
ORIGINAL RESEARCH
published: 04 March 2015

doi: 10.3389/fgene.2015.00084

Frontiers in Genetics | www.frontiersin.org 1 March 2015 | Volume 6 | Article 84

Edited by:

Noor Ahmad Shaik,

King Abdulaziz University, Saudi Arabia

Reviewed by:

Bruna De Felice,

University of Naples II, Italy

Kondapalli Kasturi,

Acharya Nagarjuna University, India

*Correspondence:

Mogens Fenger,

Department of Clinical Biochemistry

and Molecular Biology,

Copenhagen University Hospital,

Kettegaard Alle 30, 2650 Hvidovre,

Denmark

mogens.fenger@regionh.dk

Specialty section:

This article was submitted to Genetic

Disorders, a section of the journal

Frontiers in Genetics

Received: 05 December 2014

Accepted: 17 February 2015

Published: 04 March 2015

Citation:

Fenger M, Linneberg A and Jeppesen

J (2015) Network-based analysis of

the sphingolipid metabolism in

hypertension. Front. Genet. 6:84.

doi: 10.3389/fgene.2015.00084

Network-based analysis of the
sphingolipid metabolism in
hypertension
Mogens Fenger 1*, Allan Linneberg 2 and Jørgen Jeppesen 3

1Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre, Denmark, 2 Research Centre for Prevention

and Health, Glostrup, Denmark, 3Department of Cardiology, Glostrup University Hospital, Glostrup, Denmark

Common diseases like essential hypertension or diabetes mellitus are complex as they

are polygenic in nature, such that each genetic variation only has a small influence

on the disease. Genes operates in integrated networks providing the blue-print for all

biological processes and conditional of the complex genotype determines the state

and dynamics of any trait, which may be modified to various extent by non-genetic

factors. Thus, diseases are heterogenous ensembles of conditions with a common

endpoint. Numerous studies have been performed to define genes of importance for

a trait or disease, but only a few genes with small effect have been identified. The major

reasons for this modest progress is the unresolved heterogeneity of the regulation of

blood pressure and the shortcomings of the prevailing monogenic approach to capture

genetic effects in a polygenic condition. Here, a two-step procedure is presented in which

physiological heterogeneity is disentangled and genetic effects are analyzed by variance

decomposition of genetic interactions and by an information theoretical approach

including 162 single nucleotide polymorphisms (SNP) in 84 genes in the sphingolipid

metabolism and related networks in blood pressure regulation. As expected, almost no

genetic main effects were detected. In contrast, two-gene interactions established the

entire sphingolipid metabolic and related genetic network to be highly involved in the

regulation of blood pressure. The pattern of interaction clearly revealed that epistasis

does not necessarily reflects the topology of the metabolic pathways i.e., the flow

of metabolites. Rather, the enzymes and proteins are integrated in complex cellular

substructures where communication flows between the components of the networks,

which may be composite in structure. The heritabilities for diastolic and systolic blood

pressure were estimated to be 0.63 and 0.01, which may in fact be the maximum

heritabilities of these traits. This procedure provide a platform for studying and capturing

the genetic networks of any polygenic trait, condition, or disease.

Keywords: hypertension, sphingolipids, phosphatidate metabolism, redox metabolism, genetic networks, mutual

information, epistasis, heritability

Introduction

Essential hypertension refers to hypertension with no known cause, affects approximately 30%
of the adult population, and is a major risk factor for stroke, coronary incidences, and end-stage
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renal disease (Kearney et al., 2005). Several clinical and biochem-
ical variables has been shown to be correlated to hypertension
(Wang et al., 2007; Parikh et al., 2008; Singer and Setaro, 2008),
but still the causes of essential hypertension remains elusive
(Weder, 2007).

Blood pressure levels in a population constitutes an ensem-
ble of polygenic conditions (Shih and O’Connor, 2008) meaning
that the blood pressure is regulated by a plethora of integrated
biochemical and physiological processes that are blue-printed in
the genome (Fenger et al., 2011). Hypertension arise as a conse-
quence of variations in these networks of intermingled processes
increasing the propensity for developing hypertension condi-
tional to a variable extent on non-genetic factors. Thus, blood
pressure levels spans a scale of genetic information conditional
on which non-genetic factors may influence the clinical outcome.
However, the genetic causes of essential hypertension are largely
unknown.

Several approaches including genome-wide association
(GWA) studies (reviewed in Deng, 2007; Hamet and Seda, 2007;
Shih and O’Connor, 2008) have extensively been used to define
the genetics of blood pressure regulation and hypertension, but
only a few potential genes have been associated with essential
hypertension (Deng, 2007; Hamet and Seda, 2007; WTCCC,
2007; Ehret et al., 2008; Shih and O’Connor, 2008; Adeyemo
et al., 2009; Levy et al., 2009; Newton-Cheh et al., 2009). In
particular the large GWA studies have been somewhat dis-
appointing as only sketchy information about the networks
regulating the blood pressure have been provided. This may
not be that surprising as the vast majority of analysis have
been done as a search of monogenic effects in a case-control
framework. Such approaches are at best simplifications of basic
biological principles i.e., all biological processes are defined
by interacting components (enzymes, metabolites etc. . . ). For
instance, epistasis (in extensio the interactions of the genes in the
entire network) may be the most important genetic contribution
to the variance of a trait, not the main effects (Fenger et al.,
2008, 2011; Shao et al., 2008; Huang et al., 2012). Considering
that the number of variations discovered runs in the millions,
most networks (the sizes of which we do not know) will harbor
thousands of variations in coding and non-coding, regulatory
areas in principle defining as many networks as the number
of combinations of variations. Some of these are not viable
and hence never expressed, but still the number of networks
are staggering (Fenger, 2012). This genetic heterogeneity is
reflected in phenotypic heterogeneity, and hence a condition
as hypertension is merely a clinical endpoint of diverse states
of genetic networks and metabolic pathways in blood pressure
regulation. Several approaches to include gene-gene interactions
has been suggested including genetic algorithms and machine
learning techniques (e.g., Routman and Cheverud, 1997; Cul-
verhouse et al., 2002; Bureau et al., 2005; Zeng et al., 2005;
Alvarez-Castro and Carlborg, 2007; Kang et al., 2008; Cantor
et al., 2010; Wang et al., 2010), but the drawbacks are that
specific genetic models are required, arbitrary data-reduction
procedures are widely used, and many of the approaches requires
that main effects are detected thereby excluding most genes from
analysis.

Previously we addressed the problem of resolving physio-
logical heterogeneity of a population by implementing a latent
class/structural equation modeling (LCA/SEM) framework using
common physiological variables generally assumed to be related
to cardiovascular conditions (Fenger et al., 2011). This approach
revealed 14 distinct subpopulations with different propensity to
develop hypertension embracing subpopulations with no hyper-
tensive cases at all to subpopulations where the majority or all
the subjects presented themself with hypertension. The signif-
icance of the genetic network of the sphingolipid metabolism
in hypertension were evaluated by variance decomposition with
focus on the de novo synthesis of sphingolipids and in par-
ticular the ceramide/sphingosine-1-phosphate rheostat (Fenger
et al., 2011). The influence of sphingolipids on the vascular tone
and hypertension is controversial as opposing vasodilatory and
vasoconstrictive effects have been reported (Johns et al., 2001;
Rosskopf et al., 2007; Alewijnse and Peters, 2008; Pavoine and
Pecker, 2009; Feletou et al., 2011), particularly for the essential
metabolites in the ceramide/sphingosine-1 phosphate (Cer/S1P)
rheostat (Igarashi et al., 1999; Li et al., 2002; Ohmori et al., 2003;
Hemmings, 2006; Alewijnse and Peters, 2008). In most tissues
S1P has vasoconstrictive effects (Hemmings, 2006), but the reg-
ulation of vascular tone is vessel (organ)-dependent (Mulders
et al., 2009; Fenger et al., 2011). Here, we extend our previous
analysis (Fenger et al., 2011) including a comprehensive selec-
tion of genetic variations covering the sphingolipid metabolism
and related processes (the redox and phosphatidate networks,
Figure 1) and introduce an information theoretic analysis to
assess the significance of genetic factors and their interaction.
Even with the relatively small number of genetic variations
included here the analytical procedures are highly involved, but
most importantly, despite the genetic complexity of blood pres-
sure regulation, almost all affected subjects could be captured
by genotyping a few genes, although the predictive value of the
compound genotypes varies considerably.

Materials and Methods

Ethical Statement
The MONICA study was conducted in accordance with the Sec-
ond Helsinki Declaration and was approved by the ethics com-
mittee for Copenhagen County. Written informed consent was
obtained from all participants, including permission to take part
in genetic research.

Model Assumptions
The physiologically heterogeneity of diastolic and systolic blood
pressures was resolved by partition of the study population by
combined latent class analysis and structural equation modeling
(LCA/SEM) into an ensemble of 14 physiological more homo-
geneous subpopulations, i.e., more accurate phenotypes were
defined (Fenger et al., 2011). In this model it is assumed that
the population consists of a mixture of subpopulations within
which all variables in the model are only correlated through the
latent SEM variables. No assumptions are made of the distri-
bution of traits in the basic study population, but it is assumed
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FIGURE 1 | The sphingolipid metabolic network. The core biochemical

network of the sphingolipid metabolism and the relation to the phosphatidate

(LPA) and redox (Radical) networks. The canonical de novo pathway is

initiated by a condensation of serine and palmitate by serine

palmitoyltransferase (1). The product 3-keto-sphinganine is further processed

to sphinganine by 3-ketodihydrosphingosine reductase (2), which can either

by phosphorylated by sphingosine kinase (12) or converted to

dihydroceramide by dihydroceramide synthase (3) and finally emerging as

ceramide by the action of dihydroceramide desaturase (4). The faith of

ceramide is then determined by the balance and interaction of several

enzymes including ceramidase (8), sphingosine kinase (12), sphingomyelin

synthase (5), sphingomyelinase (9), UDP-galactosyl ceramide

glycosyltransferase (7) -galactosidase (11),UDP-glucose ceramide

glycosyltransferase (6), and-glucosidase (10). Ceramide may also be

phosphorylated to ceramide-1 phosphate by ceramide kinase (14), which

may be reverted by a putative ceramide phosphatase (15). Sphingosine-1

phosphate may be dephosphorylated by sphingosine-1 phosphate

phosphatase (13) or irreversibly degraded by sphingosine-1-phosphate

lyase. Many of these enzymes has two or several isoforms. For a review see

e.g., Lahiri and Futerman (2007). The salvage pathway (Lysosome) refers to

the re-generation of sphingosine by acidic sphingomyelinase, galactosidase,

and glucosidase that generates ceramides, which is further decomposed to

sphingosine by acidic ceramidase. Please refer to Table S1a for abbreviation

of the enzymes. For further information of the phosphatidate and redox

metabolism related to the sphingolipid metabolism (see e.g., Ghelli et al.,

2002; Won and Singh, 2006).

that the traits are normal distributed in the subpopulations. Vari-
ables may not be exactly normally distributed in a tissue or an
organism because of asynchrony of the dynamic processes in the
cells (Muthen and Muthen, 2004), but the modeling approach
used here is robust to minor deviations from normality. The
latent SEM variables are composite variables as they include a
plethora of processes that are not measured directly (Figure 2).
All subjects are assumed to possess the same basic genetic struc-
tures, but vary in expression because of variability of any kind
[single nucleotide polymorphisms (SNPs), deletions, insertions,
copy number variation, non-coding RNA complexes, epigenetic
diversity etc. . . ] in the genome. No genetic structure or model
is assumed a priori except that all genes are part of functional
genetic networks, which are embedded in the SEM model. The

clinical endpoint, hypertension, is however not entered in the
model, as the essential idea in the present approach is to model
dynamic, biological processes using measured variables and to
avoid more or less arbitrary defined clinical endpoint, which may
not be entirely valid for all subjects or subpopulations, i.e., sub-
jects are allocated to specific subpopulations based on objective
measurements only.

The genome-wide genotype in a subject is fixed allocat-
ing an individual to a particular subpopulation together with
subjects with similar physiological expressions. Implicitly, no
subject transitions between subpopulations are possible. Only
transitions from one level to another level of the blood pres-
sure would be possible within the subpopulation, depending on
the load of non-genetic factors and within limits defined by
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FIGURE 2 | The structural equation model (SEM). A simplified cartoon of

the principal behind structural equation modeling (SEM). Here a cell is

influenced by several “environmental” factors e.g., insulin (Ins) which induce a

response in the cellular regulatory network cascade. The effect of this signal

transduction is to induce or inhibit transcription of genes or genetic regulatory

structures (Genomics). In addition, the signaling may directly influence the

functionality of effector networks e.g., by promoting phosphorylation of

effector proteins in all resulting in regulation of the blood pressure. In real life

the pathway from the external factors to the ultimate response is much more

complex as several cell types are involved in the local process (the vessel)

and several tissues or organs will be involved (e.g., fatty acids generated in

the liver) in a complex interactive network. The entire system is formulated by

a complex set of matrix formulated regression algorithms, which may be

proximal to the processes we actually can obtain information above or just by

summary expressions. The subpopulations are then defined by simultaneous

optimizing the SEM and the latent class (or rather latent profile) defining the

population structure. A detailed account can be found in Muthen and Muthen

(2004); Fenger (2008, 2012); Fenger et al. (2011).

the subpopulation-specific genotype, i.e., the non-genetic fac-
tors operate conditional on a genetic framework that physio-
logically sets the range of a trait that cannot be exceeded. In
the limit, each individual do of course defines its own subpop-
ulation as no two individuals share the exact same genotype.
However, the available physiological data have limited discrim-
inatory power so the number of subpopulations is far less than
the number of subjects included, and hence each subpopula-
tion harbors subjects with similar, but distinct genotypes. Nev-
ertheless, the partition of the population obtained serves its
purpose to reduce variance within the subpopulations to such
an extent that important parts of the genetic networks are cap-
tured.

The outcome of this approach is a classification of the sub-
jects in the population in mutually exclusive subpopulations with
distinct physiological metabolic states differing in propensity to
evolve into hypertension. The best fitting model used blood pres-
sure measurement in the supine position as the outcome (Fenger
et al., 2011). The Mplus software used for the LCA/SEM analysis

allocates a subject to a subpopulation for which it has the high-
est probability. However, allocation probabilities may occasion-
ally be rather low reducing the robustness and power of further
analysis.

For a detailed presentation and discussion of these complex
issues, please see Fenger (2008, 2012); Fenger et al. (2011).

Population
The study population is the Danish leg of the international
MONICA-study (Jorgensen, 1987; Tunstall-Pedoe et al., 1999). In
brief, random selected ethnic Danish women and men from the
County of Copenhagen were enrolled in 1982 and re-invited for
a reexamination in 1993–94 including 2556 subjects. Biochem-
ical data were sampled including fasting glucose, insulin, lipids
and cholesterol as well as anthropometric measures as height,
weight, and waist and hip circumference. Blood pressure were
measured by several modes including a standard “office” proce-
dure in sitting and supine position. Please, see Fenger et al. (2011)
for details.
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Genotyping
The 353 SNPs included in this study were extracted from NCBI
database and included most of the exonic SNPs in the genes in
the metabolic sphingolipid network as well as SNPs from the
related redox and phosphatidate networks (Figure 1). Mostly
missense and frameshift mutations in the exons in the selected
genes was included in the genetic analysis. However, for genes
in which no missense mutations has been reported synonymous
mutations were genotyped to obtain maximum coverage of the
genes. The details of the genes and SNPs are listed in Tables
S1a,b. The genotyping was performed by KBioscience, Hoddes-
don, Hertfordshire, United Kingdom. The call-rate was above
98.5%.

Evaluation of Genetic Interactions
Epistasis was calculated by variance decomposition for all com-
binations of SNPs in all subpopulation as previously described
(Fenger et al., 2011). Briefly, the two-gene/two-SNP variance of
the systolic and diastolic blood pressure was stepwise decom-
posed calculating the effect size and the variance at each step
for all combinations of SNPs in all subpopulations. SNPs not
in Hardy-Weinberg equilibrium (HWE) were excluded from the
analysis. Occasionally, SNPs in the entire population in HWE
may be in disequilibrium in some subpopulations and visa versa.
The evaluation of interactions were performed on the unfiltered
subpopulations as well after applying restrictions of the minimal
allele frequence of the SNPs and the probability of a subject to
belong to his or hers designated subpopulation.

Two-gene interactions are actually measures of the mutual
information (Brillinger, 2004; Hutter and Zaffalon, 2005) con-
tributed to the network by the interactions. That is, if an inter-
action is detected it provides information about the network the
amount of which depends on the effect size of the interaction. A
weightedmutual information (WMI) score is therefore defined as
the sum of the genetic effect of a composite genotype multiplied
by its mutual information i.e.:

WMI =−

∑

Geff ij
∗ pij

∗ log
(

pij/pi
∗ pj

)

where Geffij is the effect size of the i-j genotype, pij is the fre-
quence of the composite genotype, and px is the frequence of the
individual SNP genotypes. In all, nine composite genotypes are
evaluated for each two-SNP interactions. The mutual informa-
tion [−

∑

pij
∗ log(pij/pi

∗ pj)] is χ2-distributed with 4 df and
only interactions significant after correction for multiple testing
were included in the analysis.

Case-Control Analysis
Comparisons of the distribution of genotypes between subpop-
ulations (classes) were done in a classical case-control design in
which each subpopulation were compared to each of the other
subpopulations. Also, each subpopulation (“cases”) were com-
pared to the remaining subjects (“controls”) in the study pop-
ulation. Significant two-SNP genotypes as evaluated by WMI
(above) were analyzed in a case-control design in the entire
population for diastolic and systolic hypertension separately.

Statistics
Basic statistics were performed in SPSS v19.0 on a PC, or in
LibreCalc on the Ubunto Linux platform. Bonferoni correction
for multiple testing with a nominal p-value of 0.05 were applied
to all analysis, unless stated otherwise. The Python packages
Numpy, Scipy and Powerlaw were used in programmed algo-
rithms. Plots were generated by QtiPlot v 0.9.8.8 on the Ubunto
Linux platform.

A parallel, multi-threaded software package for variance
decomposition, analyses of epistasis, mutual information analy-
sis and topology of the networks is under development in Python
and will be freely available shortly.

Results

General Description of the Population
Fourteen subpopulations were previously identified by latent
class/structural equation modeling (Fenger et al., 2011) using
blood pressure measurements as the outcome variables. Among
several modes of blood pressure measurements the measure-
ments in the supine position was used as this mode had the best
goodness-of-fit of all modes in latent class/structural equation
modeling. Subpopulation 1 (N = 39) was not further evaluated
as none of the subjects were allocated to this subpopulation with
a probability above 0.3. All the remaining subpopulations did
contain subjects with an allocation probability of 0.9 or above
although the number subjects and valid SNPs (exclusion of SNPs
not in HWE) declined with increasing allocation probability
(Tables S2, S3 for details for diastolic and systolic blood pressure,
respectively). Thus, to obtain the maximal reliability the alloca-
tion probabilities of 0.9 or above was chosen for further analysis.
Applying this restrictions and excluding subjects with missing
values in LCA/SEM analysis reduced the study population to 722.

The 353 SNPs included were all annotated as polymorphic in
NCBI dbSNP database, but only 160 turned out to be polymor-
phic in the MONICA population (Tables S1a,b). SNPs were only
included in the analyses if the minor allele frequency (MAF) was
above 0.01 to limit or avoid sporadic interactions, although the
such excluded interactions may be real. Anyhow, cutting MAF at
0.01 or 0.05 only change the results marginally compared to not
deleting any SNPs as he vast majority of MAFs were above 0.05.
However, setting the MAF to 0.1 reduced the information gained
from the genes and is therefore not appropriate.

The number of significant two-SNP interactions (epistasis)
did not show a consistent pattern and differs between the subpop-
ulations. In some subpopulations, including subjects allocated
with a probability of 0.7 or above, the number of interactions was
highest, but this it not the case in all subpopulations (Tables S2,
S3). Restricting the MAF to above 0.01 reduced the numbers of
epistatic interactions estimated by the variance decomposition,
but the amount of interactions were still in the thousands.

The WMI was increased (in several cases substantially) when
the allocation probability was increased for all MAF levels in all
classes (Tables S2, S3). However, the number of interactions pass-
ing theWMI significant test (before and after correction for mul-
tiple testing) were drastically reduced (Tables 1, 2). The reason
for these behaviors are two: the change in genotype distributions

Frontiers in Genetics | www.frontiersin.org 5 March 2015 | Volume 6 | Article 84

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Fenger et al. Genetics of hypertension

as subjects with less reliable class allocation were removed,
and the change in effect size of the genotypes. Increasing the
allocation probability essentially reduces “noise” in the sense of
non-robust classification of subjects increasing the mutual infor-
mation and hence the WMI. All interactions with significant
mutual information are summarized in Tables S4, S5.

Subpopulations 3, 8, and 11 differs from in this general anal-
ysis from the other subpopulations in several ways and will be
treated separately below.

Analysis of Gender
Stratifying the population according to gender only provide little
information about the networks. Although thousands of signif-
icant interactions were detected (59–66% of all possible) only a
few accounted collectively for 50% or more of the WMI, which
is anyhow low compared to the subpopulations extracted by the
LCA/SEM procedure (Tables 1, 2). Four genes (GALC, FABP2,
SMPD4, and ASAH2) accounted for this information.

TABLE 1 | Summary of significant interactions of WMI in diastolic blood

pressure.

Only SNPs with MAF of 0.01

or above is included

Epistasis WMI Bonferoni

corrected

Subpopulation Subjects Valid Number Total Number

SNPs WMI

2 44 140 8197 244 34

3 143 68 1734 3 9

4 16 121 5058 318 16

5 53 125 6360 281 39

6 82 137 7411 224 43

7 85 135 6774 264 34

8 12 110 516 173 4

9 83 130 6483 265 40

10 23 124 6987 318 18

11 90 126 5724 257 41

12 14 113 5914 470 14

13 61 123 5915 288 43

14 16 117 3818 414 9

722 70,891 3521 344

Fraction of possible epistasis 42.60%

WMI/epistasis ratio 0.49%

Unique WMI-significant interactions 185 53.78%

Males 1258 100 2911 8.70 16

Females 1251 69 1539 2.28 6

2509 4450 10.97 22

WMI/epistasis ratio 0.49%

The GALC (rs398607)/GALC(rs34362748) interaction was
prominent in both gender and particular for diastolic blood
pressure. The explained variance by this interaction in the
gender partition was 8.7% or below. This SNP-combination
was recovered in most but not all subpopulations although
with very low information content (WMI). The prevalence of
hypertension associated with this SNP-combination did not sig-
nificantly differ from population prevalence of hypertension,
however. The FABP2 (rs1511025)/FABP2 (rs1799883) interac-
tion was recovered in some subpopulations, but all with very
low WMI and none significantly influenced the prevalence of
hypertension.

Interestingly, the two dominating interactions in the sub-
populations (the SPHK1 and ASAH1 interactions, Tables 1, 2,
and see below) were not detected, suggesting that, accepting
the assumption that blood pressure states and hypertension
are heterogeneous physiological conditions, simply partition of
the population by gender was not sufficiently discriminatory.
This is in accordance with LCA/SEM model implemented to

TABLE 2 | Summary of significant interactions of WMI in systolic blood

pressure.

Only SNPs with MAF of 0.01

or above is included

Epistasis WMI Bonferoni

corrected

Subpopulation Subjects Valid Number Total Number

SNPs WMI

2 44 140 8195 405 32

3 143 68 1752 5 11

4 16 121 1057 428 13

5 53 125 6374 405 38

6 82 137 7413 356 39

7 85 135 6752 490 36

8 12 110 255 0 0

9 83 130 6530 389 37

10 23 124 6984 546 18

11 90 126 5686 403 32

12 14 113 5136 773 14

13 61 123 5927 485 40

14 16 117 3586 661 9

722 65,647 5345 319

Fraction of possible epistasis 39.45%

WMI/epistasis ratio 0.49%

Unique WMI-significant interactions 182 57.05%

Males 1258 100 2958 11.67 8

Females 1251 69 1548 2.97 3

2509 4506 14.64 11

WMI/epistasis ratio 0.24%
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define the subpopulations (Fenger et al., 2011), where gender did
not enter as a co-variate at all. Thus, partition the population
according to gender only reveals few significant interactions
with marginal effects, which do not influence the prevalence of
hypertension.

Analysis of Subpopulations
Variance Decomposition
One of the most striking findings was that two interactions
were present as the top-2 interactions in most subpopulations
(Tables 1, 2): the SPHK1 (rs8176328)/SPHK1 (rs2247856) inter-
action were detected with the restrictions imposed (MAF of 0.01
and allocation probability 0.9) in all subpopulations except in
subpopulation 3 for diastolic blood pressure and subpopula-
tions 3 and 8 for systolic blood pressure. Similarly, the ASAH1
(rs1049874)/ASAH1 (rs1071645) interaction was detected as a
top-2 interaction in all subpopulations except in the subpopula-
tions 3, 8, and 11 for both diastolic and systolic blood pressure.
This ASAH1 interaction was not detected in subpopulations 3
and 8 at all (Tables S4, S5). These two top interactions (termed
ubiquitous interactions) were consistently detected regardless of
MAF and allocation probability level except in subpopulations 3,
8, and 11 (Tables S2, S3).

In subpopulation 8 the interactions determined by variance
decomposition were increasing as the allocation probability was
raised to 0.7, but was drastically reduced when allocation prob-
ability threshold was set at 0.9 and above with a concomitant
reduction in number of subjects in this class from 88 to 12. The
number of interactions were reduced considerably to approxi-
mately 7.8 and 3.8% (diastolic and systolic blood pressure, respec-
tively) of the maximum amount of interaction encountered at a
probability allocation threshold of 0.7 (Tables S2, S3).

Regression of the relative genotype/phenotype variance on the
phenotypic variance for the two-SNP genotypes almost perfectly
fit a straight line (R2 ∼ 0.98), that is the larger the genetic influ-
ence of the two-SNP genotypes the lower phenotypic variance
and hence a lower impact of non-genetic factors, supporting the
assumption that the genetic network sets the level and the range
of variation possible for an individual as well in a homogenous
subpopulation. It could be expected that the relative epistasis
was correlated to the genotypic variance too, but the correla-
tion turned out to be were low (not shown). The two two-SNP
genotypes with the highest genotype/phenotype variance (and
lowest phenotypic variance) are the SPHK1 rs8176328/rs2247856
genotypes (distance 12 nt) and the ASAH1 rs1049874/rs1071645
genotypes (distance 1482 nt). This is consistently seen for all sub-
populations except subpopulation 3 and partly subpopulations 8
and 11 (Tables S4, S5).

Weighted Mutual Information, WMI
In all, only approximately 0.5% of all interactions detected by
variance decomposition was recovered after filtering for signifi-
cant mutual information (Tables 1, 2). A total of 344 significant
WMIs were detected for diastolic blood pressure and 319 for sys-
tolic blood pressure (Tables S4, S5, respectively) distributed over
the subpopulations. Of these 663 WMIs 182 represents unique
two-SNP interactions in the entire ensemble of subpopulations

for both traits, while additional three were detected for diastolic
blood pressure only, amounting to more than 50% of all WMI-
significant interactions for the two blood pressure measurements
separately (Tables 1, 2, and Table S8). This is almost 4-fold more
interactions compared to partition of the study population only
by gender (not shown).

The total WMI were at similar levels for the subpopulations
except for subpopulation 3 and 8 using the restrictions imposed
(see below). Slightly more than one third of the two-SNP WMIs
(39.2% for diastolic blood pressure and 35.5% for systolic blood
pressure) were private in the sense that they only occurred in
one subpopulation (Tables S4, S5). Most of these are common to
both traits but have very low WMI. A few interactions did how-
ever have a substantial WMI particularly in subpopulations 4, 8,
12, and 14, and thus may have a significant role in defining the
subpopulations (Tables S4, S5).

Subpopulation 3 showed a different pattern of interactions as
the ubiquitous interactions were not captured. The number of
valid SNPs i.e., non-monomorph SNPs which are in HWE was
reduced significantly to almost half compared to the other sub-
populations. The vast majority of SNPs were excluded because
they “turned” monomorph and hence non-informative, which
particularly included the SNPs defining the ubiquitous genotypes
except the SPHK1 rs8176328. ASAH1 was not detected at all.
Consequently the major source of information was missing and
the information retained by the remaining SNPs was extremely
low amounting to 1% or less compared to the other subpopula-
tions (Tables 1, 2). The lowWMI and genetic variance precluded
this subpopulation from further analysis as any inferences would
be highly unreliable.

Three ASAH1/ASAH1 interactions were detected by theWMI
analysis in subpopulation 8 but not the ubiquitous combina-
tion mentioned above and they were not significant even at the
nominal level of 0.05 (not shown). In contrast, the ubiquitous
SPHK1/SPHK1 interaction was detected for diastolic blood pres-
sure but not for systolic blood pressure though (Tables S4, S5).
However, relaxing the strict allocation probability threshold from
0.9 to 0.7 the two ubiquitous interactions were detected with high
probability in both diastolic and systolic blood pressure in this
subpopulation and the general pattern of interactions was similar
to the other subpopulations. Thus, the general allocation prob-
ability thresholds was somewhat arbitrarily set at 0.9, but a few
lower allocation probability thresholds should be tested to avoid
serious loss of information, as in this case could lead to the erro-
neous conclusion that the sphingolipid metabolism do not influ-
ence the blood pressure regulation in subpopulation 8, while in
fact the contrary is the truth.

The ubiquitous SPHK1/SPHK1 interaction was highly sig-
nificant for diastolic and systolic blood pressure and possessed
high WMI values in subpopulation 11. In contrast, although
ASAH1/ASAH1 interactions were detected by the WMI anal-
ysis, the ubiquitous combination above were not detected.
The ASAH1/ASAH1 interactions was however “substituted” by
a SMPD4 (rs76033185/ rs79875317; 20,267 nucleotides apart)
with high WMI. SMPD4 codes for the neutral membrane
sphingomyelinase 3 generating ceramide, while ASAH1 codes
acid ceramidase generating sphingosine in the salvage pathway
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(Figure 1). Thus, at least theoretically, the ceramide/sphingosine-
1 phosphate rheostat in subpopulation 11 is balanced in
favor of ceramides, while the opposite is the case of all the
other subpopulations except subpopulation 3. Hence, at least
two basically different metabolic pathways in the sphingolipid
metabolism is associated with blood pressure regulation.

Trait Comparisons
Comparisons of trait difference conditional on two-SNP geno-
types are shown in Tables S6, S7 for diastolic and systolic blood
pressure, respectively. At the nominal significance level 336 and
304 two-SNP genotype combinations differed in diastolic and
systolic mean values, respectively. However, only two compar-
isons remained significant after correction for multiple testing
for diastolic blood pressure. Both were combinations of SNPs
in SPHKAP, sphingosine kinase 1 interacting or anchoring pro-
tein. They were detected in just short of 50% of the diastolic
hypertensive subjects. In the case of systolic blood pressure four
SNPs in four genes were significant, but the prevalence in systolic
hypertensive subjects were rather low. Nevertheless, one com-
bination, the GALC rs398607 CC genotype combined with the
CERK rs36211083 TT genotype, was associated with increased
systolic blood pressure (see also Table 3) and may be clinically
useful.

Heritabilities
The heritability of blood pressure regulation as a function of
the WMI is plotted in Figure 3. The three curve fitting meth-
ods polynomial, Boltzmann (sigmoid), and Gaussian gave almost
the same heritabilities for blood pressure regulation except for
subpopulation 3. The broad sense (all genetic variance included)
heritabilities h2 = genotypic variance/phenotypic variance were
estimated to be 0.626/0.012 for both diastolic and systolic blood
pressure. The Boltzmann fit gave slightly higher values (0.70 and
0.69 for diastolic and systolic blood pressure, respectively). Sub-
population 8 was included in these calculation using a allocation
probability threshold of 0.7 rather than 0.9, but still the curve fit-
tings converged in a few iterations for the Boltzman and Gauss
fits. The only difference was that the correlation between her-
itability and phenotypic variance showed a exponential decay
(R2 ∼ 0.98) in contrast to the remaining subpopulations, where
the correlation was linear (R2 ∼ 0.98). In contrast, subpopulation
3 did not fit into this general pattern. The heritability implied by
the sphingolipid metabolism was only∼0.07, but still significant.

The two ubiquitous interactions defined by ASAH1 and
SPHK1 were supplying the most information in all subpopu-
lations except in subpopulation 3. These two genes are piv-
otal in the ceramide/sphingosine-1 phosphate rheostat: ASAH1
codes for acid ceramidase generating sphingosine and SPHK1
phosphorylate sphingosine to generate sphingosine-1 phosphate
(Figure 1). The remaining interactions had various impact on
WMI, the most notable differences illustrated by comparing sub-
population 8 and 12 (Figure 3). SMPD4, coding a neutral sph-
ingomyelinase operating at the plasma membrane generating
ceramide is prominent in subpopulation 8, while the acid sph-
ingomyelinase (SMPDL3B) operating in the salvage pathway,

i.e., in the lysosomes, did carry major information of the sph-
ingolipid network in subpopulation 12. Also, the redox network
(represented by GALC) seems to be of major importance in
subpopulation 8.

Interactions/heritabilities not annotated in Figure 3 can be
found in Tables S4, S5.

Case-Control Analysis
Assessment of differences in single-SNP or single-gene genotype
distributions between subpopulations or individual subpopula-
tions and the rest of the study population resulted in detection of
some significant SNPs. However, less than 5% of the valid SNPs
appeared to be potential discriminatory, no consistent pattern of
SNPs were detected, and the p-values were mostly marginal, and
no significant differences remained after correction for multiple
testing.

In contrast, when two-SNP combinations were analyzed in the
case-control design, 1755 and 1728 two-SNP combinations were
detected for diastolic and systolic blood pressure, respectively,
when WMI-significant interactions were exclusively included.
Of these 34 and 40 were significant associated with the preva-
lence diastolic and systolic hypertension, respectively (Table 3).
Approximately two-thirds were significantly associated with
increased prevalence of diastolic or systolic hypertension apply-
ing the general accepted cut-off of 90mmHg and 140mmHg for
diastolic and systolic blood pressure, respectively. The remaining
interactions were associated with decreased prevalence.Most, but
not all interacting SNPs turned out to be homozygous, suggest-
ing the traditional concept of recessive genes, i.e., that genes (or
rather genetic variations) has to be homozygous to affect a trait.
The vast majority of two-SNP interactions were specific to dias-
tolic or systolic blood pressure, respectively (Table 3). Only 9 of
the 65 (unique) interactions (13.8%) were common to both blood
pressure measurements.

Network Interactions
The interaction pattern is very complex even with the relative few
two-SNP/gene interactions having an impact on the prevalence of
hypertension (Table 3). The complexity extends to the metabolic
pathways, but we only have a rudimentary knowledge of the reg-
ulation of these networks and pathways. In addition, there were
striking difference in interaction patterns between diastolic and
systolic blood pressure (Table 3). A discussion of the interac-
tions is therefore highly tentative so only a few interactions are
evaluated (see Table S1).

The two SNP-interactions, SPHK1 and ASAH1, are fixed at
two haplotypes or alleles as only two homozygotes and one com-
posite heterozygote were detected out of nine theoretically pos-
sible genotypes. The distance between the two ASAH1 SNPs is
1484 bp, while it is only 12 bp between the two SPHK1 SNPs
(see however Table S2). These genotypes represented by far the
largest amount of information (WMI) but did not influence the
prevalence of hypertension (Table 3). In addition, there was no
significant difference in mean values between the three genotypes
for each of the genes and could not per se set different levels of
blood pressure. However, as described above, the higher theWMI
the larger amount of phenotypic variance is determined by the
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TABLE 3 | Prevalence of affected for two-SNP genotypes.

Fraction (%)∗

SNP1 Gene1 Genotype1 SNP2 Gene2 Genotype2 p-value Genotype Population

DIASTOLIC BLOOD PRESSURE

Genotypes above the threshold

rs865832 SGPL1 TT rs12770335 SGPL1 GG 0.0138 50 1.62

rs309087 LPPR5 CC rs5186 AGTR1 CC 0.0279 50 1.3

rs3734462 AGPAT4 TT rs1799983 NOS3 TT 0.0279 50 1.3

rs1799883 FABP2 AA rs1799983 NOS3 TT 0.0220 45.45 1.62

rs28385609 SMPDL3A TT rs2003149 KDSR GA 0.0182 36.36 2.6

rs309087 LPPR5 CC rs5186 AGTR1 CA 0.0401 34.78 2.6

rs243887 SPTLC3 TT rs1071645 ASAH1 AG 0.0123 26.97 7.79

rs243887 SPTLC3 TT rs1049874 ASAH1 GA 0.0130 26.67 7.79

rs41292584 SMPDL3A CT rs1799983 NOS3 GG 0.0308 25 7.47

rs41292584 SMPDL3A CT rs3739709 LPAR1 CC 0.0313 23.53 10.39

rs1138439 PPAP2C TT rs12195587 ELOVL2 TC 0.0451 23.39 9.42

rs1138439 PPAP2C TT rs2003149 KDSR GA 0.0377 23.13 11.04

rs3811514 SPHKAP GG rs3828161 SPHKAP AA 0.0371 22.17 14.61

Genotypes below the threshold

rs1799983 NOS3 GT rs2566514 NOS3 CC 0.0008 10.18 16.23

rs3739968 ASAH2B GG rs1071645 ASAH1 GG 0.0341 10.16 6.17

rs285 LPL TT rs320 LPL GT 0.0224 10.14 7.14

rs3739968 ASAH2B GG rs1049874 ASAH1 AA 0.0314 9.94 5.84

rs1799983 NOS3 GT rs3828161 SPHKAP GA 0.0123 9.87 7.47

rs1130233 AKT1 AG rs3828161 SPHKAP GA 0.0215 9.84 6.17

rs6109692 SPTLC3 CT rs2241883 FABP1 GA 0.0430 9.79 4.55

rs11657217 ENPP7 GG rs3734462 AGPAT4 TC 0.0479 6.67 1.3

rs6511701 S1PR5 GT rs1695 GSTP1 GG 0.0358 6.15 1.3

rs11657217 ENPP7 GG rs3170633 GCLM GG 0.0010 4.35 1.3

rs4880 SOD2 TT rs11657217 ENPP7 GG 0.0253 4.17 0.65

rs5186 AGTR1 CC rs67319648 PPAPDC1A CT 0.0485 3.23 0.32

SYSTOLIC BLOOD PRESSURE

Genotypes above the threshold

rs398607 GALC CC rs36211083 CERK TT 0.0130 100 0.67

rs398607 GALC TT rs1805078 GALC TC 0.0124 80 0.89

rs1130233 AKT1 AA rs3828161 SPHKAP GG 0.0302 66.67 0.89

rs243887 SPTLC3 TT rs2241883 FABP1 GG 0.0206 50 2.01

rs1799983 NOS3 GT rs3828161 SPHKAP GG 0.0236 42.86 2.68

rs1130435 FABP6 CC rs7157599 DEGS2 GG 0.0296 38.64 3.8

rs7850023 MIR4668 AG rs5186 AGTR1 CC 0.0400 36.73 4.03

rs5186 AGTR1 AA rs2301022 GCLM AA 0.0169 33.63 8.5

rs1476387 SMPD2 TT rs3739709 LPAR1 CT 0.0312 33.33 7.61

rs3739968 ASAH2B GA rs4918 AHSG GG 0.0178 33.07 9.4

rs285 LPL CC rs1695 GSTP1 AA 0.0136 31.43 14.77

rs12195587 ELOVL2 TC rs1476387 SMPD2 GG 0.0183 30.84 14.77

rs1138439 PPAP2C TT rs7302981 CERS5 CC 0.0408 30.77 10.74

rs6511701 S1PR5 GT rs1695 GSTP1 AA 0.0123 30.63 18.57

rs285 LPL CC rs7157599 DEGS2 AA 0.0321 29.8 16.33

rs12195587 ELOVL2 TC rs8176328 SPHK1 AG 0.0182 29.77 20.58

rs12195587 ELOVL2 TC rs2247856 SPHK1 TC 0.0195 29.65 21.03

rs12195587 ELOVL2 TC rs698912 COL4A3BP AA 0.0407 28.42 23.71

(Continued)
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TABLE 3 | Continued

Fraction (%)∗

SNP1 Gene1 Genotype1 SNP2 Gene2 Genotype2 p-value Genotype Population

Genotypes below the threshold

rs6511701 S1PR5 GG rs1868158 SMPD3 AG 0.0492 19.35 23.94

rs12195587 ELOVL2 CC rs2247856 SPHK1 TC 0.0338 19.21 26.17

rs11657217 ENPP7 CC rs402348 KDSR CA 0.0359 17.34 9.62

rs285 LPL TT rs328 LPL CC 0.0183 17.32 11.86

rs1799983 NOS3 GG rs3828161 SPHKAP GA 0.0119 16.33 8.95

rs3811515 SPHKAP GT rs16824283 SPHKAP CG 0.0137 16.32 8.72

rs1138439 PPAP2C CC rs36211083 CERK TC 0.0488 15.18 3.8

rs398607 GALC TT rs36211083 CERK TC 0.0191 13.13 2.91

rs1049874 ASAH1 AA rs4808863 CERS1 TT 0.0237 12.16 2.01

rs1071645 ASAH1 GG rs4808863 CERS1 TT 0.0237 12.16 2.01

rs243887 SPTLC3 TT rs1049874 ASAH1 AA 0.0268 9.8 1.12

rs243887 SPTLC3 TT rs1071645 ASAH1 GG 0.0192 9.43 1.12

rs320 LPL GG rs328 LPL CC 0.0282 9.09 0.89

COMMON TO BOTH DIASTOLIC AND SYSTOLIC BLOOD PRESSURE

Genotypes above the respective thresholds Diastolic/systolic blood pressure

rs79875317 SMPD4 AA rs1695 GSTP1 GG 0.002/0.001 71.43/54.17 1.62/2.91

rs76033185 SMPD4 GG rs1695 GSTP1 GG 0.008/0.003 66.67/83.33 1.30/1.12

rs1138439 PPAP2C TT rs36211083 CERK TT 0.044/0.038 44.44/55.56 1.30/1.12

rs2297568 SPTLC1 AG rs3828161 SPHKAP GG 0.010/0.001 37.50/54.17 2.92/2.91

rs12888666 GALC AA rs1695 GSTP1 AA 0.049/0.013 25.00/35.71 6.82/6.71

rs1130233 AKT1 AA rs243887 SPTLC3 TT 0.014/0.015 50.00/60.00 1.62/134

rs11657217 ENPP7 CG rs402348 KDSR CA 0.016/0.043 22.27/29.3 18.51/16.78

Genotypes below the respective thresholds

rs3734462 AGPAT4 TC rs1049874 ASAH1 AA 0.020/0.043 9.73/16.76 5.84/6.94

rs11657217 ENPP7 GG rs402348 KDSR CA 0.013/0.043 4.76/29.30 0.97/16.78

Prevalence of diastolic hypertension in the population 16.13% (threshold).

Number of subjects with diastolic hypertension captured by the significant genotypes 253 (82.14% of all affected).

Prevalence of systolic hypertension in the population 23.40% (threshold).

Number of subjects with systolic hypertension captured by the significant genotypes 436 (97.54% of all affected).

Genotypes in bold, missense mutations; genotypes in italic, synonymous mutations.

For gene abreviations, please see Supplemental Data Table S1a.
∗Freqencies of the affected by the two-SNP genotype (Genotype) and frequencies of the two-SNP genotype in the population (Population).

genotypes, i.e., the more the trait is fixed in the genome. SPHK1
and ASAH1 presented themself with the highestWMI, which can
be interpreted as these SNPs or genes provides the most infor-
mation of the genetic influence of the trait variation, but do not
necessary set the actual level of the blood pressure. The epista-
sis defined by these two genes are intragenic defining three basic
haplotypes each.

Topology
A plethora of network descriptors are available, but here we limit
the discussion to the node degree distribution and the much
applied power law and Poisson distributions of the WMI data
sets. The power law is here defined as p(x)∼x−α and has obtained
quite an interest as many data-structures seems to follow this
simple distribution with the α-value generally estmated to be
in the interval (2,3). Most of the classes do have α-values in
this range, with a few classes outside this range for the nominal
significantWMI (Table S9). However, only approximately 8–59%
of the WMI values were captured by the power law or by any

other heavy-tailed distributions tested (lognormal, exponential).
The latter was improved considerably after correction for multi-
ple testing, but apart from the lower α-values encountered, the
variance of the α-values increased substantially. The nominal
WMI data points not included in the power law distribution did
not fit any of several other tested distributions (normal, lognor-
mal, exponential, uniform, Poisson, and several more). However,
in WMI data set corrected for multiple testing the remaining
data after extractionof the power law data did fit Poisson
distributions.

The degree sequences of the SNPs and genes for the WMI
data sets show a similar pattern of distributions as for the WMI
data sets themselves. The gene degree sequences for diastolic
and systolic blood pressure are almost identical (Table S10).
Several genes in the sphingolipid metabolic network seems to
qualify as hubs including sphingosine kinase 1 (SPHK1), its
regulatory protein SPHKAP, ceramide synthase 4 and galacto-
cerebrosidase. Acid ceramidase (ASAH1) appears as a hub in the
salvage pathway, and this enzyme together with SPHK1 are the
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FIGURE 3 | Association between relative epistasis and WMI. The plots

shows the heritability (Geno/Pheno) of the diastolic blood pressure as a

function of the weighted mutual information (the plots of systolic blood

pressure are similar). Subpopulation 8 was evaluated at an allocation threshold

of 0.7 in contrast to 0.9 for all the other subpopulation (see Text for

discussion). The three fitted plots [polynomial, Boltzmann (sigmoid), and

Gaussian] were almost overlapping. Apart from the ubiquitous ASAH1 and

SPHK1 haplotypes there is a difference in the ranking of the next interactions

between the subpopulations. Similar differences in patterns were seen for the

other subopulations.

twometabolic “endpoints” in the regulation of the blood pressure
(see above and Figure 2). The source of fatty acids for synthesis of
sphingolipids seems to be derived from circulating triglycerides
suggested by the hub-like status of lipoprotein lipase (LPL) and
fatty acid binding protein 2 (FABP2) (Table S10). Finally, the ROS
and NOmetabolisms are of central importance in the blood pres-
sure regulation (Igarashi and Michel, 2009; Omo et al., 2014),
which is supported by the high connectivity of the genes includ-
ing links to genes in the other networks. In contrast, the LPA
network seems only to be modestly connected, but this could be
caused by the low amounts of selected SNPs that turned out to
homozygous or were dismissed during analysis.

It should be kept in mind that the above conclusions are for
the most part conjectural founded on the “naive” assumption that

a higher degree of a gene equals importance. The real importance
of a gene is the information it supplies by interaction with the
other genes. Nevertheless, the above analysis is supportive of the
conclusions obtained from the WMI analysis.

Discussion

All populations are heterogenous due to the vast genetic varia-
tion present, and all genes only operates in integrated networks
(Fenger, 2014). A recent (and striking) example of the impor-
tance of the genetic architecture in host-environment interac-
tions has emerged, in which the host genotypes determines the
environments influence, here the Ebola virus, on phenotypic out-
come is firmly established (Rasmussen et al., 2014). These funda-
mentals are supported here: at least 14 subpopulations have been
defined previously only including physiological variables related
to blood pressure regulation in the partition analysis (LCA/SEM);
and the blood pressure is governed by several metabolic networks
that are integrated by complex communication pathways within
and between the networks. Three metabolic networks were the
primary targets for the analysis, but it is clear that the com-
plexity extends beyond these three networks including commu-
nication with extracellular sources. The ceramide/sphingosine-1
phosphate rheostat is a well-established, delicate balanced com-
munication system that roughly speaking has opposite effects
and was shown to be pivotal in most subpopulations. Many
more balanced feed-back systems are present however, which are
corroborated by the genetic analysis present here.

Detection of genes and extra-genic variations of importance
relies heavily on the reliability and accuracy of the phenotypes.
This is clearly seen by comparison of the gender-based parti-
tion with the physiologically modeled partition, where there was
more than a 300-fold increase in genetic information provided
by the interactions, and more than a 15-fold increase in the num-
ber of significant interactions when corrected for multiple test-
ing (Tables 1, 2). Most intriguingly, none of the few interactions
detected in the gender partition analysis was recovered under
more stringent conditions as influencing the prevalence of hyper-
tension (Table 3). This could (cautiously) be interpreted as false
positive results due to the coarse-grained partition of the pop-
ulation imposed by gender, but more importantly the partition
of the population into more homogenous subpopulations using
physiological variables in an latent class/structural equationmod-
eling (other partition approaches are possible) is a prerequisite of
obtaining information about the genetics of a trait or condition
to any substantial and interesting extent.

The WMI introduced here is a measure of the amount of
information that the interacting genes provide about the trait.
This measure is tightly related to the relative genetic variance
in particular including all two-SNP/gene interactions (Figure 3).
As can be seen and discussed above the ubiquitous SPHK1
and ASAH1 genotypes provided the most information about
the sphingolipid network and could be considered as genetic
information hubs that express their effects (or information) not
exclusively by themself but only through interaction with other
genes, i.e., they represent the maximal information and genetic
variance accounted for by the entire network. Thus, depending
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on information contained in a two-SNP interaction the rela-
tive impact increases non-linearly to a maximum which is the
amount of genetic influence (heritability) on the trait. The hierar-
chal and non-linear accumulation of relative genetic variance can
be understood in same way as two-SNP/gene interactions: two-
SNP composite genotypes can be considered as a single entity that
will not be functional outside its context i.e., the network or mod-
ules in the network, but may provide detectable although small
influence on the trait. Any two sets of two-SNP genotypes shares
some mutual information about the network i.e., some informa-
tion is already present, and for this reason either genetic variance
or information are cumulative. The argument goes on to the next
level and ultimately the information and hence the explained
genetic variance asymptotically levels of and reach a maximum,
that is the heritability of the trait as depicted in Figure 3.

It was expected that the node degree sequences of the genes
were distributed as a power law or Poisson distributed, but to
the contrary only a small fractions of the genes were captured by
the power law distribution. Most of the genes did not conform to
any of several continuos distributions and appears totally random
distributed. This trend is confirmed in analysis of effects sizes and
variances in which the data sets on average contains more than
5000 samples. However, when only data corrected for multiple
testing were included a bipartite structure appeared: the power
law distributed data did only capture a fraction of the data, while
the Poisson distribution did not fit the entire set of data (cor-
rected for multiple testing); rather, the data set can be split in two
components, one captured by the power law, the other by Poisson
distributions (as in the famous and widely applied Erdös-Rényi
random graph, Erdös and Rényi, 1960). The power law distribu-
tion has gathered quite amomentum (for a review see Nacher and
Akutsu, 2007), but has also been disputed as a generic descrip-
tion of biological networks (Arita, 2005; Lima-Mendez and van,
2009). More theoretically advanced network modeling is needed
(e.g., Dehmer et al., 2014), and as indicated here the prevailing
idea that biological networks are scale freemay have to be revised.

The influence of the sphingolipid network on the blood pres-
sure regulation was quite large, while the impact of the phosphati-
date and redox networks seemed to be limited. Caution should
be observed with this conclusion as the selection of genes, mostly
from the sphingolipid metabolic network, may have been fortu-
itous. Other genes or combination of genes could harbor more
information than the ubiquitous genotypes above, but the her-
itability will only increase marginally if at all considering the
fits shown in Figure 3. Thus, although possible, it is not likely
that any gene-interactions will surpass the ubiquitous genotypes
in collated information content. The exception is subpopula-
tion 3, in which the sphingolipid metabolic network only have
a minor influence on the blood pressure. The phosphatidate
and redox networks could be of importance as only a limited
number of SNPs were included, but other networks and path-
ways are of course possible. The patterns of interactions differs
between the subpopulations, but the sphingolipid metabolic net-
work is established to be central to the regulation of the blood
pressure.

Only a few of the valid SNPs have previously been associated
with any clinical condition (Tables S1a,b). Some of the candidate

genes were not included in the analysis as the SNPs turned out to
be monomorphic, and for this reason the coverage is not entirely
comprehensive (which must be assumed also to be the case for
the other networks). In particular, several of the ceramidases,
fatty acid binding proteins and S1P- and LPA-receptors were not
included. The number of interactions influencing the prevalence
of hypertension is rather modest, but may be substantial under-
estimated as important participants in the networks are missing.
Thus, the number of SNPs and genes involved is expected to
increase when the inclusion of variations and genes becomemore
comprehensive.

There have been contrasting views about the importance of
epistasis in genetic systems. Crow argues that epistasis is unim-
portant in polygenic directional selection (Crow, 2010) suggest-
ing that additive genetic variance is the driving force. How-
ever, there is mounting evidence particular from studies in
model organisms that epistasis is essential in governing any
traits (Brillinger, 2004; Phillips, 2008; Crow, 2010; Lehner, 2011;
Fenger, 2014), not just for intergenic interactions but also for
intragenic interactions (Lehner, 2011) as is the case for e.g.,
ASAH1 and SPHK1. The present studies strongly supports the
concept of epistasis as a major source of phenotypic variation.
Only a few scatteredmain effects were detected, but most of genes
revealed themself as participants in blood pressure regulation by
simple two-SNP/gene interactions. This behavior is a corollary to
the weak pairwise correlation in neural networks that impose a
strongly correlated state in the entire neural network far beyond
what can be explained by the independent state of single neurons
(Schneidman et al., 2006; Shlens et al., 2006; Tang et al., 2008). A
maximal entropy model was used without any assumptions the
mechanistic origin and it were shown that larger networks are
completely dominated by correlation effects between neurons.
Here, the pairwise genetic interactions completely determined
the genetic effects of the networks without any knowledge of the
topology necessary.

Generally, the physiological and biochemical interpretation of
the interactions revealed in the present study are highly theoret-
ical as both metabolic and functional interactions are possible.
Most probably, many of the interactions, apart from the flux of
metabolites in the networks, may include elements of stereogenic
interactions of the components generating integrated complexes
of enzymes (Lehner, 2011) located to the same compartment of
the cell e.g., in and at the endoplasmatic reticulum and Golgi
apparatus. Basic biochemical and cellular research will be needed
to solve these issues.
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