 moiety. In contrast, almost no staining was observed by
4/,6-diamidino-2-phenylindole (DAPI)?*?, a conventional nucleus-staining fluorescent reagent' (Fig. 4b). These
results establish HoeAc,Fl as a practical chemical tool for the rapid identification of open/closed stomata; and its
superior photochemical properties (such as longer excitation and emission wavelengths, and higher quantum
yield) compared to Hoechst 33342 make it more useful.

Next, we sought to account for the selectivity of HoeAc,Fl for closed over open stomata. Our hypothesis
was the efflux of HoeAc,Fl from open stomata precludes their staining. Accordingly, we carried out the staining
experiment at a lower temperature, to suppress the transport activity. However, nuclear staining was unaffected,
in spite of the significant decrease in the stomatal aperture under low temperature (Fig. S3). This result indicates
that no transporter is involved in the efflux of HoeAc,Fl from the opened stomata. A mechanistic explanation for
the selective nuclear localization of HoeAc,Fl is therefore unclear, and remains to be clarified.

We next used HoeAc,Fl to study chemically-triggered stomata dynamics®. Treatment of plants with abscisic
acid (ABA) in the light has been previously reported to close stomata®*. The peeled epidermis was stained by
HoeAc,Fl followed by treatment of ABA in the light condition, fluorescence was observed from the nucleus of
their guard cells (Fig. 5a-d). In contrast, treatment with auxin (IAA)®, coronatine (COR)*?*?, and fusicoccin
(FC)*** opened most of the stomata, and almost no fluorescence was observed in the nucleus of their guard
cells (Fig. 5e-i). Similar to the light-triggered stomatal dynamics, the correlations between fluorescent inten-
sity and stomatal aperture also demonstrated that fluorescence was only observed from closed stomata (Fig. 5i).
Remarkable differences in the mean fluorescence intensities of ABA-treated stomata and IAA/COR/FC-treated
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Figure 5. (a) Fluorescent microscopic images of HoeAc,Fl-stained stomata of Col-0 treated with ABA (10 uM)
in the light. The scale bars, 10 um. (b) Stomatal aperture of Col-0 treated without or with ABA (10 uM). Error
bars represent mean and SD (n=25). (c) Relationship between stomatal apertures and fluorescence intensity of
the nucleus of HoeAc,Fl-stained guard cells in the mock condition (black circle), in the absence (red cross) or
the presence of ABA (blue diamond). (d) Dotted plot of the fluorescence intensity of HoeAc,Fl-stained stomata
in the mock condition (black circle), in the absence (black cross) or the presence of ABA (black diamond).
(e—g) Fluorescent microscopic images of HoeAc,Fl-stained stomata of Col-0 treated with IAA (10 uM, e), COR
(10pM, f), or FC (10 uM, g) in the dark. The scale bars, 10 um. (h) Stomatal aperture of Col-0 treated without
or with various chemicals (IAA, COR, and FC, 10 uM). Error bars represent mean and SD (n = 25). Significant
differences were evaluated by one-way ANOVA/Tukey HSD post hoc test (p < 0.01). (i) Relationship between
stomatal apertures and fluorescence intensity of the nucleus of HoeAc,Fl-stained guard cells in the mock
condition (black circle) or treated with IAA (green square), COR (blue triangle), or FC (red cross). (j) Dotted
plot of the fluorescence intensity of HoeAc,Fl-stained stomata in the mock condition (black circle) or treated
with TAA (green square), COR (blue triangle), or FC (red cross). Bars represent mean fluorescence intensity
(n=25). Significant differences were evaluated by one-way ANOVA/Tukey HSD post hoc test (p < 0.01).
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stomata (Fig. 5d,j) were observed, confirming the applicability of HoeAc,Fl to the assessment of chemically
induced stomatal dynamics. It is already well known that aperture lengths for open (2-6 um) and closed (1-3 um)
stomata partly overlap in 2-3 um?®, and this marginal aperture length often cause difficulties to determine the
results in stomatal bioassays. We examine the reliability of our method among this marginal region of aperture
(2-3 um). In the dose-dependent addition of COR, 0.3 uM of COR cause the stomatal aperture of the marginal
length (2-3.5um) (Fig. S4a). Under the same condition, the mean fluorescent intensity of HoeAc,Fl was very
close to that of open stomata treated by>1uM of COR and significantly lower than that in the mock condition
(Fig. S$4b). Similar results were also obtained by the dose-dependency of FC (Fig. S5) and light intensity (Fig. S6).
These results clearly demonstrated that our method judged that stomata of marginal aperture length belongs to
the ‘open stomata’ and enabled clear decision of the results.

Conclusion

HoeAc,Fl is proposed as a tool to easily and quickly assess whether plant stomata are open or closed based on its
selectivity for the guard cells of closed stomata. The mechanistic basis for this selectivity is unknown. When the
stomata were stained by HoeAc,Fl, the fluorescence was observed only from closed stomata. The clear threshold
of the fluorescence provides objective criteria for the assessment of stomatal dynamics, although it is not quan-
titative. Instant determination of stomatal dynamics by measuring the fluorescence of HoeAc,Fl with objective
analyses is expected to enable high-throughput screening of chemical libraries, which may lead to the discovery of
novel chemical probes that can improve our understanding of plant responses to changes in their environments,
and ultimately lead to improved crop production.
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