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Abstract
Background: Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne virus that

causes a significant burden of disease across Asia, particularly in India, with high mortal-

ity in children. JEV circulates in wild ardeid birds and domestic pig reservoirs, both of

which generate sufficiently high viraemias to infect vector mosquitoes, which can then

subsequently infect humans. The landscapes of these hosts, particularly in the context of

anthropogenic ecotones and resulting wildlife–livestock interfaces, are poorly under-

stood and thus significant knowledge gaps in the epidemiology of JEV persist. This study

sought to investigate the landscape epidemiology of JEV outbreaks in India over the pe-

riod 2010–2020 to determine the influence of shared wetland and rain-fed agricultural

landscapes and animal hosts on outbreak risk.
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Methods: Using surveillance data from India’s National Centre for Disease Control

Integrated Disease Surveillance Programme, JEV outbreaks were modelled as an inho-

mogeneous Poisson point process and externally validated against independently

sourced data.

Results: Outbreak risk was strongly associated with the habitat suitability of ardeid birds,

both pig and chicken density, and the shared landscapes between fragmented rain-fed

agriculture and both river and freshwater marsh wetlands.

Conclusion: The results from this work provide the most complete understanding of the

landscape epidemiology of JEV in India to date and suggest important One Health priori-

ties for control and prevention across fragmented terrain comprising a wildlife–livestock

interface that favours spillover to humans.

Key words: Zoonosis, vector-borne disease, landscape epidemiology, wildlife–livestock–human interface,
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Introduction

Japanese encephalitis virus (JEV) is one of the most sub-

stantial causes of childhood encephalitis in Asia.1

Although most infections are asymptomatic or mild (�1

in 250 infections present with severe clinical disease),

mortality is high among those presenting with encephali-

tis.1 In India, a country with a high burden of disease

caused by JEV, 13.7% of 63 854 acute encephalitis

cases from 2010 to 2017 were due to JEV and >17%

of these cases died.2 Although the annual occurrence of

Japanese encephalitis (JE) is high, there is considerable

heterogeneity in its occurrence across the country with

the north-east being a perennial hotspot for outbreaks,

although additional far-removed areas of intractable en-

demicity also persist.2 Japanese encephalitis virus is a

mosquito-borne zoonotic Flavivirus with enzootic and

endemic transmission in animal and human hosts, re-

spectively, although such baseline transmission is regu-

larly punctuated with more substantial outbreaks.3,4

Outbreaks in India are generally seasonal following

monsoon flooding, but transmission can and does hap-

pen at any time of the year with rural populations typi-

cally at highest risk, although some urban locations also

experience outbreaks.2

The infection ecology of JEV is complex and incom-

pletely understood in many landscapes within India. As a

result, viral transmission is often poorly controlled. Culex

tritaeniorhynchus is the most important vector for JEV

across Asia4,5 and has a wide distribution in India.5,6 In ad-

dition to this highly efficient vector, there are at least four

other important vectors (Cx. vishnui, Cx. gelidus, Cx. fus-

cocephala and Cx. pseudovishnui) that also exhibit wide

distribution across South and Northeast India.6,7 Given the

wide range of suitable habitats for these mosquitoes, expo-

sure to JEV vectors is extensive throughout the country.

Wading bird species in the Ardeidae family are the primary

reservoirs and maintenance hosts for JEV,8–11 whereas do-

mestic pigs are key amplifying hosts that frequently accel-

erate spillover to humans.12–17 This general distinction

between host groups notwithstanding, high viraemias have

been shown in several Ardeidae species, so these mainte-

nance hosts may also simultaneously act as amplifying or

bridging hosts, depending on the nature of their interface

with humans or pigs.4 Moreover, some heron species can

readily adapt to some agricultural practices (e.g. rice pad-

dies), increasing contact with people and domestic animals

in these settings.18 Interestingly, specific maintenance

host–mosquito vector–amplifying host interactions have

Key Messages

• This is the first investigation of Japanese encephalitis virus (JEV) outbreak risk in India to show a critical

convergence of natural wetland habitat with rain-fed agriculture and wildlife and domesticated animal reservoirs.

• Associations between JEV outbreaks and the biotic and abiotic environment, and particularly the effect modification

of rain-fed agriculture by wetland habitat and vice versa, demonstrated the potential influence of anthropogenic

ecotones in demarcating risk.

• By focusing on landscape, this investigation provides the most complete understanding of JEV epidemiology in India

to date and identifies unique, multi-tiered transdisciplinary targets for prevention and control.
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been identified showing Cx. tritaeniorhynchus zoophilic

feeding preferences for herons and domestic pigs, which

may further highlight the importance of interface and the

potential for an efficient bridge to human spillover in

landscapes that favour these interactions.4 Although pigs

have been demonstrated as key amplifying hosts for JEV,

some evidence suggests that poultry may also act as bridg-

ing hosts to human spillover in some settings.11,19,20

However, poultry are frequently ignored in relation to

human outbreaks and so their role in JEV epidemiology

represents an additional knowledge gap. Human infec-

tions, although they can present with severe disease, typi-

cally do not generate sufficiently high viraemia to infect

the mosquito vectors and so humans, as dead-end hosts,

do not contribute meaningfully to virus circulation.4

The biotic factors described above define the vectors

and hosts in which JEV circulates and the nature of inter-

species interaction that may drive viral transmission dy-

namics in hosts, but there are equally important abiotic

factors that can influence JEV transmission such as wet-

lands and rain-fed agriculture. Heterogeneous wetlands

not only provide a spectrum of favourable habitat for vec-

tors, they also demarcate critical habitat for key ardeid res-

ervoirs.21 Rain-fed agriculture tends to comprise

agricultural systems that (i) are engaged by poorer, subsis-

tence communities and (ii) exhibit limited or no control of

water distribution in the landscape.22 Both wetland habitat

and rain-fed agriculture can influence mosquito habitats

by shaping the distribution of water in the landscape and

since both landscapes can be sensitive to the modulating

effects of climate, these could represent important vector

foci.23 Moreover, rain-fed crops that lie within or adjacent

to wetland habitat may present ecotones (i.e. areas of spa-

tial transition between ecological communities or

ecosystems) of particular risk since these often also present

landscapes occupied by key animal hosts and may there-

fore exhibit multiplicities of JEV transmission (Figure 1).

In India, although some states have been recognized as hot-

spots of annual JEV outbreaks, the landscape epidemiology

of JEV has not been thoroughly described in these and

other areas of occurrence. The heterogeneity of risk is par-

ticularly noteworthy since viable mosquito vectors can be

found in most parts of the country. As such, the delineation

of JEV outbreak risk across India requires a broader con-

sideration of diverse landscapes, representing shared con-

figurations of wetland habitat, rain-fed agriculture and

animal hosts (Figure 1).

The current study sought to identify the key landscape

features of JEV outbreaks in India. In particular, this inves-

tigation examined the associations between JEV occur-

rence in humans and the distribution of maintenance and

amplifying animal hosts, wetland hydrogeography and

flow dynamics, rain-fed agriculture and climate. Although

considerable heterogeneity in risk was anticipated, it was

hypothesised that river wetlands and rain-fed agriculture

with high pig density and high Ardeidae suitability would

drive the landscape epidemiology of JEV.

Methods

A brief summary of the methods is provided below,

whereas a complete detailed description of all data sources

and modelling procedures is provided in the

Supplementary Methods (available as Supplementary data

at IJE online).

Figure 1 Theoretical representation of landscapes with wetland (a) and rain-fed crops (b) and their potential animal host occupants. Multiple transmis-

sion cycles of Japanese encephalitis virus (JEV) may be realised in such landscapes such as transmission among Ardeidae maintenance hosts (C1),

shared transmission between ardeid birds and domestic pigs and chickens at the wildlife–livestock interface (C2) and concentrated transmission

among domesticated amplification hosts (C3).
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Data sources

Human data

The National Centre for Disease Control’s Integrated

Disease Surveillance Programme (IDSP) maintains ongoing

surveillance of JEV infections under the administration of

India’s Ministry of Health and Family Welfare.24 There

were 294 laboratory-confirmed and location-unique out-

breaks of JEV reported at the village level (spatial resolu-

tion of 1 arc minute, or �2 km) to the IDSP between

1 January 2010 and 31 December 2020 (Figure 2). These

were included as the primary training data in the current

study. A secondary data set (N¼27) comprising all avail-

able independent, laboratory-confirmed community sur-

veys of human and mosquito infection conducted within

the same time period as the IDSP surveillance and with

published location data was used to test the external valid-

ity of these surveillance data.25–28

This study adjusted for potential reporting bias of JEV

infections using the distribution of health system perfor-

mance as a representation of the local capacity to detect

cases. The infant mortality ratio (IMR) was chosen as a

proxy for health system performance since it has been vali-

dated as representative of health infrastructure and health

system performance, and used to assess health service de-

livery and performance in diverse settings.29–31 Human

population density was derived from the Gridded

Population of the Word estimates for the 2010 population

to represent the baseline population at the beginning of the

period under study.32

Animal data

The Global Biodiversity Information Facility (GBIF) was

used to acquire all observations of Ardeidae species

(241 784 individual observations of 15 species;

Supplementary Tables and Figures: Supplementary Table

S1, available as Supplementary data at IJE online) between

1 January 2010 and 31 December 2020 across India so

each species’ distribution could be modelled.33 Due to po-

tential differential accessibility, the background points

used to model Ardeidae species distributions were

weighted by the human footprint (HFP) (see modelling de-

scription below) to correct for potential spatial reporting

Figure 2 The spatial (left) and temporal (right) distributions of Japanese encephalitis virus (JEV) outbreaks in India. Outbreaks that occurred during

the high incidence period are represented in dark shade (burgundy) and those that occurred during the low incidence period in light shade (khaki).

The map does not reflect the authors’ assertion of territory or borders of any sovereign country including India and is displayed only to present the

distribution of JEV occurrence.
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bias in the observations of these birds.34 Pig, chicken and

duck density data were obtained from the Gridded

Livestock of the World35 (GLW).

Environmental data

Water movement through the landscape was quantified us-

ing hydrological flow accumulation obtained from the

Hydrological Data and Maps based on SHuttle Elevation

Derivatives at multiple Scales (HydroSHEDS) information

system.36 Wetlands were classified using the surface water

data from the Global Lakes and Wetlands Database.37,38

Agriculture data were obtained from the Global Food

Security Support Analysis Data project to describe the geo-

graphic extent of crops that employ rain-fed water distri-

bution systems.39 Two primary classes of rain-fed

agricultural systems were represented: dominant rain-fed

crops and fragmented rain-fed crops. Climate data were

obtained from the WorldClim Global Climate database.40

All raster data described above were obtained at a resolu-

tion of 30 arc seconds.

Statistical analyses

Ardeidae species distribution modelling. An ensemble ap-

proach comprising boosted regression trees (BRT), random

forests (RF) and generalised additive models (GAM) was

used to estimate the landscape suitability of each of the 15

Ardeidae species. Model performance, based on the area

under the receiver operating characteristic curve (AUC),

and model fit, based on the deviance, were used to evaluate

each of the three species distribution model (SDM) frame-

works (BRT, RF and GAM) for each ardeid species.

Subsequently, an ensemble landscape suitability was esti-

mated for each species from the three SDM frameworks us-

ing their weighted mean, with weights based on the

AUC.41 Potential spatial sampling bias in the GBIF data-

base was adjusted for by sampling background points pro-

portional to the human footprint as a proxy for landscape

accessibility. After modelling the distributions of individ-

ual Ardeidae species’ landscape suitability, a composite of

ardeid suitability was calculated based on the mean of all

individual species suitability distributions.

JEV outbreak modelling. The JEV outbreaks were fit as a

point process using homogeneous and inhomogeneous

Poisson models.42 The models’ background points were

sampled proportional to IMR, as described above, to con-

trol for potential reporting bias in the JEV infection surveil-

lance. The crude associations between JEV outbreaks and

each landscape feature were initially assessed individually

using a separate simple inhomogeneous Poisson model

(Supplementary Table S2, available as Supplementary data

at IJE online). Features demonstrating bivariate associations

with confidence intervals that did not include 0 were

included as covariates in the multiple inhomogeneous

Poisson models (Supplementary Figures S1–S3, available as

Supplementary data at IJE online)). Interaction between

fragmented rain-fed agriculture and the two dominant wet-

land types, freshwater marsh and river, were examined sepa-

rately using a freshwater marsh–rain-fed crops model and a

river–rain-fed crops model with a corresponding interaction

term included in each model, respectively. In this way, the

interaction between fragmented rain-fed agriculture and

both freshwater marsh and river wetlands was used to eval-

uate the impact of their shared landscapes on JEV risk. The

Akaike information criterion (AIC) assessed model fit,

whereas the AUC assessed model performance. Importantly,

model performance was tested against an independent,

laboratory-confirmed data set derived from the community-

based surveys described above, thus providing a test of the

external validity of the results. Model selection was based

on a comparison of the fit (based on AIC) of the full model

to reduced model groups nested on three broad environmen-

tal domains (hydrogeography, animal hosts and climate).

Assessment of K-functions fitted to the JEV outbreaks

before and after point process modelling with the specified

environmental features was used to determine whether the

selected features adequately accounted for the observed spa-

tial dependencies.

The silhouette images of ardeid birds, pigs, chickens,

mosquitoes and rice in Figure 1 were acquired from phylo-

pic.org and used under the Creative Commons licence.

Results

The landscape suitability of individual Ardeidae species

demonstrated a high degree of overlap with the composite

landscape suitability (niche overlap >88% for all species

and >96% for all but one species; Supplementary Table

S1, available as Supplementary data at IJE online)), so the

composite measure of Ardeidae suitability was used in the

modelling of JEV outbreaks.

The best fitting and performing models of JEV outbreak

risk included all variables except temperature and duck

density under both landscape Scenario 1 (fragmented rain-

fed crops with freshwater marsh wetlands) and landscape

Scenario 2 (fragmented rain-fed crops with river wetlands).

These final models presented in Table 1 correspond to re-

duced Models 7 and 8 in Supplementary Table S3, avail-

able as Supplementary data at IJE online). The final

models were further corroborated by the stepwise selection

procedure implemented using the full point process mod-

els. JEV outbreaks were strongly associated with Ardeidae

suitability (Table 1, Model 1—relative risk (RR) ¼2.77,

95% CI 1.15–6.69; Model 2—RR¼ 2.44, 95% CI 1.02–

1412 International Journal of Epidemiology, 2022, Vol. 51, No. 5

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyac161#supplementary-data


5.86), pig density (Model 1—RR¼1.30, 95% CI 1.22–

1.39; Model 2—RR¼1.29, 95% CI 1.20–1.38) and

chicken density (Model 1—RR¼ 1.09, 95% CI 1.03–1.15;

Model 2—RR¼ 1.09, 95% CI 1.03–1.16) whereby an in-

creasing presence of each in the landscape was associated

with increased risk. Proximity to fragmented rain-fed agri-

culture (Table 1, Model 1—RR¼ 0.976, 95% CI 0.968–

0.985 and Model 2—RR¼ 0.978, 95% CI 0.970–0.987)

was associated with increased risk of JEV outbreaks (in-

verse associations indicate that increasing distance from

this feature was associated with decreasing risk and vice

versa) but not proximity to major non-fragmented rain-fed

agricultural systems (Supplementary Table S2, available as

Supplementary data at IJE online). Importantly, proximity

to both river and freshwater marsh wetlands was also

strongly associated with increased risk and each modified

the association between JEV outbreaks and fragmented

rain-fed crops such that proximity to rain-fed agriculture

was associated with greatest risk in locations where these

crops were shared with, or adjacent to, the two wetland

habitats and risk decreased with increasing distance from

wetlands even as proximity to rain-fed crops remained

constant (Table 1). The reverse, of course, is also true:

proximity to rain-fed agriculture also modified the associa-

tions between JEV outbreaks and proximity to the wetland

habitats. As expected, climate, especially precipitation,

was also strongly associated with JEV outbreaks.

Estimates of the distribution of JEV outbreak risk with

95% confidence limits are presented in Figure 3. The spa-

tial dependency apparent in JEV outbreaks as estimated by

the homogeneous K-function (Figure 4, left panels) was

largely accounted for by the final inhomogeneous Poisson

models (Figure 4, right panels).

Discussion

This is the first investigation of JEV outbreaks to consider

the impact of shared landscapes with key wildlife and do-

mesticated animal reservoirs for JEV while simultaneously

assessing the convergence of natural wetland habitat with

rain-fed agriculture. Wild ardeid and domestic pig and

chicken hosts were strongly associated with JEV outbreak

risk. River and freshwater marsh systems and their shared

landscapes with fragmented rain-fed agriculture were also

strongly associated with outbreak risk. This configuration

of landscape features presents the most substantive evi-

dence to date of ecotonally-driven risk for JEV outbreaks

in India and could have potentially important policy impli-

cations across multiple disciplines and sectors for the con-

trol and prevention of outbreaks. For example, some

features may be best mitigated by local municipalities due

to their highly localised context, such as the sharing of

space between ardeid birds and domestic animals, whereas

features requiring more resource-intensive measures, such

as veterinary surveillance of pigs and chickens, may be

Table 1 Adjusted relative risks and 95% confidence intervals for the associations between Japanese encephalitis virus outbreaks

and each landscape feature as derived from the best fitting inhomogeneous Poisson models. Each landscape feature is adjusted

for all others in each of the two models.

Landscape feature Relative risk 95% confidence interval P-value

Model 1: Freshwater marsh–rain-fed crops interaction

Ardeidae landscape suitability (%) 2.77 1.15–6.69 0.01

Pig density (deciles) 1.30 1.22–1.39 <0.00001

Chicken density (deciles) 1.09 1.03–1.15 0.003

Distance to river (km) 0.997 0.995–0.999 0.005

Distance to freshwater marsh (km) 0.996 0.995–0.997 <0.00001

Distance to fragmented rain-fed agriculture (km) 0.976 0.968–0.985 <0.00001

Freshwater marsh:fragmented rain-fed agriculture 1.00008 1.00005–1.0001 <0.00001

Mean precipitation during the wettest quarter (10 cm) 1.008 1.006–1.009 <0.00001

Mean precipitation during the driest quarter (10 cm) 1.15 1.10–1.20 <0.00001

Model 2: River–rain-fed crops interaction

Ardeidae landscape suitability (%) 2.44 1.02–5.86 0.0002

Pig density (deciles) 1.29 1.20–1.38 <0.00001

Chicken density (deciles) 1.09 1.03–1.16 0.001

Distance to river (km) 0.996 0.994–0.998 0.00007

Distance to freshwater marsh (km) 0.997 0.996–0.998 <0.00001

Distance to fragmented rain-fed agriculture (km) 0.978 0.970–0.987 <0.00001

River:fragmented rain-fed agriculture 1.0001 1.00007–1.0002 <0.00001

Mean precipitation during the wettest quarter (10 cm) 1.007 1.006–1.009 <0.00001

Mean precipitation during the driest quarter (10 cm) 1.15 1.10–1.20 <0.00001
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more effectively targeted and resourced by state or national

authorities.

The family Ardeidae comprises the wading birds, her-

ons (including egrets) and bitterns. Ardeid birds have been

recognised as key maintenance hosts for JEV.8–11 Domestic

pigs, conversely, are important amplification hosts due to

the high viraemia associated with porcine infection.12–17

Pigs are also important since these livestock animals typi-

cally occupy space in close proximity to humans, although

several heron species, such as the cattle egret, Bubulcus

ibis, are also capable of thriving in anthropogenic land-

scapes.43 Therefore, as expected, both ardeid birds and do-

mestic pigs were strongly associated with outbreak risk in

the current study. Importantly, this study also highlighted

an association between chickens and humans spillover,

which is noteworthy since poultry are frequently over-

looked in domesticated animal surveillance for JEV despite

previous investigations identifying chickens as viable

hosts.11,19,20,44 As such, JEV surveillance could benefit

from the inclusion of chickens in monitoring programmes

rather than focusing on pigs alone, the stronger influence

of the latter notwithstanding. Importantly, the current

study did not observe and assess specific interactions

between ardeid birds and pigs or chickens across India,

which precludes any definitive conclusions about the roles

of these hosts in the infection ecology of JEV. Field investi-

gations of interspecific interactions in local settings will be

required to verify the results from the current study and ul-

timately define how different classes of hosts operate with

respect to viral circulation and spillover.

Wetlands can provide important habitat for mosquitoes

and therefore increased outbreak risk associated with the

provision of a stable source of surface water in these habi-

tats is intuitive. Nevertheless, wetland systems are not

homogeneous geomorphologically or ecologically, and nei-

ther were they homogeneous with respect to JEV occur-

rence as clearly demonstrated by the lack of association

between outbreak risk and proximity to any surface water

type (Supplementary Table S2 (available as Supplementary

data at IJE online)). Instead, river and freshwater marsh

wetlands dominated JEV outbreak risk, with both also

demonstrating interaction with fragmented rain-fed agri-

culture suggesting that shared landscapes of wetland habi-

tat and fragmented rain-fed crops may be particularly

important to the landscape epidemiology of JEV out-

breaks. These associations are intuitive because mosaics of

Figure 3 Japanese encephalitis virus (JEV) outbreak risk based on predicted intensity at 1.0 arc minutes (�2 km). The centre panels depict the distribu-

tion of JEV risk for freshwater marsh-fragmented rain-fed agriculture (top) and for river-fragmented rain-fed agriculture (bottom) models as deciles of

the predicted intensities from the best fitting and performing inhomogeneous Poisson point process models (Table 1). The left and right panels depict

the lower and upper 95% confidence limits, respectively, for the predicted intensities. The map does not reflect the authors’ assertion of territory or

borders of any sovereign country including India and is displayed only to present the distribution of JEV occurrence.
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wetlands and rain-fed agriculture may represent landscapes

of more seasonally stable precipitation or water availability

compared with rain-fed crops that are far removed from

wetland habitat. Furthermore, fragmented rain-fed agricul-

ture within or adjacent to wetlands may also demarcate

landscapes with limited control of water dispersal following

inundation,22 which is particularly relevant to the annual

monsoon flooding and which corresponds to the season of

highest JEV incidence. It is also important to note that rain-

fed agriculture is typically a system employed by resource-

limited subsistence farmers, with fragmented agricultural

landscapes often corresponding to more economically disad-

vantaged communities22 and which also tend to represent a

preponderance of the annual JEV incident cases.2 Therefore,

not only do these findings provide further insight into the

epidemiology of JEV outbreaks, they also identify vulnera-

ble communities that are likely to be at greatest risk and

which may yield maximum benefit from targeted resource

allocation to prevent future outbreaks.

As expected, increasing precipitation was associated with

increased JEV outbreak risk. Interestingly, temperature was

inversely associated with JEV outbreak risk bivariately, but

when considered in the multiple point process models

with the other landscape features, the association did not

persist. Future work will need to explore the effects of

specific weather events and patterns with the requisite

temporal resolution to link fluctuations in precipitation

and temperature with individual JEV outbreaks. For ex-

ample, one study examined a long-term time series of JEV

occurrence and found that increases in both rainfall and

temperature were associated with increased risk.23

However, this work was limited to one district in one

state, so more work will require examination across many

more of India’s heterogeneous landscapes to better under-

stand how weather fluctuation may operate in different

landscapes. Nevertheless, the association between JEV

and precipitation has shown broad geographical consis-

tency as manifested in China, for example, where cases

were mostly concentrated in landscapes with annual pre-

cipitation of >400 mm irrespective of whether these land-

scapes were characterised by warm-temperate, semi-

tropical or tropical climate regimes.45

Figure 4 Homogeneous (left panels) and inhomogeneous (right panels) K-functions for the Japanese encephalitis virus (JEV) outbreak point process.

The homogeneous K-function is not an appropriate fit due to the spatial dependency in JEV outbreaks as depicted by the divergent empirical (solid

line) and theoretical functions (the latter is the theoretical function under complete spatial randomness, represented by the dashed line with confi-

dence bands in grey). In contrast, the freshwater marsh-fragmented rain-fed agriculture (top) and river-fragmented rain-fed agriculture (bottom)

model-based inhomogeneous K-functions show that the spatial dependency was accounted for by the model covariates (overlapping empirical and

theoretical functions). The x-axes, r, represent increasing radii of subregions of the window of JEV outbreaks, whereas the y-axes represent the K-

functions.
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It is important to acknowledge and discuss some addi-

tional limitations attending this work. First, although the

national IDSP surveillance system was used to capture all

reported outbreaks under investigation, we recognise that

reporting bias may still be present. To correct for potential

reporting bias, rather than randomly selecting background

points for the point process models, background sampling

was instead weighted by the distribution of IMR as a ro-

bust indicator of health system accessibility and infrastruc-

ture. Second, the species distribution models used to

construct Ardeidae suitability were based on human obser-

vations and so are also subject to reporting bias, insofar as

bird accessibility is likely to impact reporting effort.

Reporting bias in Ardeidae observations was corrected by

weighting the sampling of background points by HFP as an

indicator of accessibility. In addition, although this study

was able to estimate the landscape suitability of several

Ardeidae species, there were some species for which there

were too few observations to validly model suitability. As

such, we concede that this work is not an exhaustive repre-

sentation of all possible species niches and therefore some

aspects may yet remain undescribed by these findings.

Third, the climate measures interrogated in the models pre-

sented were based on decadal averages over the period

from 1950 to 2000, which assumes homogeneity over this

time period as well as over the period of JEV outbreak sur-

veillance under investigation. However, the current study

sought to model the influence of climate features in the

landscape rather than specific weather events, so these

assumptions were deemed appropriate.

This study showed that JEV risk in India was strongly

associated with the distribution of animal hosts and the

shared landscapes between fragmented rain-fed agriculture

and river and freshwater marsh wetlands. Importantly, the

convergence of livestock and wildlife hosts with ecotonal

landscapes of rain-fed agriculture and wetland habitat may

provide unique transdisciplinary opportunities to target

distinct aspects of JEV landscape epidemiology across dif-

ferent sectors within local and state (or national) munici-

palities where limited and differential resource capacities

will likely require collaborative effort for the optimal con-

trol of JEV outbreaks. This has logistical appeal as some

interventions may be best suited to delivery at the local

community level, whereas others may be more efficiently

delivered by regional actors with greater resource availabil-

ity. For example, the World Health Organization has out-

lined potential forms of landscape manipulation and

modification, such as the rotation or synchronisation of

crop cycles, alternating crop varieties with variable grow-

ing seasons or mechanical intervention on water movement

through the landscape to subvert vector breeding.46

Moreover, the mitigation of vector abundance directly

associated with rain-fed agriculture may be negated where

wetland habitat is also present representing a refuge for

mosquitoes from control measures and therefore a need for

more direct monitoring of local ecotones and adjacent wet-

land ecosystem interiors. Alternatively, there may be op-

portunities for the repositioning of livestock animal pens at

sites more distal to human residences, or locations of agri-

cultural activity, to limit the vector–animal–human inter-

face.46 These kinds of hyperlocal interventions could be

ideally suited to administration by local municipalities

such as the subdistrict taluks (tehsils), particularly since

such interventions often require working closely with af-

fected communities. In contrast, targeting landscape fea-

tures that require more resource-intensive interventions

such as broad livestock surveillance, or vaccination cam-

paigns for humans (or livestock), may be more effectively

orchestrated at the state or national levels. Furthermore,

the coupling of habitat conservation with food security—a

necessary and fundamental cooperative endeavour for the

sustainable sharing of space between humans and wildlife

in wetlands—will further require the collaboration of mul-

tiple sectors at local and state levels of organisational infra-

structure. As a starting point, the current work highlights

the importance of developing transdisciplinary, environ-

mentally responsive JEV surveillance infrastructure for vec-

tors, animals, humans and ecosystems to inform effective

and equitable interventions that operate in genuine service

to One Health.
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The recent (and ongoing) pandemic of COVID-19 is the

worst emerging infectious disease (EID) we have seen for

some decades—the worst since HIV in the 1980s. Despite

a historical ‘honeymoon period’ when it was thought that

medical science could overcome the infectious disease

threat to population health,1 EIDs are here to stay. ‘New’

pathogens, like SARS-CoV-2 (the virus that causes

COVID-19) and HIV, continue to emerge, generally ac-

companied by evidence of one or more of the characteris-

tics that define EIDs: increasing case numbers, greater
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