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Abstract

Objective: Chemerin is a novel inflammatory biomarker suggested to play a role in the 
development of metabolic disorders, providing new avenues for treatment and prevention. 
Little is known about the factors that predispose elevated chemerin concentrations. We 
therefore aimed to explore a range of lifestyle-associated, dietary, and metabolic factors as 
potential determinants of elevated chemerin concentrations in asymptomatic adults.
Design: We used cross-sectional data from a random subsample of 2433 participants 
(1494 women and 939 men) aged 42–58 years of the European Prospective Investigation 
into Cancer and Nutrition-Potsdam cohort. 
Methods: Random forest regression (RFR) was applied to explore the relative importance 
of 32 variables as statistical predictors of elevated chemerin concentrations overall and 
by sex. Multivariable-adjusted linear regression was applied to evaluate associations 
between selected predictors and chemerin concentrations.
Results: Results from RFR suggested BMI, waist circumference, C-reactive protein, fatty 
liver index, and estimated glomerular filtration rate as the strongest predictors of 
chemerin concentrations. Additional predictors included sleeping duration, alcohol, red 
and processed meat, fruits, sugar-sweetened beverages (SSB), vegetables, dairy, and 
refined grains. Collectively, these factors explained 32.9% variation of circulating chemerin. 
Multivariable-adjusted analyses revealed linear associations of elevated chemerin with 
metabolic parameters, obesity, longer sleep, higher intakes of red meat and SSB, and lower 
intakes of dairy.
Conclusions: These findings come in support of the role of chemerin as a biomarker 
characterizing inflammatory and metabolic phenotypes in asymptomatic adults. Modifiable 
dietary and lifestyle-associated determinants of elevated chemerin concentrations require 
further evaluation in a prospective study setting.
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Introduction

Over the past decade, chemerin has been increasingly 
implicated as a biomarker of immunometabolism, linking 
low-grade inflammation and metabolic disorders (1). 
Chemerin was first discovered as a chemokine with strong 
chemoattractant activity on various immune cells, including 
macrophages, dendritic cells, and natural killer cells with 
key roles in both innate and adaptive immunity (2). It was 
further rediscovered as an adipokine that is expressed in the 
adipocytes and was shown to be associated with obesity, 
insulin resistance, inflammation, and fatty liver disease (FLI) 
(3, 4). Experimental and clinical data suggested that circulating 
chemerin levels are associated with chronic diseases, such 
as cardiovascular disease (5) including atherosclerosis (6) 
and chronic heart failure (7). In addition, chemerin was 
associated with risk of colorectal cancer (8) and all-cause 
mortality (9). Thus, chemerin could serve either as an early 
marker or as an independent predictor of chronic subclinical 
inflammation. To guide strategies for precision prevention, 
better understanding of the factors that predispose elevated 
chemerin concentrations is highly warranted.

The evidence, however, on the potential influence of 
dietary and lifestyle factors on circulating chemerin has been 
scant. Several small trials investigated specific interventions 
for weight loss (hypocaloric diet and increased physical 
activity) in reducing chemerin levels (10, 11, 12). In addition, 
a few observational studies explored associations between 
chemerin and dietary patterns (13), physical activity (14), 
and selected health behaviors, that is , smoking and alcohol 
consumption (15). So far, large observational studies that 
simultaneously evaluate multiple lifestyle factors in relation 
to chemerin concentrations are lacking.

We therefore aimed to identify main statistical 
predictors as potentially important determinants of elevated 
chemerin concentrations among a wide range of lifestyle-
associated, dietary, and metabolic factors and to characterize 
the associations between selected determinants and elevated 
chemerin concentrations using data from a large population 
sample within the European Prospective Investigation into 
Cancer and Nutrition (EPIC)-Potsdam cohort.

Material and methods

Study population

EPIC-Potsdam is a prospective cohort study intended to 
investigate the role of diet in the development of chronic 
diseases (16). From 1994 to 1998, 27,548 participants from 
Potsdam, Germany, and the surrounding geographical area 

were recruited. For the current analysis, 2500 participants 
were randomly selected. After exclusions due to unavailable 
blood samples, implausible dietary intakes (women: <600 
kcal or >3500 kcal; men: <800 kcal or >4200 kcal), or 
outliers, 2433 participants (1494 women and 939 men) 
remained eligible for this cross-sectional analysis (see Fig. 1  
for flow chart). Detailed information about recruitment 
procedures has been reported elsewhere (17). The study 
protocol was approved by the Medical Society of the State 
of Brandenburg, Germany, and all participants provided 
written-informed consent prior to enrollment (16).

Data collection

Anthropometric (BMI, waist circumference (WC)) and 
blood pressure measurements were conducted according 
to standardized protocols as previously reported (16). 
Information on socio-demographic characteristics and 
lifestyle factors, that is, smoking, physical activity, sleeping 
habits, alcohol consumption, medication, self-reported 
health satisfaction, and prevalent diseases, were collected 
using computer-assisted personal interviews. Participants 
were considered hypertensive at study baseline if they had a 
systolic blood pressure ≥140 mmHg, diastolic blood pressure 
≥90 mmHg, reported prior diagnosis of hypertension, or 
current antihypertensive medication use. Habitual dietary 
intakes of 12 months prior to recruitment were assessed 
through validated 148-item semi-quantitative food 
frequency questionnaires (18). The analyses focused on 
major food groups shown to be associated with metabolic 
phenotypes and chronic diseases (19), that is, red and 
processed meat, fish, dairy products, eggs, vegetables, fruits, 
nuts, legumes, whole grains, refined grains, and sugar-
sweetened beverages (SSB). Intake values of food groups and 
alcohol are presented in grams per day (g/day).

Biomarker measurements

Participants provided 30 mL peripheral venous blood at 
the examination center during daytime hours, which 
was processed and subsequently stored in tanks of liquid 
nitrogen at –196°C or in deep freezers at –80°C until time 
of analysis. Chemerin was measured in citrate-treated 
plasma with a commercially available sandwich ELISA 
(BioVendor, Brno, Czech Republic) at the Institute for 
Clinical Chemistry and Pathobiochemistry, Otto-von-
Guericke University Magdeburg (Magdeburg, Germany). 
Coefficients of variation reported by the manufacturer 
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were 5.1 and 7.0% within assays and 6.9 and 8.3% 
between assays. Chemerin measurements showed good 
reproducibility over 4 months (intraclass correlation 
coefficient assessing intra-individual variation: 0.72 
(95% CI: 0.65–0.78)), indicating that one-time chemerin 
measurements are reasonably representative of the 
average individual concentration over time (20). Plasma 
concentrations of cholesterol, triglycerides, HDL-C, 
high-sensitivity C-reactive protein (hs-CRP), creatinine, 
γ-glutamyl transferase (GGT), alanine transaminase 
(ALT), and uric acid were measured at the Department 
of Internal Medicine, University of Tübingen (Tübingen, 
Germany) with an automatic ADVIA 1650 analyzer 
(Siemens Medical Solutions, Erlangen, Germany) in 2007 
(21). All biomarker measurements conducted in plasma 
were corrected for the dilution introduced by citrate 
volume to improve comparability with concentrations 
measured in EDTA-plasma reported in the literature (22). 
LDL-C was calculated using Friedewald’s formula (23). 
Glomerular filtration rate (eGFR), an indicator of kidney 

function, was estimated using measured creatinine 
concentrations based on the proposed formula by the 
Chronic Kidney Disease Epidemiology Collaboration 
(24). The fatty liver index (FLI) was used as a proxy of liver 
fat accumulation (25). Blood draw, sample handling, and 
laboratory measurements were conducted by experienced 
technical personnel and followed manufacturer’s 
instructions. Missing biomarker entries (n = 444) were 
imputed for n = 223 participants (Supplementary Table 1, 
see section on supplementary materials given at the end 
of this article) using a random forest procedure within 
the R package 'missForest' (26). Sensitivity analysis 
without imputation of biomarkers revealed no differences 
in effect estimates of main analyses (data provided in 
Supplementary Table 2).

Statistical analysis

In descriptive analysis, the distribution of lifestyle-associated, 
dietary, and metabolic parameters as medians (interquartile 

Figure 1
Flow chart of the study population selection 
including exclusion and removal of outliers.
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ranges (IQR)) or numbers (percentages) was characterized 
according to quartiles of chemerin concentrations. Dietary 
and metabolic variables were modeled as continuous 
variables along with BMI, WC, recreational sports (hours 
per week), and sleeping duration (hours of sleep per 24 
hours). To reduce the potential effect of multicollinearity 
between BMI and WC, WC was regressed on BMI to obtain 
residual WC, which was used in the adjustment models. 
Alcohol consumption in grams per day was divided by 5 
to represent intake per 5 grams. Smoking was modeled as 
a dichotomized variable (ever smoker vs never smoker). 
Health satisfaction was modeled as a four-level categorical 
variable (very dissatisfied to very satisfied). For descriptive 
analyses, alcohol consumption and sleeping duration were 
further categorized using predefined cut points (27, 28), and 
physical activity was dichotomized into inactive vs active.

To determine the best set of determinants (statistical 
predictors) of elevated chemerin concentrations, random 
forest regression (RFR) was applied as a machine learning 
technique suited for evaluation of multiple interrelated 
predictors (29). An important advantage of RFR is the ability 
to account for potential non-linear association among 
predictor and response variables. In this analysis, 1000 
regression tree models were generated and combined with 
up to five unique datapoints in each terminal node. The 
main predictors among the various predictor variables were 
explored separately (according to exposure profiles – lifestyle-
associated factors, dietary factors and metabolic factors) 
and conjointly and plotted according to relative statistical 
importance using the R package 'randomForestSRC' (30). In 
addition, the explained variance of each individual predictor, 
a set of predictors selected by RFR, as well as all predictors 
conjointly were estimated using linear regression analyses.

Since RFR only provides information on the relative 
statistical importance of predictor variables out of a set 
of variables, but do not show effect size and direction of 
associations, multivariable-adjusted linear regression 
was further applied to allow detailed assessment of the 
associations. In these analyses, food groups and metabolic 
(clinical/biochemical) exposure variables were z-score 
standardized. All models were adjusted for age, sex, BMI, 
residual WC, physical activity and smoking, educational 
attainment, prevalent hypertension, prevalent diabetes, 
prevalent cancer (except for nonmelanoma skin cancer), 
prevalent cardiovascular disease, and antihypertensive 
medication. The lifestyle-associated variables were 
mutually adjusted for the remaining factors, that is, 
alcohol consumption, health satisfaction, and sleeping 
duration. The food intake variables were additionally 
energy-adjusted (per 1000 kcal).

In sensitivity analyses, individuals with the following 
characteristics were excluded from the analyses or evaluated 
separately: women (n = 1494), prevalent cancer (except 
nonmelanoma skin types), prevalent cardiovascular 
disease, or prevalent type 2 diabetes (n = 182), and hs-CRP 
of 10 mg/L or higher that could reflect acute inflammation 
(n = 78) (31). Differences in the associations according 
to sex were tested on the multiplicative scale based on 
calculated interaction terms of the respective variables and 
sex variable. All statistical analyses were performed in SAS 
(version 9.4, Enterprise Guide 7.1, SAS Institute Inc., Cary, 
NC, USA) and R (version 3.4.3, R Foundation for Statistical 
Computing, Vienna, Austria).

Results

Table 1 presents the descriptive characteristics of the study 
population, overall and stratified by sex. The median (IQR) 
of chemerin concentration was 147.6 (125.6, 172.4) ng/mL. 
The participants had a mean (s.d.) age of 50.3 (9.0) years, 
and their average BMI was 26.1 (4.3) kg/m2. Overall, men 
were more likely to be smokers and showed higher alcohol 
consumption. The distribution of evaluated lifestyle-
associated, dietary, and metabolic factors according to 
quartiles of chemerin concentrations are presented in 
Supplementary Table 3. These analyses, among others, 
revealed a trend of increasing chemerin concentrations 
with reduced wine consumption, longer sleep duration, 
higher prevalence of sleeping disorders, level of health 
dissatisfaction and physical inactivity.

Figure 2 shows the results from RFR depicting the 
importance of evaluated variables as statistical predictors 
of chemerin concentrations among the three groups of 
factors, that is, lifestyle-associated, dietary, and metabolic, 
as well as all predictors modeled together. Among the 
lifestyle-associated factors, BMI and WC were selected as 
the most important predictors of circulating chemerin, 
followed by sleeping duration and alcohol intake. 
Among the dietary factors, consumption of red meat and 
processed meat, fruits, SSB, vegetables, dairy products, and 
refined grains were selected as main predictors of chemerin 
concentrations. With regard to metabolic factors, FLI, 
hs-CRP, and eGFR, followed by triglycerides and creatinine 
showed highest importance in the prediction of chemerin. 
In an analysis that evaluated the relative variable 
importance of all predictors together, hs-CRP was the most 
important predictor of circulating chemerin, followed by 
FLI, eGFR, BMI, WC, and triglycerides.

In linear regression analyses, the set of variables 
selected by RFR explained 32.9% variation of chemerin 
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concentrations (lifestyle-associated factors including BMI, 
WC, sports, smoking, alcohol, sleeping duration, and health 
satisfaction: 18.1%; dietary factors including processed 
meat, red meat, fish, dairy, eggs, legumes, vegetables, fruits, 
nuts, whole grains, refined grains, SSB: 1.7%; metabolic 
factors including hs-CRP, total cholesterol, LDL-C, HDL-
C, triglycerides, FLI, ALT, GGT, uric acid, creatinine, eGFR, 
systolic BP, diiastolic BP: 27.7%) (Supplementary Table 4).  
Overall, the full range of evaluated variables jointly 
explained 35.4% of chemerin concentrations.

Figure 3 shows results from the multivariable-linear 
regression analyses that further demonstrate the direction and 
strength of the associations between chemerin and selected 
determinants. For example, higher chemerin concentrations 
were associated with higher BMI (standardized beta = 2.9 
(95% CI: 2.6, 3.2) ng/mL) and WC (1.2 (95% CI: 1.0, 1.3) ng/
mL), longer sleeping duration (1.3 (95% CI: 0.2, 2.5) ng/mL), 
higher intakes of red meat and SSB (1.7 (95% CI: 0.5, 3.0) ng/
mL and 1.7 (95% CI: 0.4, 2.9) ng/mL, respectively), and lower 
intakes of dairy (–1.5 (95% CI: –2.8, –0.2) ng/mL).

In analyses stratified by sex, WC, red meat, dairy, FLI, 
and hs-CRP were selected as main statistical predictors in 
RFR analysis for both men and women (Fig. 4). Relative 
to WC, BMI showed high importance in women and less 
in men. Sleeping duration and intakes of eggs, fruits, and 
vegetables were further selected as important predictors in 
the analyses for women, whereas smoking and intake of 
nuts were selected as important predictors in the analyses 
for men. Multivariable-adjusted linear regression analyses 
stratified by sex additionally characterized the suggested 
differences (Supplementary Table 5). For example, red meat 
consumption was associated with increasing chemerin 
concentrations in women only (standardized beta = 1.8 
(95% CI: 0.1, 3.5) ng/mL), and the association with FLI 
was only present in men (3.0 (95% CI: 0.3, 5.6) ng/mL). 
However, no statistically significant interaction by sex 
could be seen for the majority of the factors, with the 
exception of red meat consumption (Pinteraction = 0.02).

In sensitivity analyses, the observed associations were 
not substantially altered after excluding participants with 
any prevalent disease. After excluding participants with 
elevated hs-CRP (≥ 10 mg/L), the associations with SSB and 
FLI were attenuated toward null (Supplementary Table 6).

Discussion

In this large population-based study, we explored potential 
determinants of elevated chemerin concentrations 
among a wide range of lifestyle-associated, dietary, and 

metabolic factors in adult asymptomatic individuals. Our 
analyses highlighted the importance of BMI, WC, hs-CRP, 
FLI, and eGFR as main statistical predictors of chemerin 
concentrations. Systolic and diastolic blood pressure and 
triglycerides also contributed to the variation of circulating 
chemerin. Modifiable dietary and lifestyle-associated factors 
were further suggested to predict chemerin concentrations, 
albeit to a lesser degree. These included intakes of red 
and processed meat, SSB, dairy, and sleeping duration. 
Factors that were associated with increased concentrations 
of chemerin included physical inactivity and health 
dissatisfaction. Additional predictors of elevated chemerin 
concentrations included alcohol consumption and intakes 
of refined grains, fruits, and vegetables.

This is the first observational study to explore such 
a wide range of factors covering various phenotypes, 
including modifiable lifestyle and dietary factors in relation 
to elevated chemerin concentrations in predominantly 
healthy adults. Yet, our results notably distinguished 
inflammatory and metabolic factors as the most important 
determinants of elevated chemerin concentrations. So 
far, various lines of research characterized chemerin as a 
potential player in the development of cardio-metabolic 
diseases and described its multifaceted functions in the 
regulation of energy metabolism, adipogenesis, and 
angiogenesis (32). Systemically elevated chemerin could 
originate from various sources representing tissue damage 
or immune activation in different organs with regulatory 
actions in various inflammatory processes (32). Thus, it 
may not be surprising that its elevated concentrations 
coincide with elevated levels of other inflammation 
markers such as CRP as shown in our data. However, CRP 
is a non-specific biomarker of inflammation and may 
also reflect obesity-associated inflammatory phenotype. 
Indeed, the enlarged adipose tissue is one important 
source of secretion of pro-inflammatory mediators (33). 
Chemerin can be also characterized as one of those 
mediators, as it is predominantly expressed in adipocytes 
within white adipose tissue, and its association with 
obesity is well established (4). Chemerin is expressed 
similarly in human preadipocytes and adipocytes but can 
also be found in the stroma-vascular fraction, suggesting 
that the different adipose tissue cell types may contribute 
to chemerin production (34). In addition, immune cells 
such as macrophages, dendritic cell subsets, and natural 
killer cells express CMKLR1 and are chemerin responsive 
(2). Furthermore, higher chemerin concentrations were 
associated with larger amounts of visceral adipose tissue 
(VAT) as compared to lower amounts of subcutaneous 
adipose tissue (SAT) (4, 35). Interestingly, our data revealed 
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Table 1 Descriptive characteristics of the study population, overall and by sex. Dietary intake and clinical parameters are 
expressed as median (IQR).

  
Chemerin (ng/mL), median (IQR)

Total, n = 2433 Men, n = 939 Women, n = 1494
147.6 (125.6, 172.4) 145.6 (126.5, 170.2) 147.6 (125.6, 172.1)

Socio-demographic factors
Age (years), mean (s.d.) 50.3 (9.0) 52.4 (8.1) 49.0 (9.3)

 Education University degree, n (%) 935 (38.4) 496 (52.8) 439 (29.4)
Health status
 Prevalent condition Cardiovascular disease and/or  

hypertension, n (%)
1270 (52.2) 624 (66.5) 646 (43.2)

Type 2 diabetes and/or cancer, n (%) 249 (10.3) 100 (10.7) 149 (10)
 Medication use Antihypertensive, anti-coagulant,  

lipid-lowering, n (%)
632 (26.0) 291 (31.0) 341 (22.9)

Aspirin, n (%) 246 (10.1) 89 (9.5) 157 (10.5)
Anti-diabetic, n (%) 58 (2.4) 36 (3.8) 22 (1.5)

Lifestyle-associated factors
 Obesity measures Body mass index (kg/m²), mean (s.d.) 26.1 (4.3) 26.8 (3.5) 25.7 (4.6)

Waist circumference (cm), mean (s.d.) 85.8 (12.8) 94.2 (9.9) 80.6 (11.6)
 Physical activity Recreational sports (h/week), median 

(IQR)
4.5 (2.0, 8.0) 5.5 (2.5, 9.5) 4.0 (2.0, 7.5)

Inactive, n (%) 596 (24.7) 220 (23.5) 376 (25.4)
 Smoking Ever smoker, n (%) 1290 (53.0) 665 (70.8) 625 (41.8)
 Alcohol consumption Intake of consumers (g/day),  

median (IQR)
8.5 (3.1, 20.1) 18.4 (8.6, 32.5) 5.2 (2.1, 10.6)

Non-consumers, n (%) 72 (3.0) 32 (3.4) 40 (2.7)
Light and moderate drinkers (<15  

g/day women; <30 g/day men), n (%)
1859 (76.5) 665 (70.8) 1194 (80.0)

Heavy drinkers (≥15 g/day women; 
 ≥30 g/day men), n (%)

502 (20.6) 242 (25.8) 260 (17.4)

 Sleeping duration Short (<7 h/day), n (%) 609 (25.0) 249 (26.5) 360 (24.1)
Long (>8 h/day), n (%) 303 (12.5) 114 (12.1) 189 (12.6)

 Self-reported well-being Health satisfaction – Dissatisfied,  
n (%)

432 (17.8) 141 (15.0) 291 (19.5)

Dietary factors
Processed meat (g/day) 49.8 (31.6, 76.3) 63.4 (45.4, 101.3) 43.0 (25.1, 59.9)
Red meat (g/day) 36.5 (23.3, 54.7) 47.7 (32.5, 69.8) 31.7 (19.3, 45.5)
Fish (g/day) 18.4 (9.9, 29.0) 23.0 (11.2, 34.8) 16.4 (9.0, 28.5)
Dairy (g/day) 170.9 (94.5, 276.7) 148.8 (73.6, 251.8) 191.7 (106.7, 310.5)
Eggs (g/day) 13.6 (9.0, 21.9) 16.0 (9.0, 25.3) 13.6 (7.8, 20.7)
Legumes (g/day) 16.5 (9.1, 30.3) 21.6 (11.0, 38.6) 13.9 (8.0, 26.3)
Vegetables (g/day) 93.1 (66.5, 127.1) 83.1 (59.4, 114.4) 98.9 (71.1, 134.9)
Fruits (g/day) 122.4 (91.5, 202.3) 107.9 (82.0, 180.9) 140.5 (96.4, 215.6)
Nuts (g/day) 0.8 (0.4, 4.1) 0.8 (0.4, 4.1) 0.8 (0.4, 4.1)
Whole grains (g/day) 32.0 (8.7, 75.1) 22.1 (5.5, 63.0) 37.4 (11.3, 82.0)
Refined grains (g/day) 134.1 (86.3, 190.5) 175.9 (119.8, 231.7) 112.4 (72.5, 160.5)
Sugar-sweetened beverages (g/day) 1.4 (0.0, 24.7) 5.6 (0.0, 48.3) 0.0 (0.0, 9.7)

Metabolic factors
 Chronic inflammation hs-CRP (µg/mL) 0.8 (0.2, 2.2) 0.7 (0.2, 1.8) 0.9 (0.2, 2.6)
 Lipid metabolism Total cholesterol (mmol/L) 5.3 (4.6, 6.0) 5.4 (4.8, 6.1) 5.1 (4.5, 5.9)

LDL-C (mmol/L) 3.1 (2.5, 3.7) 3.2 (2.7, 3.8) 3.0 (2.4, 3.6)
HDL-C (mmol/L) 1.4 (1.2, 1.7) 1.3 (1.1, 1.5) 1.5 (1.3, 1.8)
Triglycerides (mmol/L) 1.2 (0.9, 1.8) 1.6 (1.1, 2.3) 1.1 (0.8, 1.5)

 Liver function FLI 0.5 (0.1, 2.1) 1.5 (0.5, 4.1) 0.2 (0.1, 0.8)
ALT (U/L) 20.0 (15.0, 28.0) 27.0 (20.0, 38.0) 17.0 (14.0, 22.0)

 Kidney function GGT (U/L) 18.0 (12.0, 33.0) 28.0 (18.0, 48.0) 14.0 (9.0, 22.0)
Uric acid (mg/dL) 4.5 (3.7, 5.5) 5.6 (4.8, 6.3) 4.1 (3.4, 4.8)
Creatinine (mg/dL) 0.8 (0.7, 1.0) 1.0 (0.9, 1.1) 0.8 (0.7, 0.8)
eGFR (mL/min per 1.73 m2) 91.1 (79.7, 101.0) 91.0 (80.4, 99.8) 91.1 (79.5, 101.7)

 Blood pressure Systolic (mmHg), mean (s.d.) 129.3 (17.6) 135.3 (17.1) 125.6 (16.8)
Diastolic (mmHg), mean (s.d.) 83.7 (10.6) 86.8 (10.7) 81.7 (10.0)

ALT, alanine aminotransferase; BP, blood pressure; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; FLI, fatty liver index; g, grams; 
GGT, gamma-glutamyl transferase; h, hour; hs, high-sensitivity; IQR, interquartile range.
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WC as a strong lifestyle-associated predictor of elevated 
chemerin concentrations in men and women, whereas 
BMI was shown as a strong predictor in women but not 
in men. WC is a measure of body fat distribution that is 
suggested to reflect visceral adiposity. In contrast, BMI is 
a measure of body composition and does not distinguish 
body fat and lean muscle mass (36). It is well known that 
as they age men and women are characterized by differing 
fat distribution profiles, such that men tend to accumulate 
fat in VAT whereas in women fat is stored predominantly 
in SAT depots. VAT is metabolically more active and may 
better reflect early inflammation-related pathological 
conditions as compared to SAT. In this context, our data 
may provide an important insight that chemerin could 
serve as a biomarker that can depict VAT-associated 
inflammatory phenotypes in both sexes. Although WC is 
often used as a proxy measure of VAT and has shown to be 

stronger correlated to VAT than BMI (37), it may still not 
be the best method to estimate visceral fat accumulation 
(38). Further studies that employ precise assessment of fat 
compartments would be needed.

Besides adipose tissue, chemerin is also expressed in 
the liver (32) and kidney (39). In our study, FLI and eGFR 
were among the most important metabolic predictors 
of chemerin, followed by triglycerides and creatinine. 
Also systolic and diastolic blood pressure were selected to 
contribute to the variation of chemerin. Similar results were 
previously reported for an association between chemerin 
and impaired renal function (39, 40) and other metabolic 
phenotypes that may lead to liver and kidney damage (4, 
41, 42). Our findings for blood pressure are supported by 
mechanistic research on chemerin that has been focused 
on the vascular system and hypertension (43). Among 
these, human and animal studies revealed that chemerin 

Figure 2
Relative variable importance from random forest regression for lifestyle-associated, dietary, and metabolic factors as predictors of chemerin 
concentrations (A) modeled separately per block and (B) modeled together. The potential predictors are plotted relative to the most important predictor 
of circulating chemerin by (A) block of lifestyle-associated, dietary, and metabolic factors and (B) all factors together. ALT, alanine aminotransferase; BP, 
blood pressure; eGFR, estimated glomerular filtration rate; FLI, fatty liver index; GGT, gamma-glutamyl transferase.
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causes contraction of arteries and increases reactive 
oxygen species (ROS) in endothelial cells (43). Overall, our 
data come in support of previous research that implicates 
chemerin as a biomarker of immunometabolism, linking 
obesity, inflammation, and metabolic disorders.

In addition to metabolic determinants, our results 
revealed a number of lifestyle-associated factors associated 
with elevated chemerin concentrations. Among these, 

sleeping duration and alcohol consumption were rated 
among the most important predictors. Our results for an 
association between long sleep duration (sleep >8 h/day) 
and chemerin independent of potential confounders such 
as prevalent chronic diseases or age are in line with findings 
from a recent meta-analysis, where long sleeping hours 
were associated with higher levels of pro-inflammatory 
biomarkers, i.e., CRP and IL-6 (44). Recent evidence from 

Figure 3
Multivariable linear regression showing change in chemerin concentration per increase in lifestyle-associated, dietary, and metabolic factors. Multivariable-
adjusted model includes age, sex, BMI, residual waist circumference, physical activity, educational attainment, smoking status, prevalent hypertension, 
prevalent diabetes, prevalent cancer, prevalent cardivascular disease, and antihypertensive medication. The lifestyle-associated factors were mutually 
adjusted for the remaining factors, that is, additionally adjusted for alcohol consumption, health satisfaction, and sleeping duration. Dietary factors and 
metabolic factors were not mutually adjusted for one another. Sleeping duration was additionally adjusted for sleeping disorders and consumption of 
caffeinated beverages (tea and coffee). Diet was z-score standardized and energy-adjusted; metabolic exposure variables were z-score standardized. ALT, 
alanine aminotransferase; BP, blood pressure; eGFR, estimated glomerular filtration rate; FLI, fatty liver index; GGT, gamma-glutamyl transferase.
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prospective studies propose that the relationship between 
hours of sleep and risk of coronary events or mortality is 
U-shaped (45). Future prospective studies that account 
for additional potential confounders such as stress levels 
may be needed to better evaluate the association between 
sleep and chemerin levels. We also observed independent 
associations of chemerin with physical inactivity and 
health dissatisfaction. Not only is visceral fat accumulation 
a consequence of inactivity, but accumulating evidence 
suggests that exercise has anti-inflammatory effects 
independent of obesity status (46). One hypothesis 
is that exercise can downregulate the expression of 
TLR4 and reduce activation of NLRP3 inflammasome, 
reducing cytokine levels (46). The association with health 
dissatisfaction could be explained by the influence of 
prevalent disease status, mental health, and chronic stress, 
as inflammation is induced by these stressors (47). Overall, 
our data largely point to the importance of accounting 
for the complexity of chemerin determinants following 
a holistic approach that covers not just biological and 
physiological domains but also behavioral, emotional, and 
social well-being aspects.

Our data further revealed that higher alcohol 
consumption – and wine in particular – was associated with 
lower chemerin concentrations. This finding is in contrast 
to some previous studies which reported that alcohol was 

positively associated with chemerin levels (13). However, 
those studies did not differentiate between type of alcoholic 
drink and did not adjust for other potential confounders 
such as dietary and metabolic factors. The hypothesis that 
moderate wine consumption may favorably influence 
inflammatory status is strengthened by experimental 
research showing beneficial properties of polyphenols 
abundant in wine in the regulation of chemerin expression 
(48, 49). Furthermore, wine consumption is typical for the 
Mediterranean-style diet as one of the most commonly 
reported dietary patterns in relation to lower inflammation 
levels (50). Further randomized control trials are warranted 
to evaluate the suggested link between wine consumption 
in modulating chemerin concentrations.

Among the dietary factors, our data suggested red and 
processed meat, fruits, SSB, vegetables, dairy products, 
and refined grains as potentially important determinants 
of elevated chemerin concentrations. Linear associations 
with high intakes of SSB and red meat and low intakes 
of dairy products with elevated circulating chemerin 
were observed. These findings come in support of the 
increasing evidence revealing the pro-inflammatory 
potential of consuming Western diets (51, 52, 53) vs the 
anti-inflammatory properties of food components of the 
Mediterranean diet (54). For example, dairy has been studied 
as part of high protein diet in previous work, and results 

Figure 4
Relative variable importance from random forest regression for lifestyle-associated, dietary, and metabolic factors as predictors of chemerin 
concentrations in (A) men and (B) women. The potential predictors are plotted relative to the most important predictor of circulating chemerin per block 
(lifestyle-associated, dietary, and metabolic factors). ALT, alanine aminotransferase; BP, blood pressure; eGFR, estimated glomerular filtration rate; FLI, 
fatty liver index; GGT, gamma-glutamyl transferase.
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revealed decreasing effects on chemerin levels following 
dietary interventions (55, 56). The anti-inflammatory 
effects of dairy could be accounted for by various reasons, 
including benefits of specific fatty acids in dairy fat (such 
as branch-chain fatty acids, medium-chain saturated fats, 
specific trans fats), benefits of fermentation that may 
interact with microbiome, benefits of probiotics, or other 
unknown bioactivities (57). The importance of fruits comes 
in line with studies suggesting high intakes of fruits lead to 
a reduction in pro-inflammatory mediators and enhanced 
immune cell profile (58). The association, however, was not 
well captured in our linear regression model and seemed 
rather U-shaped, deserving attention in future research. 
The inverse associations found with fish and whole grains 
in women also fit to the hypothesis of protective effects of a 
Mediterranean-type diet; however, these variables were not 
selected as important predictors from RFR analyses.

Our findings suggested differences in variable 
importance by sex, that is, sleeping duration, smoking, 
and intake of eggs, fruits, vegetables, and nuts. Various 
physiological and psychosocial differences may have 
possibly accounted for these differences. For instance, 
women are more often exposed to stressors that may have 
inflammatory consequences (59). Having the reduced 
statistical power in these stratified analyses, further studies 
with larger samples are warranted to explore sex-specific 
associations with elevated chemerin concentrations.

We must acknowledge several limitations of our study: 
(1) the cross-sectional study design limits interpretation 
on temporal links between evaluated determinants and 
chemerin concentrations; (2) the measurement of dietary 
intakes is error prone and less precise than biomarker 
measurements. Assuming that measurement error was 
independent of chemerin concentrations or related factors, 
this would bias any potential association toward the null. 
Associations of chemerin concentrations with dietary factors 
could be underestimated; (3) chemerin concentrations 
may show day/night variations (59) which may influence 
observed associations with various traits. However, in our 
study, biosample collections were taken only over daytime, 
minimizing the potential influence of circadian variation; 
(4) residual confounding from subclinical disease could not 
be excluded in our adjusted models.

Conclusions

In this large population-based study, we explored potential 
determinants of elevated chemerin concentrations 
among a wide range of lifestyle-associated, dietary, and 

metabolic factors. The findings come in support of the role 
of chemerin characterizing inflammatory and metabolic 
phenotypes in predominantly healthy adults. Modifiable 
dietary and lifestyle-associated determinants of elevated 
chemerin concentrations require further evaluation in a 
prospective study setting.
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