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Research into high linear energy transfer (LET) radiotherapy now spans over half a century,
beginning with helium and deuteron treatment in 1952 and today ranging from fast
neutrons to carbon-ions. Owing to pioneering work initially in the United States and
thereafter in Germany and Japan, increasing focus is on the carbon-ion beam: 12 centers
are in operation, with five under construction and three in planning. While the carbon-ion
beam has demonstrated unique and promising suitability in laboratory and clinical trials
toward the hypofractionated treatment of hypoxic and/or radioresistant cancer,
substantial developmental potential remains. Perhaps most notable is the ability to paint
LET in a tumor, theoretically better focusing damage delivery within the most resistant
areas. However, the technique may be limited in practice by the physical properties of the
beams themselves. A heavy-ion synchrotron may provide irradiation with multiple heavy-
ions: carbon, helium, and oxygen are prime candidates. Each ion varies in LET distribution,
and so a methodology combining the use of multiple ions into a uniform LET distribution
within a tumor may allow for even greater treatment potential in radioresistant cancer.

Keywords: heavy-ion radiotherapy, carbon-ion radiotherapy, helium-ion irradiation, radiation therapy,
multi-ion radiotherapy
INTRODUCTION

Seventy years have passed since Lawrence and Tobias first employed helium and deuteron particle
beams in human patients, beginning the clinical study of charged particle radiotherapy (CPT), or
hadrontherapy (1, 2). Their results built off the pioneering experience of Stone and colleagues, who
treated 226 patients with neutrons from 1936 to 1938, with efforts only abridged by World War II
(3, 4). As research resumed following the war, and a deeper understanding of radiobiology and the
role of linear energy transfer (LET) developed, Catterall and colleagues began neutron radiotherapy
treatment at Hammersmith Hospital in London in 1965.

While neutron radiotherapy exhibits high-LET, its conventional dose distribution limited the
beam due to inherent toxicity unmitigated by fractionation (5). CPT was viewed as a viable
alternative, combining high-LET with the Bragg peak, a physical characteristic of ion radiotherapy
in which dose is deposited at an inverse of particle energy (6). This combination of physical and
radiobiological advantages over conventional radiotherapy leads to an enhancement of the
therapeutic ratio (7), with areas of higher LET experiencing higher relative biological effect
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(RBE); that is, an equal physical dose of CPT will have a resultant
increased effect compared with conventional radiotherapy.

This expanded interest localized at the Lawrence Berkeley
National Laboratory (LBNL). Following commissioning of the
Bevalac in 1971, evaluation of fast neutron, proton, and negative
pions, as well as helium, carbon, neon, nitrogen, silicon, and
argon-ion beams began (3, 8). Each ion expresses high-LET
regions within the particle travel path: the resultant distribution
of LET varies between particles, as does the theorized physical
dose distribution advantage. High-LET regions range from
extreme distal in proton (9) to increasingly proximal with
increase in atomic size (6). Each ion demonstrated benefits and
limitations, with helium employed for improved dose
localization and heavier-ions to amplify biological effect (10).
Though initial work was promising, research ceased when the
Bevalac and Bevatron were decommissioned in 1993 (8).
MODERN PARTICLE THERAPY

The advantages of particle radiotherapy are not without cost: the
initial capital expense of particle centers is prohibitive and cost-
benefit ratio remains a topic of considerable discussion (11–15).
Moreover, in comparison with the relatively uniform ionization
provided by conventional radiotherapy, with each ion comes
varying considerations of intrabeam LET distributions, range
uncertainty, lateral scattering, and distal fragmentation (16), as
well as accurate dose deposition modeling along the beam path
within varying tissues (17), and, finally, the combination of these
factors into a treatment algorithm capable of providing a
uniform biological effect within the treatment target. These
latter elements, critically important for successful delivery of
patient care, complicated the translation of photon doses into
ion-beam treatment and informed the use of dose escalation
clinical trials for determination of target and ceiling doses for
histological sites (6).

Particle monotherapy has dominated discussion to date, and
debate today continues: is there an ideal particle for treatment,
and particularly for cost effective treatment? (18). When the
Heavy Ion Medical Accelerator in Chiba (HIMAC) was
constructed at the National Institute of Radiological Science
(NIRS, Japan) in the early 1990s, prior experience at the
Bevalac as well as previous usage of neutron at NIRS led to the
selection of carbon-ions as the best ion for treatment, balancing
considerations of particle size, center cost, and the perceived
similarity of the RBE of the carbon-ion in its Bragg Peak to prior
studies with neutron (6, 19).

Carbon-ion radiotherapy (CIRT) has remained under
development for 30 years at the HIMAC, as well as at the
German Society for Heavy Ion Research (Gesellschaft für
Schwerionenforschung, GSI) and later Heidelberg Ion Beam
Therapy Center (HIT) , w i th s ign ificant phys i ca l ,
radiobiological, and clinical outcomes reported (6, 7). Clinical
trials with CIRT have demonstrated enhanced kill effect in target
tumors while simultaneously sparing normal tissue, with
promising implications for reductions in secondary cancer
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incidence (20). The effect of the high-LET beam on
traditionally radioresistant cancer has demonstrated unique
promise, including in recurrent rectal cancer (21, 22), pancreas
(23–25), glioma (26, 27), sarcoma (28–30), head-and-neck (31,
32), and others (7), with notable radiobiological effects seen in
tissue versus conventional irradiation (33–35).

Nonetheless, CIRT can still result in imperfect local control,
be this due to insufficient dose, uniquely radioresistant areas of
the tumor [ranging from hypoxic regions (36) to isolated highly
resistant stem-like cells (37)], or imperfect modeling of dose
delivery (38). Other ions have demonstrated differing physical
advantages, particularly with regard to variations in LET and
physical dose distribution. After promising results at the LBNL,
helium-ion radiotherapy has resurged through ongoing clinical
translation at Heidelberg. Helium offers a decreased lateral
scatter effect versus proton (39), with less fragmentation tail
dose versus carbon. Kopp and colleagues have demonstrated
single field setups with helium with an RBE50% of 1.56 versus 2.16
for carbon in glioma, and 1.44 vs. 1.99 in ACC; this comes,
however, with significantly lowered LET50% (14.66 vs. 73.00 keV/
micrometer in glioma and 13.39 vs. 64.92 in ACC). The authors
concluded that combining the two would provide for more stable
LETd and RBE distributions versus monotherapy with either
beam (40). Meanwhile, the United States has principally pursued
proton irradiation with forays into LET optimization
(NCT03750513), but has to date been unable to leverage the
potential benefits of heavy-ion high-LET radiation in
patient care.
LET AND RBE

The ability to sterilize a tumor is influenced both by physical dose
delivered as well as the inherent LET of the beam path as it passes
through the tumor. Heterogeneity of underlying tissue and the
oxygen concentration within that tissue complicate the
translation of target dose to cell-killing effect yet further,
amplified by a current inability to study in vivo cell-level
differences (41). Notably, the oxygen enhancement ratio, that is
the particular radiation needed to result in equivalent treatment
in the presence or absence of oxygen, is lower in particle therapy
than with photon and generally increases with LET and decreases
with atomic mass; this informs the apparent increased efficacy of
heavy-ion radiotherapy in hypoxic conditions (19). To facilitate
comparative utility between carbon-ion and photon irradiation,
the RBE of a physical dose within a target was modeled: the
Kanai model is experimentally derived and similar to the original
models utilized at the Bevalac, defining RBE based on 10%
survival of human salivary gland tumor cells under aerobic
conditions (42). The microdosimetric kinetic model and local
effect model were alternatively developed, the former for
scanning CIRT in Japan and tuned to the Kanai model (43),
while the latter was developed for European centers based on a
biophysical modeling approach (44). Variations between the
models have complicated regimen comparability between
world centers (38).
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Bassler and colleagues have demonstrated that even with
equivalent dose distributions, substantially different LET
distributions may be seen owing to LET dilution through
secondary low-LET fragments generated through inflight
nuclear reactions with increasing depth (45). The result is an
equivalent dose delivered with variabilities in RBE. Clinically,
this uncertainty has been effectively circumvented through dose
escalation trials, tailoring dose delivered to levels of unacceptable
toxicity. These phase I/II clinical trials have enabled the safe
delivery of significantly ablative doses of CIRT (6), but with poor
selectivity for delivering enhanced RBE to target regions within a
tumor. LET/kill-painting is one method to bridge the gap
between dose prescribed and cell kill-effect delivered: by
optimizing and/or making uniform the high-LET region of
CPT, oxygen effect may be minimized, thereby improving the
uniformity of cell kill effect delivered (41). Moreover, low-LET
regions of the beam could be preferentially relocated to healthy
tissue, in theory further reducing healthy tissue toxicity (46).
LET-weighted doses have effectively been demonstrated in
proton radiotherapy (47).

The clinical relationship between LET distribution within a
tumor and tumor control has been explored in CIRT. Hagiwara
and colleagues studied the influence of dose-averaged LET on
CIRT-irradiated pancreatic tumor control in 2020 (48),
retrospectively evaluating 18 patients treated with 55.2 Gy
(RBE) CIRT at a median of 22 months. Four infield central
local recurrences were noted. While dose was uniform
throughout the tumor, LET was lower within the central
compartment of the target volume, owing to how particle
paths were overlapped to generate a spread out Bragg peak.
Notably, local control was improved in those patients with
higher minimum dose-averaged LET within the gross tumor
volume (GTV), independent of the minimal dose and D98
delivered (48). Improved dose-averaged LET within the GTV
may thereby improve local control, though the ability to fully
control the LET within the tumor target may be limited by the
LET distribution inherent to the carbon-ion beam, and the
tumor’s relationship to nearby radiosensitive organs.

Okonogi and colleagues similarly considered uterine cancer,
focusing on whether LET was correlative with late rectal toxicity
rate (49). In evaluating 132 patients with CIRT-treated uterine
carcinoma and greater than 6 months of follow-up, nine were
noted to have grade 3 or 4 late rectal complications. Regression
analysis demonstrated an association with rectal D2cc, but not
with dose-averaged LET nor physical dose. This echoes similar
studies in proton that have demonstrated that LET and physical
dose alone are poor correlative measures, and rather that the
RBE-weighted dose is critical (50–52).

Seeking adequate base dose with strategically deployed high-
LET irradiation led to initial combination studies, specifically
modern CIRT-boost treatments (45) (p). Boost treatments
typically combine CIRT or the lower-LET proton beam with
intensity-modulated [photon] radiation therapy (IMRT),
tomotherapy, or other forms of conventional radiotherapy (26,
53–59). Schulz-Ertner and colleagues in 2005 deployed carbon-
boosted photon on adenoid cystic carcinoma to achieve three
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times the locoregional control of photon at 4 years (60). Another
trial is investigating CIRT-boost for image-guided brachytherapy
in locally advanced cervical cancer (61). Others have aimed to
combine CIRT with proton, such as in one phase I/III trial on
glioblastoma at the Shanghai Proton and Heavy Ion Center (62).
Principally, the majority of modern high-LET clinical treatment
has employed CIRT alone (6), and without LET optimization.

In seeking optimized LET within target tissues, Bassler and
colleagues originated the concept of LET painting, building off
the pioneering photon dose-painting concept by Ling et al. (63),
and have evaluated multiple heavy-ions. For instance, LET-
painting with carbon-ions allowed hypoxic subvolume control
to a limit of 0.5 cm3; oxygen-ions, by comparison, could be
extended to 2 cm3, and were further extendable with dose
escalation (46). However, higher-LET oxygen-ion radiotherapy
may cause increased normal tissue damage (41); no single ion has
emerged as optimized for dose distribution, oxygen
enhancement ratio (OER), nor overall translatability to
hypoxic/radioresistant tumor kill effect.

Multi-ion radiotherapy (MIRT) theoretically provides for the
benefits of each ion to be synergistically deployed in treatment.
While intensity-modulated and LET-painted CIRT alone may
achieve a high dose-optimized LET within a majority of tumor
targets, the beam’s utility is limited by its inherent physical LET
distribution. As such, incorporating the varying LET
distributions of other heavy-ions into a dose-LET-optimized
composite treatment plan may allow for new treatment options
for patients with complex cancers. Lower-LET beams such as
helium may offer improved margin dosage where tumors lie
close to normoxic, healthy tissues, while higher-LET irradiation
can be layered into hypoxic, radioresistant regions. Adaptive
treatment planning would involve optimizing across multiple
ions so as to achieve ideal cell-killing effect in the target tumor.

This is an easy vision to articulate, but decades in the making;
innumerable challenges remain prior to trial development.
ONGOING DEVELOPMENT OF MIRT

CIRT treatment at the NIRS-QST today combines pencil-beam
raster (re)scanning (64–66), a phase-controlled 3D scanning
irradiation system (67), motion management incorporating fast
rescanning with respiratory gating (64, 68), and a
superconducting gantry (69), enabling the conformal painting
of heavy-ions voxel-by-voxel through a target and in theory the
employment of combination dose- and LET-based treatment
plans with LET/kill-painting of tumor tissue. Within this system,
NIRS-QST plans to deploy helium, carbon, oxygen, and neon-
ions for MIRT (70). Optimization of ion source insertion, and
the rapid changing of sources, is critical for clinical throughput in
a MIRT facility. This will use a single electron cyclotron
resonance ion source (ECR-IS) with fast gas-switching
operation. Particles are electron-stripped and then accelerated
within a synchrotron, with beam purity assured due to mass
separation owing to variation in mass-to-charge ratios. As
helium-ions bear an equivalent ratio, Mizushima and
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colleagues developed a method to ensure beam purity prior to
treatment using an ionization chamber and Faraday cup, with a
contamination rate less than 1% (70).

In 2016, Inaniwa and colleagues introduced amethod to deliver
two or more ion species in one treatment session, termed intensity
modulated composite particle therapy (IMPACT) (71). By
employing proton, helium, carbon, and oxygen ions, they were
able to delineate valid prescribed LET ranges within a water
phantom in opposing and orthogonal geometries. They further
demonstrated the optimization method in a simulated prostate
case, incorporating all four above ions. They were able to adjust
the prostate, planning target volume, and rectum LETs to 80 keV/
µm, 50 keV/µm, and below 30 keVµm, respectively, while
maintaining dose in the PTV to a uniform 2 Gy. This served as
proof of concept for the IMPACT system to dose and LET-average
multiple ions within the treatment planning system at the NIRS. A
demonstration of this system in pancreatic cancer may be seen in
Figure 1, demonstrating the CIRT dose and LET distributions
(Figures 1A, B), and the equivalent LET distribution using the
IMPACT system (Figure 1C), with increased LET to 100 in the
center field and decrease of OER from 2.8 to approximately 1.5.
However, the IMPACT system at that time did not describe
biological effect, and the authors noted that further development
was required prior to beginning clinical trialing.

Inaniwa et al. additionally explored the nuclear interactions of
particles within patients, adapting and validating the previously
described planar integrated dose distribution measured in water
(PID) correction method for scanned CIRT for treatment plans
involving helium-, carbon-, oxygen-, and neon-ion beams (72).
They similarly verified the stochastic microdosimetric kinetic
model following previous work to optimize computational time
and memory space, and verified the model within two cell
irradiation experimental models, HSGc-C5 and MIA PaCa-2,
which have notably different radiation sensitivities, for
hypofractionated MIRT (73). This enables treatment planning
of hypofractionated MIRT within treatment systems utilizing the
MK model, principally centers in Japan.

At GSI, Scifoni et al. in 2013 developed an initial method for
including OER in ion beam treatment planning (74, 75).
Following the work by Tinganelli and colleagues of LET-
mediated kill painting (41), Sokol et al. extended the
methodology to incorporate multiple ions and voxel-by-voxel
target oxygenation data. Utilizing this plan with helium and
oxygen ion beams, mean brainstem dose was reduced by 3–5%
for helium and 10–12% for oxygen, respectively, with full
biological optimization. Dosimetric validation of these particle
species (76), validation of Monte Carlo modeling FLUKA code
(77), and experimental validation of the resultant treatment
planning tool against dosimetric measurements in water, have
similarly been performed (78).

Kopp and colleagues followed with the “PaRticle thErapy using
single and Combined Ion optimization StratEgies” (PRECISE)
treatment planning system, allowing for delivery of single field
multi-ion particle therapy treatments (40). They validated these
plans across three patient cases, as well as in a murine glioma cell
line, generating a highly uniform physical dose while reducing
Frontiers in Oncology | www.frontiersin.org 4
high dose averaged LET gradients in comparison with CIRT
monotherapy. They found that biophysical stability in the target
volume was similar to protons, while normal tissue dose was
similar or improved versus helium dose planning, with < 1%
deviation from the planned target RBE value.
CHALLENGES, FUTURE DIRECTIONS,
AND CONCLUSIONS

Significant considerations are required for the possible
translation of these initial developments within MIRT to
A

B

C

FIGURE 1 | (A) Dose distribution of carbon-ion radiotherapy (CIRT) for a
case of pancreatic cancer. (B) Linear energy transfer (LET) distribution of
the same case. Note overlying LET distribution near organs-at-risk.
(C) The LET of the same case combining helium, carbon, and oxygen-ion
treatments using the intensity modulated composite particle therapy
(IMPACT) system.
February 2021 | Volume 11 | Article 624786

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ebner et al. Potential of Multi-Ion Radiotherapy
clinical treatment. Incorporation of lighter ions to reduce
damage to target-adjacent normal tissues may risk underdosing
relative single-beam irradiation. Careful multi-angle dose
simulation, modeling, and validation is required. Center
treatment throughput will require consideration: the NIRS has
developed a system capable of source switching in under one
minute, with ongoing development to reduce source switching to
< 5 s. Treatment times could thereby only be limited by patient
repositioning. Further details regarding a multi-ion clinical
treatment system at the NIRS-QST are forthcoming.

Notably, dose-averaged LET is a macroscopic quantity, and
may poorly approximate the physical reactions occurring at a
cellular level (79). LET and RBE do not form a linear
relationship, with track structure and microdosimetry
potentially allowing an outsized increase in RBE with increases
in LET (80, 81). Consequently, the translation of physical dose to
a uniform cell-killing biological effect is model-dependent.
Biological effects in varying tissues unique to any given ion
may be as-yet unknown, and translation of physical dose and
LET-optimized distributions to kill effect will require
significant development.

To date, both the MKM and LEM models assume a normal
oxygen pressure. As the key treatment targets for MIRT are
focused on radioresistant and hypoxic tumors, evaluation of
tissue oxygen conditions and resultant biological effects will be
needed (82). Moreover, variation in biophysical models between
ions (38, 83) requires reconciliation, including means by which
to evaluate clinical uncertainty during treatment planning. As
current dose plan arrangements encounter difficulty in
intermodal translation (38), careful planning with MIRT is
required so as not to exacerbate these issues during initial
clinical trials. Further consideration of what range of LET
provides the ideal clinical effect is also needed (84). Similarly,
biological differences inherent to dose rate are currently being
explored (i.e., FLASH); current biophysical modeling assumes a
normal dose rate, and variations in treatment effect between dose
rates may also influence future CPT and MIRT treatment.
Developments within these areas of study will deserve careful note.

An external, international assessment of CIRT at NIRS was
conducted in 2015, noting the significant promise of CIRT and
recommending key consideration for methodologies improving
patient throughput while reducing cost (7). These thoughts
similarly inform efforts to translate MIRT from bench to
Frontiers in Oncology | www.frontiersin.org 5
bedside. Concerns regarding secondary cancer development
with ion therapy remain, though a propensity score-weighted
analysis comparing CIRT, conventional radiotherapy, and
surgery for localized prostate cancer found a lower risk of
subsequent primary cancer following CIRT vs. photon
irradiation (20). Further verification will be needed as novel
ion therapies are employed in treatment.

Particle irradiation has been studied for 70 years. Today, as
the United States endeavors to construct its first heavy-ion
capable facility and centers in Europe and Asia continue
development of heavy-ion, multi-ion radiotherapy appears
technically feasible for future treatment of radioresistant and
hypoxic cancers. Robust international collaboration will be
critical to produce dose modeling consensus, build upon the
common borders of radiobiology and particle physics, and
ensure access of the global population to novel treatments
within radiation oncology. Significant technological and
radiobiological progress has been made toward realizing initial
trials for multi-ion radiotherapy, but more remains.
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