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Abstract: In preparation for personalized nutrition, an accurate assessment of dietary intakes on
key essential nutrients using smartphones can help promote health and reduce health risks across
vulnerable populations. We, therefore, validated the accuracy of a mobile application (app) against
Food Frequency Questionnaire (FFQ) using artificial intelligence (AI) machine-learning-based ana-
lytics, assessing key macro- and micro-nutrients across various modern diets. We first used Bland
and Altman analysis to identify and visualize the differences between the two measures. We then ap-
plied AI-based analytics to enhance prediction accuracy, including generalized regression to identify
factors that contributed to the differences between the two measures. The mobile app underesti-
mated most macro- and micro-nutrients compared to FFQ (ranges: −5% for total calories, −19% for
cobalamin, −33% for vitamin E). The average correlations between the two measures were 0.87 for
macro-nutrients and 0.84 for micro-nutrients. Factors that contributed to the differences between the
two measures using total calories as an example, included caloric range (1000–2000 versus others),
carbohydrate, and protein; for cobalamin, included caloric range, protein, and Chinese diet. Future
studies are needed to validate actual intakes and reporting of various diets, and to examine the
accuracy of mobile App. Thus, a mobile app can be used to support personalized nutrition in the
mHealth era, considering adjustments with sources that could contribute to the inaccurate estimates
of nutrients.

Keywords: personalized nutrition; mobile applications (mobile app); Food Frequency Questionnaire
(FFQ); modern diets; generalized regression; mHealth; dietary record; agreement and bias

1. Introduction

A dietary intake of key essential nutrients is important to promote and maintain
human health and to reduce health risks across the life span, which can be achieved with
a personalized diet [1–6]; however, significant proportions of the population do not con-
sume the recommended daily intake of essential nutrients [7,8]. Inadequate intake of
essential macro- and micro-nutrients can lead to mortality, morbidity, and create a burden
on healthcare systems [1–6]. With the accessibility of modern smartphones, the essential
micro-nutrients can be assessed conveniently through internet-based health applications
(apps) to enhance healthy nutrigenomics and epigenetics [9–11]. In addition to energy-
producing macro-nutrients (energy nutrients) of carbohydrates, protein, and fats [12,13],
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micro-nutrients such as folate (B9), cobalamin (B12), choline, and amino acids, including
methionine and glycine, are methyl donors essential for DNA methylation in nutrige-
nomics pathways [4,14–17]. Hence, accurate measurement tools in assessing macro- and
micro-nutrients are critical for personalized nutrition to improve health outcomes across
vulnerable populations [18,19].

The Food Frequency Questionnaire (FFQ) has been comprehensively used to examine
the associations between diets and disease risks across populations in many countries with
its variations of diets [19–23]. The FFQ includes the frequency and portion size of foods and
beverages consumed over time (30 days to 12 months) with additional items to adjust fat
intakes from various sources [22,24–26]. FFQ is advantageous for its low-cost, relative ease
of use, ability to measure dietary intake over time, and ability to measure nutrition con-
sumption in large populations [19,21,26]. FFQ was validated as a dietary measure [19–24],
against 1-day [21], 2-day [23,24], 3-day [20,22], and 6-day [19] dietary records with the
caloric ranges of 500–5000 [27,28], in association with disease risk (506 colorectal cancer
patients and 673 controls aged 20–74 years) [27]. As an example, FFQ was validated
against a 4-day weighted food record with a convenient sample (female participants aged
16–45 years of Māori, Pacific, or European ethnicity); therefore, this information might
not be generalized to other populations [28]. The FFQ presented greater estimates on
macro- and micro-nutrients compared to the 3–4 day diet records on macro-nutrients
(10–20%) and micro-nutrients (10–30%), particularly fat-soluble Vitamin E (15–30%) and
Vitamin A (>50%) [28,29]; people who might consume extreme ranges of calories, <500
and >3500 calories per day, were cautioned for possible inaccurate reporting on dietary
intakes [4,12,22,30].

There are numerous diets across the world in the modern era. The culture, climate, soil
characteristics, and socio-economic status have nurtured the various traditional diets, in-
cluding examples in the Mediterranean, Italian, convenient American, Chinese, or Japanese
diets [31,32]. With urbanization, globalization, and the aging population, convenient fast
foods [33,34], high school foods [8], smoothies [35–38], liquids [35,39], and dozens of other
diet types have been influenced by immigration [31]; however, many diets are reported
with insufficient essential nutrients; many Western diets could contain excessive empty
calories [40] and rice-based Eastern diets would have insufficient zinc and iron [41]. Accu-
rate assessment of nutrient intakes and more conveniently accessible tools such as mobile
apps are critical for personalized nutrition [42].

Bland–Altman plots and correlation coefficients are commonly used univariate analyt-
ics to verify the accuracy of a new measure against another established measure [43,44].
The Bland–Altman plots illustrate the % differences between the two measures, where
variability increases with increased differences [43,45–47]. The correlation coefficients can
illustrate the strengths of associations between two measures [45,47]. Additionally, mul-
tiple regression analyses could be used to explore the sources of differences between the
two measures [4,12]. Newly available artificial intelligence (AI) machine-learning-based
multivariate analytics, such as the generalized regression (GR) method, can be used to
identify significant factors that could contribute to the differences between two measures
with added analytic criteria to enhance prediction accuracy [4,48,49].

The trend on the common use of smartphones and with most mobile-phone users
accessing Internet-based health apps, mobile apps might be used to facilitate personalized
nutrition in preparation for the mobile health (mHealth) era via an accurate assessment of
essential micro-nutrients [42,50,51]. The mHealth apps with data analytics platforms might
also help improve access to quality nutrition data for a faster assessment of key micro-
nutrients with intakes on fruits, vegetables, fats, and sugar-sweetened beverages to achieve
personalized nutrients [52–55]. As mobile apps offer more versatility with lower respondent
burden and faster feedback, they could be more cost-effective in facilitating self-monitoring
of health behaviors to improve healthy eating habits [55–59]. The correlations between the
mobile app and 24-hour recalls were moderate to high (0.3–0.95) for macro-nutrients, and
the difference between the two varied (5 to >50% difference) for macro-nutrients [60–62].
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Specifically, using 5–10% difference as criteria, mobile apps were not recommended as
replacements for the reference method (1–2 days dietary recall) on macro-nutrients of
calories, protein [60], and fat [60,61]. Compared to the controlled diets, a mobile app log
significantly underestimated calories by 32%, protein by 56%, and fat by 68%, whereas
24-h dietary recalls significantly underestimated fat by 23% [62]. None of the prior studies
validated mobile apps in assessing micro-nutrients for personalized nutrition. As a proof-
of-concept, we added predictive modeling to examine the sources of the differences in
assessing nutrients between the two measures. Thus, in this study, we integrated AI
machine-learning-based analytics to validate the accuracy of a mobile app against FFQ on
assessing key macro- and micro-nutrients across various modern diets.

2. Materials and Methods

We examined 135 modern human diets of real consumers taken by populations derived
from prior studies [4,12,63]. Based on our research team’s [4,12,63] and other studies [22,30],
under-reporting dietary intake is a common behavior. Validation with model diets can
provide a more accurate estimate of nutrients compared to human reporting and deviating
from needed intakes. While simulation with model diets may not represent actual human
intake, validation of dietary intake with model diets can provide more accurate and con-
trolled estimates of nutrient intakes [12,64]; therefore, we categorized human diets based
on possible liquids and solid foods to enhance the delivery of macro- and micro-nutrients.
Baseline daily recipes with variations of added calories, proteins, vegetables, fruits, or fats
for all categories were included in these diets. We included four categories of modern diets
as (1) liquid diets [35,39]; (2) convenient diets (canned food, high-school café diet, and fast
foods) [8,33,34]; (3) ethnic diets of Western (American, Mexican, Italian, and Mediterranean)
and Eastern (Japanese, Chinese, and Korean) origins [31,32], and (4) smoothies added to
these diets [35–38].

We examined the macro- and micro-nutrients based on the National Institute of
Health’s (NIH) dietary nutrients to meet the needs of 97–98% of healthy adults across
all demographics in the US [13] with both the FFQ and the mobile app. The differences
between the two measures were assessed across all identified macro- and micro-nutrients.
Macro-nutrients included energy-producing carbohydrates, protein, and total fat, as well as
saturated fat, cholesterol, and fiber. Micro-nutrients including B vitamins (B1 thiamin, B2
riboflavin, B3 niacin, B6 pyridoxine, B9 folate, and B12 cobalamin), vitamin C, vitamin A,
vitamin D, vitamin E, choline; minerals (zinc, calcium, magnesium, iron, and sodium);
essential amino acids methionine and glycine [13]. Micro-nutrients that are fat-soluble
include vitamins A, D, and E; water-soluble micro-nutrients include vitamins Bs and C.
Foods containing meat-based protein also have fat, saturated fat, and cholesterol with high
content of vitamin B12, methionine, and glycine. Foods containing carbohydrates also have
fiber with high content of vitamins A, B9, and C [13].

2.1. Selected Modern Human Diets

As many diets were reported with insufficient essential nutrients [8,40,41], we have
categorized liquids and smoothies [35–39] as important modern diets in healthcare and
community settings. Additionally, convenient diets [33,34] are common modern diets in
addition to various ethnic diets [31,32]. The following sections present the four categories
of modern human diets, including liquid diets, convenient diets, ethnic diets, and smoothie-
added diets.

Liquid diets are most commonly used by frail elders or patients with gastrointestinal
(GI) disorders or recovering from surgery and illness, or in palliative care settings for
terminally ill cancer patients in modern healthcare settings [35,39]. Additionally, liquid
diets are essential for humans to maintain basic hydration, and healthy foods are necessary
to maintain GI motility and for the microbiome in the human GI system to enhance immune
functions for human health [65,66]. The liquid diets evaluated in this study embodied
items such as jello, ice pops, teas, coffee, Gatorade, Ensure, fruit juices, vegetable juices,
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and soups of various kinds, including pure liquids to cream soups, and cream of wheat
commonly provided in healthcare settings.

Convenient diets provide access to various nutrients in modern industrial productive
societies. The convenient diets evaluated in this study included subtypes of canned-
food diets, high-school café diets, and fast-food diets [8,33,34]. The canned-food diets
embodied canned soups, corn, beans and peas, potatoes, white bread, ramen noodles,
frozen vegetables, and hot dogs. The high-school diets typically contained high calories
food mostly associated with increased sodium and saturated fat [8], including school
cafeteria items such as pizza, cheese sticks, mini cheeseburgers, corn dogs, grilled cheese
sandwiches, chicken wings, and chicken tenders. The fast-food diet encompasses processed
foods rich in calories, fat, sodium, and sugar [33,34]. The fast-food diets contained popular
value-priced items such as chicken nuggets, fried chicken sandwiches, hamburgers, and
fries along with breakfast foods of biscuits, English-muffin-based sandwiches, breakfast
wraps, and hash browns [8,33,34].

The ethnic diets evaluated in this study included diets with American, Mexican,
Italian, Mediterranean, Japanese, Chinese, and Korean influences [31,32]. The American
diets included steaks, fried chicken, burgers, and salads. The Mexican diets included
tortillas, tacos with carnitas, enchiladas, nachos with guacamole, tamales, breakfast burritos,
quesadillas, tostadas, steak burritos, and chili soups. The Italian diets consisted of lasagna,
alfredo, spaghetti, pizzas, calzones, bruschetta, pasta carbonara, and zucchini eggplant
lasagna. The Mediterranean diets are rich in whole grains, fruits, vegetables, nuts, olive
oil with limited meat, and could include baba ghanoush, falafel, hummus, Greek salads,
pita bread, bulghur, shish kebab, and lamb. The Japanese diets contained sashimi, sushi,
miso soup, edamame, udon, and tempura. The Chinese diets comprised sweet and sour
pork, tofu, wonton, chow mein, duck, kung pao chicken, eggs, steamed buns, and rice. The
Korean diets included Kimchi stew, white rice, bulgogi meats, mixed bowls or bibimbap,
soups with tofu and seaweed [31,32].

Smoothie-added diet recipes are commonly used when people need added hydration
or nutrients with activities such as exercise by athletes or others undergoing physically
straining activities. The smoothies evaluated in this study included a variety of fruits
and vegetables added to the modern base diets. Fruits comprised apples, mangoes, ba-
nanas, strawberries, peaches, grapes, apricots, blueberries, cranberries, and melons. The
vegetables included broccoli, cabbage, kale, and spinach. Ethnic Chinese, Italian, and
Mediterranean fruit smoothies included ginger roots, baby spinach, beet juice, Japanese
matcha smoothies, and Korean multigrain smoothies [35–38].

2.2. Dietary Measures and Nutrient Intakes

We assessed the selected modern diets using a 144-item for 30-day with FFQ, a 12-page
questionnaire with complexities of content adjustments using frequencies and portions sizes
of foods [4,67]. The FFQ consisted of three sections: (1) usual food choices, (2) usual food
and beverage use, and (3) summary questions. The usual food choices section contained
13 additional questions to adjust fat intakes through detailed inquiry on food preparation
methods and added fats both in cooking and at the table. The usual food and beverage use
section included 128 foods or food groups with the amount and frequency of foods such
as cereals, bread, snacks items, meat, fish, eggs, pasta, mixed dishes, soups items, dairy
products, vegetables, grains, fruits, beverages, and alcohol. In the summary questions
section, three items on intakes of fruits, vegetables, and fats added to foods and used in
cooking were included [67,68]. The nutrient database used to quantify the FFQ was derived
from the University of Minnesota Nutrition Coordinating Center (NCC) [69].

Dietary intakes on nutrients were also analyzed for a 3-day average using a mobile
app that was developed to assess daily nutrient intakes (GB HealthWatch, San Diego,
CA, USA) [42,70]. The mobile app was developed by a digital health and nutritional
genomics company that focused on gene–diet interactions and research tool development
(https://healthwatch360.gbhealthwatch.com, accessed on 1 June 2021). In 2016, NIH
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funded the company to develop a mobile app for personalized genetics-based diets to
record daily food consumption for dietary management and to empower users to take
control of healthy eating for disease prevention. The app had the capacity to extract
30 essential nutrients by analyzing users’ food logs and provided reports on the total
amounts and percentages of suggested daily values of nutrients. Furthermore, it offered
personalized recommendations based on dietary guidelines and users’ goals to manage
weight and to prevent chronic conditions such as metabolic syndrome and Alzheimer’s
disease [42,70]. Thus, for each diet, we performed a nutrient analysis using both 30-day
FFQ and mobile app by mathematically dividing the 30-day data into a 3-day dietary
diary. For example, 1 oz (30 g) of fat intake every week would yield 13 g for 3 days or
4.3 g of fat for 1 day. This calculation is comparable dietary intakes between the two
measures, while realistically, many human subjects might neglect to report the minute
dietary intakes; therefore, the 3-day dietary diary in this study could be more detailed than
human reporting. Before analysis, data entry was checked independently by two research
team members for accuracy.

2.3. Data Analysis

All data were analyzed using JMP version 13.0.0 statistical software [64,71,72] (SAS
Institute Inc., Cary, NC, USA). We first assessed bias and agreement, and then GR to predict
the source of differences between the two measures. Means and standard deviations (SD)
for all nutrients [73] were calculated for both mobile App and FFQ. Then, agreement and
bias analyses using mean % differences and standard errors (SE) of the differences between
the two measures were compared across all nutrient parameters. Pearson correlation
coefficients (r) were used to measure the strengths of associations between the two dietary
measures (r > 0.80 as very strong, r < 0.60 as moderate) [43]. The Bland–Altman plots
were used to visualize the mean % differences with the limits of agreement (LoA: mean
difference ± 2 SD) between the two measures [28,72] for variability of the differences, with
a good agreement if 95% and greater of the agreement being within ± 2 SDs [20,21,64]. The
alpha for all analyses was set at 0.05 for the significance level.

We then utilized GR models to predict the differences between the app and FFQ in
assessing essential nutrients by progressively including related factors in the dataset. The
analytics and rationales have been reported earlier [4,12,63] and are summarized in the
following. We added predictive modeling to examine the sources of the differences between
the two measures [63]. JMP software provided default logistic regression (LR) as a baseline
and exploratory model to predict dependent variables in categorical values. Following
LR, other models could be selected for validation (Elastic Net) and associated validation
methods (Leave-One-Out, Validation Column) for further analysis. In effect, GR estimation
methods are a confirmatory model to predict the accuracy with a lower misclassification
rate for minimal prediction error [4,12,64,74]. We incorporated Elastic Net models for their
capacity to handle datasets with many variables, balancing potential interactions from
various domain factors [75]. It is important to point out that GR eliminates certain predictors
to avoid over-fitting. Conventional statistical procedures are limited by the sample size [63].
If the number of parameters to be estimated exceeds the degrees of freedom, the regression
model would be highly unstable. The AI-based analytics use partition in iteration by
resampling with machine learning [63]. Both AICc validation and LOO cross-validation
methods are effective methods for small sample sizes and handling multiple domains based
on the logic of resampling [4,72]. In resampling, observed biases are corrected by such
repeated analyses on random subsets [63]. This AI machine learning approach is superior
to conventional statistics, including the baseline logistic regression analyses that tend to
yield an overfitted model [4,63]. We used Leave-One-Out (LOO) for validations to select
significant factors within domains of caloric ranges, the effect of differences from energy
nutrients on the differences on micro-nutrients, and diet types [48,49]. Once significant
factors were determined through LOO within each domain, we then used AICc validation
columns to confirm how well the model fits with unbiased prediction [49].
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We identified related factors that could affect the differences between FFQ and the
app per categories of (1) caloric ranges (<1000, 1000–2000, or >2000) of total calories;
(2) effects of differences from energy-producing carbohydrate, protein, and fat; (3) diet
types. We used an 80/20 split for training and validation sets for predictive modeling to
further identify significant predictors that contributed to the difference between the app
and FFQ. The best models on predicting the sources contributing to the differences were
based on three accuracy criteria, including lowest AICc (fitter for more precise model),
lower misclassification (smaller for accuracy), and higher area under the receiver operating
characteristics (ROC) curve (AUC, >0.80) [12,64]. The prediction and interaction profilers
were used to visualize the potential significant interactions among the factors. If significant
interactions exist in the models, the interaction terms would be included in the model
testing [48,49].

3. Results
3.1. Agreement and Difference: The Bland and Altman Method

We examined the data using the Bland and Altman method to assess the agreement
(% differences), bias (SE), and correlations between FFQ and mobile app per three caloric
ranges (<1000, 1000–2000, and >2000) and all assessed nutrients (Table 1) using 5–10% dif-
ferences as criteria [60]. Compared to FFQ, the mobile app presented acceptable differences
(<5%) with a caloric range of <1000 but underestimated the caloric range of 1000–2000 calo-
ries (>5%) and >2000 (>10%). For macro-nutrients, the app underestimated total calories
and protein (>5%); fat, saturated fat, and cholesterol (>10%); overestimated fiber (>10%);
presented acceptable differences with carbohydrate (<5%). For micro-nutrients, the app
underestimated choline, vitamin D (>5%); vitamin B12, methionine, glycine, vitamin E,
zinc, and sodium (>10%); overestimated vitamins A and C (>5%); presented acceptable dif-
ferences with other B vitamins including B1, B2, B3, B6, B9, and calcium, magnesium, and
iron. Thus, we found good agreement between the two measures on many micro-nutrients
but not protein-based micro-nutrients that are essential in nutrigenomics pathways.

The bias (SE) increased between the two measures with increased caloric ranges was
smallest for 1000–2000 caloric range (1.44), larger for <1000 (2.3), and largest for >2000
(5.91); indicating the greater spread of means. The bias was greater (>2) for fiber, vitamins
A and C, calcium, and sodium when compared to all other nutrients. The correlations
between the two measures were strong for the mid-range of 1000–2000 caloric range (0.78),
moderate for higher calories of >2000 (0.64), and lowest for <1000 calories intake (0.54)
(average 0.65) (all p < 0.001). The correlations are strong for most nutrients (average for
macro- 0.87 and 0.84 for micro-nutrients) except for calcium (0.53).

In addition, we used Bland–Altman plots to visualize the difference and LoA between
mobile app and FFQ. We presented side-by-side comparison of correlation (left panel) and
Bland–Altman plots (right panel) on example macro-nutrients of calories (Figure 1a,b),
fat (Figure 2a,b), protein (Figure S1a,b), carbohydrate (Figure S2a,b); and micro-nutrients
of folate (Figure 3a,b) and cobalamin (Figure 4a,b). Correlation plots presented good
agreement between the two measures for all nutrients presented in these figures. Bland–
Altman plots displayed a wide variability of differences for both macro- (calories, fat,
protein, carbohydrate) and micro-nutrients (folate, cobalamin). Bland–Altman plots further
illustrated the underestimation by the app compared to FFQ on total calories (−5.34%,
Figure 1b), fat (−17.55%, Figure 2b), protein −9.8%, Figure S1b), and cobalamin (−18.86%,
Figure 4b); but higher estimation on carbohydrate (4.55%, Figure S2b) and folate intakes
(3.2%, Figure 3b).
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Table 1. Agreement and bias for the mobile application against Food Frequency Questionnaire (N = 135).

Parameters % Difference
M ± SD

FFQ
M ± SD

Mobile
M ± SD SE ± 2 SD% r **

Calories (kcal) −5.34 ** ± 16.42 1332 ± 904.4 1201 ± 8464 1.41 94.81 0.86
<1000 (N = 54) −0.88 ± 16.87 748.3 ± 170.4 730.3 ± 182.1 2.30 94.44 0.54
1000–2000 (N = 63) −7.08 ** ± 11.46 1297 ± 290.4 1180 ± 365.4 1.44 94.33 0.78
>2000 (N = 18) −12.63 * ± 25.09 3206 ± 1114 2685 ± 1421 5.91 88.89 0.64

Carbohydrate (g) 4.55 ** ± 19.58 169.4 ± 132.0 176.8 ± 134.7 1.68 91.85 0.85
Protein (g) −9.80 ** ± 12.27 54.84 ± 36.21 46.71 ± 32.88 1.06 94.81 0.87
Fat (g) −17.55 ** ± 15.08 50.80 ± 34.29 37.20 ± 29.35 1.30 94.07 0.87
Sat Fat (g) −17.69 ** ± 15.99 15.32 ± 10.72 11.37 ± 9.28 1.38 95.56 0.88
Cholesterol (mg) −10.26 ** ± 13.37 197.8 ± 131.2 172.4 ± 121.6 1.15 95.56 0.91
Fiber (g) 11.39 ** ± 24.03 15.97 ± 16.65 18.19 ± 18.73 2.07 93.33 0.85
Thiamin (mg) 2.46 ± 15.59 1.08 ± 0.70 1.11 ± 0.72 1.34 94.81 0.86
Riboflavin (mg) −1.75 ± 15.11 1.27 ± 0.83 1.23 ± 0.80 1.30 93.33 0.86
Niacin (mg) −0.91 ± 16.35 14.63 ± 9.93 14.16 ± 10.30 1.41 91.85 0.87
Pyridoxine (mg) 3.29 * ± 19.29 1.52 ± 1.29 1.58 ± 1.40 1.66 93.33 0.84
Folate (mcg) 3.24 * ± 18.78 290.7 ± 209.4 298.9 ± 214.2 1.62 93.33 0.85
Cobalamin (mcg) −18.86 ** ± 14.92 3.71 ± 2.10 2.69 ± 1.54 1.28 94.07 0.83
Methionine (g) −11.90 ** ± 12.93 1.23 ± 0.81 1.01 ± 0.74 1.11 92.59 0.88
Choline (mg) −6.23 ** ± 15.42 266.4 ± 176.4 237.7 ± 160.4 1.33 94.07 0.86
Glycine (g) −12.13 ** ± 14.55 2.31 ± 1.58 1.89 ± 1.44 1.25 92.59 0.87
Vitamin A (IU) 35.19 ** ± 29.40 11,037 ± 14,343 16,238 ± 16,359 2.53 97.04 0.87
Vitamin C (mcg) 18.27 ** ± 30.07 123.4 ± 137.5 148.2 ± 165.8 2.59 92.59 0.86
Vitamin D (mcg) −6.18 ** ± 12.81 4.38 ± 2.42 3.95 ± 2.19 1.10 93.33 0.90
Vitamin E (mcg) −32.85 ** ± 18.95 10.87 ± 7.42 6.09 ± 4.84 1.63 91.85 0.83
Zinc (mg) −10.44 ** ± 15.38 7.39 ± 4.62 6.15 ± 3.87 1.32 93.33 0.86
Calcium (mg) −2.66 ± 31.33 594.4 ± 382.8 569.3 ± 383.8 2.70 93.33 0.53
Magnesium (mg) 3.72 * ± 17.26 201.1 ± 150.3 208.8 ± 157.6 1.49 93.33 0.85
Iron (mg) 1.46 ± 17.42 9.00 ± 5.81 8.91 ± 5.60 1.50 93.33 0.88
Sodium (mg) −12.60 ** ± 24.94 2551 ± 1700 1969 ± 1263 2.15 97.04 0.83

Note: M: mean; SD: standard deviation; FFQ: food frequency questionnaire; SE: standard error; * p < 0.05; ** p < 0.001.
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Sat Fat (g) −17.69 ** ± 15.99 15.32 ± 10.72 11.37 ± 9.28 1.38 95.56 0.88 
Cholesterol (mg) −10.26 ** ± 13.37 197.8 ± 131.2 172.4 ± 121.6 1.15 95.56 0.91 
Fiber (g) 11.39 ** ± 24.03 15.97 ± 16.65 18.19 ± 18.73 2.07 93.33 0.85 
Thiamin (mg) 2.46 ± 15.59 1.08 ± 0.70 1.11 ± 0.72 1.34 94.81 0.86 
Riboflavin (mg) −1.75 ± 15.11 1.27 ± 0.83 1.23 ± 0.80 1.30 93.33 0.86 
Niacin (mg) −0.91 ± 16.35 14.63 ± 9.93 14.16 ± 10.30 1.41 91.85 0.87 
Pyridoxine (mg) 3.29 * ± 19.29 1.52 ± 1.29 1.58 ± 1.40 1.66 93.33 0.84 
Folate (mcg) 3.24 * ± 18.78 290.7 ± 209.4 298.9 ± 214.2 1.62 93.33 0.85 
Cobalamin (mcg) −18.86 ** ± 14.92 3.71 ± 2.10 2.69 ± 1.54 1.28 94.07 0.83 
Methionine (g) −11.90 ** ± 12.93 1.23 ± 0.81 1.01 ± 0.74 1.11 92.59 0.88 
Choline (mg) −6.23 ** ± 15.42 266.4 ± 176.4 237.7 ± 160.4 1.33 94.07 0.86 
Glycine (g) −12.13 ** ± 14.55 2.31 ± 1.58 1.89 ± 1.44 1.25 92.59 0.87 
Vitamin A (IU) 35.19 ** ± 29.40 11,037 ± 14,343 16,238 ± 16,359 2.53 97.04 0.87 
Vitamin C (mcg) 18.27 ** ± 30.07 123.4 ± 137.5 148.2 ± 165.8 2.59 92.59 0.86 
Vitamin D (mcg) −6.18 ** ± 12.81 4.38 ± 2.42 3.95 ± 2.19 1.10 93.33 0.90 
Vitamin E (mcg) −32.85 ** ± 18.95 10.87 ± 7.42 6.09 ± 4.84 1.63 91.85 0.83 
Zinc (mg) −10.44 ** ± 15.38 7.39 ± 4.62 6.15 ± 3.87 1.32 93.33 0.86 
Calcium (mg) −2.66 ± 31.33 594.4 ± 382.8 569.3 ± 383.8 2.70 93.33 0.53 
Magnesium (mg) 3.72 * ± 17.26 201.1 ± 150.3 208.8 ± 157.6 1.49 93.33 0.85 
Iron (mg) 1.46 ± 17.42 9.00 ± 5.81 8.91 ± 5.60 1.50 93.33 0.88 
Sodium (mg) −12.60 ** ± 24.94 2551 ± 1700 1969 ± 1263 2.15 97.04 0.83 

Note: M: mean; SD: standard deviation; FFQ: food frequency questionnaire; SE: standard error; * p 
< 0.05; ** p < 0.001. 
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Furthermore, we assessed the differences between the mobile app and FFQ with
nutrients in association with caloric ranges and diets (Table 2). For total calories with
caloric ranges, the app, in comparison to FFQ, presented acceptable differences with <1000
calories (<5%); but underestimated with 1000–2000 calories (>5%) and >2000 calories (>10%)
(Table 2). Additionally, the app overestimated total calories with pure liquid diet (>10%),
underestimated total calories with high school, Mediterranean, Chinese, and smoothie-
added diets (>5%); also canned food and fast-food diets with greater bias (>10%), but
presented acceptable differences (<5%) with FFQ on American, Mexican, Italian, Japanese,
and Korean diets. Likewise, the app overestimated carbohydrates with a caloric range of
<2000, but underestimated >2000 caloric range (>5%); with Italian, Japanese, Korean diets
(>5%); pure liquid, Mexican, Chinese diets (>10%); but presented acceptable differences
(<5%) with other diets (canned food, high school, fast food, American, Mediterranean,
and smoothie-added). Additionally, the app underestimated protein with caloric ranges
of 1000–2000 (>5%), and caloric ranges of <1000 and >2000 (>10%); pure liquid, high
school, fast food, American, Mexican, Italian, Japanese, Chinese diets (>5%); canned food,
Mediterranean, Korean, and smoothie-added diets (>10%). The app underestimated fat
with all caloric ranges (>10%) and all diets except liquid diets. For folate, the app presented
overestimation with a caloric range of 1000–2000, underestimation with a caloric range of
>2000, and acceptable differences (<5%) with a caloric range of <1000; underestimation with
Mediterranean diets; overestimation with American and Italian diets (>5%); pure liquid,
Mexican, and Chinese diets (>10%); but acceptable differences (<5%) with canned food,
high school, fast food, Japanese, Korean, and smoothie-added diets. For cobalamin, the app
presented underestimation with all caloric ranges (>10%) and all diets except fast-food diets.
Additionally, the app underestimated protein-based and fat-based nutrients, including
saturated fat, cholesterol, methionine, choline, glycine, vitamins B12 and E; but overestimated
carbohydrate-based nutrients including fiber, vitamins B9, A, and C (Tables S1–S4).

Table 2. Differences between the mobile application and Food Frequency Questionnaire per domains
of caloric ranges and various diets for key macro- and micro-nutrients (N = 135).

Parameters (N)
Calories,

kcal
Carbohydrate,

g
Protein,

g
Fat,
g

Folate,
mcg

Cobalamin,
mcg

%diff M ± SD %diff M ± SD %diff M ± SD %diff M ± SD %diff M ± SD %diff M ± SD

Caloric ranges
<1000 (54) −0.88 ± 16.87 7.40 ** ± 19.79 −10.77 ** ± 10.43 −11.75 ** ± 13.66 2.06 ± 20.12 −21.02 ** ± 16.02
1000–2000 (63) −7.08 ** ± 11.46 5.91 ** ± 14.34 −6.93 ** ± 9.31 −22.60 ** ± 11.58 7.04 ** ± 12.56 −14.87 ** ± 12.47
>2000 (18) −12.63 * ± 25.09 −8.78 ± 28.79 −16.93 ** ± 21.09 −17.28 ** ± 22.83 −6.53 ± 27.99 −26.31 ** ± 15.94
Diet Types
Pure liquid (10) 16.28 ± 26.70 23.27 * ± 29.82 −9.14 ± 12.82 −3.23 ± 18.02 20.44 ± 35.87 −20.13 * ± 25.65
Convenient Diet (30) −12.39 ** ± 9.61 −0.34 ± 10.15 −9.63 ** ± 11.74 −26.68 ** ± 10.20 0.76 ± 13.84 −9.82 ** ± 10.84

Canned Food (10) −12.98 ** ± 5.62 −3.99 * ± 5.39 −12.68 ** ± 7.27 −27.05 ** ± 5.42 −3.11 ± 14.39 −9.95 ** ± 1.72
High School (10) −8.33 ** ± 2.99 2.24 ± 3.46 −8.40 ** ± 4.78 −18.58 ** ± 5.20 4.51 ± 8.19 −15.43 ** ± 6.48
Fast Food (10) −15.86 ** ± 15.01 0.72 ± 16.35 −7.80 ± 18.79 −34.40 ** ± 11.82 0.87 ± 17.63 −4.07 ± 16.18

Ethnic Food (73) −5.00 ** ± 9.94 6.21 ** ± 15.43 −9.27 ** ± 8.46 −17.50 ** ± 9.68 4.11 ** ± 12.80 −19.96 ** ± 11.24
Western Diet (40) −4.49 ** ± 9.77 5.20 ± 16.46 −8.47 ** ± 8.00 −14.25 ** ± 8.38 3.64 ± 13.74 −16.46 ** ± 11.64

American (10) −4.16 ± 14.42 3.87 ± 22.58 −5.14 ± 7.60 −15.16 ** ± 6.97 5.43 ± 17.35 −9.73 ** ± 6.53
Mexican (10) −4.90 ± 10.69 10.81 ± 20.60 −6.99 ** ± 4.79 −22.07 ** ± 3.96 11.42 * ± 13.22 −12.92 ** ± 4.78
Italian (10) −3.43 ** ± 3.18 6.61 ** ± 4.69 −6.10 * ± 6.86 −14.07 ** ± 3.27 7.29 ** ± 1.77 −15.71 ** ± 9.93
Mediterranean (10) −5.45 ± 8.88 −0.48 ± 11.92 −15.66 ** ± 8.43 −5.69 ± 8.87 −9.60 ** ± 7.61 −27.48 ** ± 14.94

Eastern Diet (33) −5.63 ** ± 10.26 7.44 ** ± 14.24 −10.24 ** ± 9.01 −21.45 ** ± 9.80 4.68 * ± 11.74 −24.20 ** ± 9.24
Japanese (10) −3.02 ** ± 1.29 5.05 ** ± 2.17 −5.08 ** ± 0.77 −12.29 ** ± 1.19 −2.25 ** ± 1.14 −16.76 ** ± 0.43
Chinese (10) −9.74 ** ± 5.33 12.34 ** ± 7.03 −9.44 ** ± 1.85 −32.50 ** ± 3.75 15.64 ** ± 2.62 −20.75 ** ± 0.84
Korean (13) −4.47 ± 15.39 5.52 ± 21.72 −14.82 ** ± 12.96 −20.00 ** ± 8.39 1.57 ± 14.52 −32.58 ** ± 9.74

Smoothie-added (22) −6.67 ± 25.56 −2.83 ± 28.95 −12.09 * ± 21.17 −14.70 ** ± 22.68 −4.09 ± 25.77 −26.94 ** ± 18.78

Note: M: mean; SD: standard deviation; * p < 0.05; ** p < 0.001.

3.2. Predictive Modeling for the Difference of Mobile App against FFQ: Generalized
Regression Analysis

For predictive modeling, we progressively examined significant factors per individ-
ual domains of caloric ranges (coded as one of the three versus the other two categories
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for <1000, 1000–2000, and >2000), energy nutrients, and various diets. We included the
significant factors of all domain factors in the final combined model (Table S5 progression
examples for total calories, Table S6 for folate, Table S7 for cobalamin). For total calories,
differences on 1000–2000 over other caloric ranges, carbohydrate, and protein were signifi-
cant contributing factors to the difference between two measures (misclassification 0.04,
AICc 18.2, and AUC 0.99) (Table 3), baseline LR model on the left panel and GR model
validation on the right panel. As an example, Figure 5 illustrates the AUC curve with closer
to 100% sensitivity and 100% specificity for the accuracy of the selected model with total
calories [48]. Through the progression analyses, we noted a higher AICc and less precise
model by including the additional factor of the Japanese diet, thus a less favorable model
than the selected model (Table S5).

Table 3. Significant factors contributing to the differences between the mobile application and Food
Frequency Questionnaire on total calories.

Parameters
Logistic Regression Original Model Generalized Regression

Elastic Net Model Validation

Estimate p (χ2) Estimate p (χ2)

(Intercept) 1.66 0.0160 1.66 0.0035
1000–2000 caloric range −2.79 0.0003 −2.79 <0.0001

Carbohydrate % Difference 3.24 <0.0001 3.24 <0.0001
Protein % Difference −3.05 <0.0001 −3.05 <0.0001

MR 0.0455 0.0455
AICc 18.18 18.19
AUC 0.9957 0.9957

Note: MR: Misclassification rate; AICc: Akaike’s information criterion with corrections; AUC: Area under the curve.
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Figure 5. Predicting accuracy of total calories analyses using mobile application against Food
Frequency Questionnaire: Area under the receiver operating characteristic curve (AUC) for baseline
logistic regression model (a) and Elastic Net with validation model (b).

Folate and cobalamin are the most representative essential micro-nutrients needed in
the nutrigenomics pathways. Factors that contributed to the differences in folate between
the two measures included caloric range (1000–2000 versus other two categories), carbo-
hydrate, fiber, and Mediterranean diet (misclassification 0.11, AICc 30.7, and AUC 0.91)
(Table 4). Through the progression analyses, we noted a higher AICc and lower AUC, thus,
less precise and less favorable models than the selected model by including additional
factors of fiber and Chinese diet (Table S6).
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Table 4. Significant factors contributing to the differences between mobile application a nd Food
Frequency Questionnaire on folate.

Parameters
Logistic Regression Original Model Generalized Regression

Elastic Net Model Validation

Estimate p (χ2) Estimate p (χ2)

(Intercept) −5.59 0.9386 −3.83 <0.0001
1000–2000 caloric range −1.81 0.0053 −1.81 0.0084

Carbohydrate % Difference −2.35 0.0006 −2.35 0.0003
Fiber % Difference −2.07 0.0008 −2.07 0.0008

Mediterranean 9.11 0.9001 7.35 <0.0001

MR 0.1154 0.1154
AICc 30.71 30.73
AUC 0.9125 0.9125

Note: MR: Misclassification rate; AICc: Akaike’s information criterion with corrections; AUC: Area under the curve.

For cobalamin, significant factors that contributed to the differences between the
two measures included caloric range (1000–2000 versus other two categories), protein,
and Chinese diet (misclassification 0.27, AICc 35.8, and AUC 0.79) (Table 5). With the
progression analyses, we observed a higher AICc by including additional factors of fat and
Korean diet, which presented less favorable models than the selected model (Table S7).

Table 5. Significant factors contributing to the differences between mobile application and Food
Frequency Questionnaire on cobalamin.

Parameters
Logistic Regression Original Model Generalized Regression

Elastic Net Model Validation

Estimate p (χ2) Estimate p (χ2)

(Intercept) 11.63 0.8783 3.87 <0.0001
1000–2000 caloric range 2.06 <0.0001 1.86 <0.0001

Protein % Difference −1.22 0.0094 −1.05 0.0140
Chinese −12.26 0.8718 −4.45 <0.0001

MR 0.2727 0.2727
AICc 35.84 35.78
AUC 0.7906 0.7906

Note: MR: Misclassification rate; AICc: Akaike’s information criterion with corrections; AUC: Area under the curve.

We also examined significant factors between the two measures for other nutrients with
the progression analyses and summarized final models for other nutrients (carbohydrate,
protein, fat, saturated fat, cholesterol, and fiber in Table S8; thiamin, riboflavin, niacin,
pyridoxine, choline, glycine, and zinc in Table S9; and vitamins A, C, D, E, calcium,
magnesium, iron, sodium in Table S10). Significant factors that contributed to the difference
between the two measures on carbohydrate included calories, fat, fiber, and Mediterranean
diet; for protein: caloric range (1000–2000 versus others), calories, and fat; on fat: calories,
saturated fat, and Japanese diet; on saturated fat: fat, cholesterol, and Japanese diet; for
cholesterol: protein, saturated fat, and Japanese diet; on fiber: carbohydrate, Japanese diet,
and Chinese diet (misclassification 0.04–0.23, AICc 20.4–33.8, AUC 0.74–0.98). Similarly,
significant factors for thiamin included caloric range (<1000 versus others), saturated
fat, fiber, and canned-food diet; for riboflavin: protein, fiber, and canned-food diet; for
niacin: calories, fiber, canned food, and Italian diet; for pyridoxine: calories, fiber, and
Japanese diet; for choline: calories, protein, and canned-food diet; for glycine: protein,
Mexican, and Japanese diet; and for zinc: protein, canned food, fast-food, and Japanese
diet (misclassification 0.04–0.29, AICc 20.5–36.53, AUC 0.82–0.96). Additionally, significant
factors for vitamin A included fat, saturated fat, and fast-food diet; vitamin C: caloric
range (<1000 versus others), fiber, and canned-food diet; on vitamin D: protein, fat, canned
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food, and Chinese diet; for vitamin E; carbohydrate, fat, and cholesterol; for calcium;
carbohydrate, cholesterol, American, and Italian diet; on magnesium: carbohydrate, fat,
cholesterol, and fiber; for iron: calories, protein, fiber, and Italian diet; on sodium: protein,
fiber, and high school diet (misclassification 0.18–0.36, AICc 29.6–39.9, AUC 0.75–0.96).
For diet types, the Japanese diet was a common contributing factor for the differences
between the two measures on fat, saturated fat, cholesterol, fiber, riboflavin, pyridoxine,
glycine, and zinc (Tables S8–S10). We did not explicitly test the model for methionine, as
methionine was purely dependent on protein. The interaction profiler plots did not present
any significant three-way interactions in the final models for all nutrients.

4. Discussion

In preparation for personalized nutrition, we validated the accuracy of a mobile app
against the FFQ as a reference method in assessing key nutrients with various modern diets.
Using 5–10% difference as criteria [60], compared to FFQ, the app presented acceptable
estimation with a caloric range of <1000 but not for total calories and caloric ranges of 1000
or higher with a greater bias for calories of >2000. Specifically, for macro-nutrients, the
app presented acceptable estimation for carbohydrates but underestimated protein and
greatly underestimated fats (fat, saturated fat, cholesterol). For micro-nutrients, the app
presented with acceptable estimation for most B vitamins (B1, B2, B3, B6, and B9) and some
minerals (calcium, magnesium, and iron), but underestimated choline and vitamin D and
greatly underestimated vitamin B12, methionine, glycine, vitamin E, zinc, and sodium; and
greatly overestimated vitamins A and C. Prior research indicated that mobile apps were
not recommended as replacements to reference method (1–2 day dietary recall) on macro-
nutrients of calories, protein [60], and fat [60,61]. With this study, we further demonstrated
that the mobile app presented with greater bias with increased calories with FFQ as a
reference method, while biases are similar with total calories, protein, and fat. Although
correlations between the two measures were strong, lower correlations were observed with
greater calories of the diets and calcium.

Furthermore, we demonstrated that caloric ranges and various diets may be used to
examine additional sources that might have contributed to the differences between the two
measures. Overall, the app underestimated all macro- and micro-nutrients (except vitamins
B1 and A) with calories >2000, underestimated protein-based and fat-based nutrients, but
overestimated carbohydrate-based nutrients for calories of ≤2000. Additionally, we noted
that with various diets, the app underestimated foods that contain meat-based protein
and fat (saturated fat, cholesterol, vitamins B12 and E, methionine, choline, glycine), but
overestimated foods that contain carbohydrate nutrients (fiber, vitamins B9, A, and C). We
used FFQ as the reference method for its capacity to adjust fat intakes [22,24–26]. Hence,
additional adjustments with caloric ranges and diet types could be considered for the
mobile app. Previous studies used <500 and >3500 calories as the limits for valid caloric
ranges of FFQ that were extreme for human health [4,12,22,30]. With the realistic caloric
intakes for human health, the challenges of accuracy remain for the mobile app.

As a proof-of-concept, we added predictive modeling to examine the sources that
contributed to the differences between the two measures [4,63,64]. We used AI machine-
learning-based analytics with criteria to enhance the accuracy of prediction. Thus far, no
prior studies have validated the accuracy of a mobile app against FFQ using predictive
modeling. With confirmatory predictive modeling, we demonstrated that caloric ranges
and source of micro-nutrients in relation to macro-nutrients (folate source of difference
from carbohydrates versus cobalamin source of difference from protein) contributed to
less accurate estimates of nutrients for the mobile app in reference to FFQ. A specific diet,
such as Mediterranean (folate) and Chinese (cobalamin) diets, might further contribute to
the differences between the two measures; therefore, caloric ranges and source of macro-
nutrients might be considered for adjustments to accurately measure micro-nutrients.

In summary, we noted that fat and protein were major sources for the differences
between FFQ and mobile app, with specific caloric ranges and diet types contributing to
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the differences. The predictive modeling further substantiated the findings that fat and
protein were the major sources of differences between the two measures, with specific
caloric ranges and diet types contributing to the differences. The challenges remain for the
mobile app to accurately measure macro- and micro-nutrients. Further adjustments with
caloric ranges, source of nutrients, and diets might help to improve the accuracy of the
mobile app. In addition, future studies may include various diets across different human
populations with accurate measures on dietary intakes and nutrients with the mobile app.
In conclusion, the mobile app has the capability to support personalized nutrition in the
mHealth era with the use of AI-based analytics, integrating potential contributing factors
to improve its accuracy.
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Questionnaire per domains of caloric ranges, energy nutrients, and various diets for major nutrients
(N = 135). Table S2: Bias and agreement between mobile application and Food Frequency Question-
naire per domains of caloric ranges, energy nutrients, and various diets for vitamins Bs (N = 135).
Table S3: Bias and agreement between mobile application and Food Frequency Questionnaire per
domains of caloric ranges, energy nutrients, and various diets for methyl-donors and vitamins A,
D, and D (N = 135). Table S4: Bias and agreement between mobile application and Food Frequency
Questionnaire per domains of caloric ranges, energy nutrients, and various diets for vitamin E
and minerals (N = 135). Table S5: Progression on selecting significant factors contributing to the
differences between mobile application and Food Frequency Questionnaire on total calories. Table S6:
Progression on selecting significant factors contributing to the differences between mobile application
and Food Frequency Questionnaire on folate. Table S7: Progression on selecting significant factors
contributing to the differences between mobile application and Food Frequency Questionnaire on
cobalamin. Table S8: Summary on significant factors contributing to the differences between mobile
application and Food Frequency Questionnaire on major nutrients. Table S9: Summary on significant
factors contributing to the differences between mobile application and Food Frequency Questionnaire
on methyl-donors and co-factors. Table S10: Summary on significant factors contributing to the
differences between mobile application and Food Frequency Questionnaire on other vitamins and
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between mobile application and Food Frequency Questionnaire for carbohydrates.
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