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Abstract

During general anesthesia, both behavioral and autonomic changes are caused by the admin-

istration of anesthetics such as propofol. Propofol produces unconsciousness by creating

highly structured oscillations in brain circuits. The anesthetic also has autonomic effects due to

its actions as a vasodilator and myocardial depressant. Understanding how autonomic dynam-

ics change in relation to propofol-induced unconsciousness is an important scientific and clini-

cal question since anesthesiologists often infer changes in level of unconsciousness from

changes in autonomic dynamics. Therefore, we present a framework combining physiology-

based statistical models that have been developed specifically for heart rate variability and

electrodermal activity with a robust statistical tool to compare behavioral and multimodal auto-

nomic changes before, during, and after propofol-induced unconsciousness. We tested this

framework on physiological data recorded from nine healthy volunteers during computer-con-

trolled administration of propofol. We studied how autonomic dynamics related to behavioral

markers of unconsciousness: 1) overall, 2) during the transitions of loss and recovery of con-

sciousness, and 3) before and after anesthesia as a whole. Our results show a strong relation-

ship between behavioral state of consciousness and autonomic dynamics. All of our prediction

models showed areas under the curve greater than 0.75 despite the presence of non-mono-

tonic relationships among the variables during the transition periods. Our analysis highlighted

the specific roles played by fast versus slow changes, parasympathetic vs sympathetic activity,

heart rate variability vs electrodermal activity, and even pulse rate vs pulse amplitude informa-

tion within electrodermal activity. Further advancement upon this work can quantify the com-

plex and subject-specific relationship between behavioral changes and autonomic dynamics

before, during, and after anesthesia. However, this work demonstrates the potential of a multi-

modal, physiologically-informed, statistical approach to characterize autonomic dynamics.
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Introduction

During general anesthesia, both behavioral and autonomic changes are caused by the adminis-

tration of anesthetics. Therefore, it is reasonable to hypothesize that the brain circuits affecting

behavior and autonomic activity are invoked in parallel, causing observable effects in parallel.

However, the neural circuitry governing autonomic activity and behavioral changes, while

complex and interconnected, is separate [1, 2]. Years of clinical observation have provided

some intuition about the autonomic dynamics that occur during loss and recovery of con-

sciousness induced by anesthesia, but this has not been characterized in detail, especially with

respect to observed behavioral changes. Understanding this relationship between autonomic

dynamics and behavior before, during, and after anesthesia has real implications for clinical

practice.

For example, during surgery, consciousness is most often directly assessed through behav-

ioral markers. During induction, anesthesiologists use response to verbal stimuli until the

patient becomes unresponsive. Once, the patient is unresponsive they use the “lash reflex”,

movement, and presence or absence of apnea. However, these behavioral markers are all

binary. Autonomic markers present a valuable additional source of information, but they can-

not be assumed to be direct equivalents to behavioral markers. Once the patient is adminis-

tered a muscle relaxant, anesthesiologists who are not using the EEG or EEG-based indices

infer changes in level of unconsciousness by tracking changes in autonomic dynamics, namely

heart rate and blood pressure. This is provided that there are no overt changes in respiratory

or cardiovascular state due to surgical or non-anesthetic pharmacological causes such as vaso-

pressor or vasodilators. Therefore, a systematic exploration of the relationship between auto-

nomic dynamics and consciousness in anesthesia is a highly relevant scientific and clinical

question.

Propofol, one of the most common anesthetics, affects the brain to produce unconscious-

ness by acting primarily on GABAergic circuits to broadly inhibit neuronal firing in the cortex,

thalamus, and brainstem [1, 2]. In addition to the behavioral changes associated with uncon-

sciousness, propofol has a variety of autonomic effects. It is also a vasodilator, which leads to a

decrease in blood pressure. Due to the baroreflex, while there may be a transient increase in

heart rate, over time, propofol is a myocardial depressant, and thus, decreases heart rate [1, 2].

Finally, experiments have shown that propofol and many other anesthetics reduce baseline fill-

ing levels of sweat glands and increase thresholds for spontaneous and evoked sweating activity

[3]. Advances in non-invasive sensing modalities and statistical signal processing methods

have created the opportunity for detailed study of the interplay between behavioral and auto-

nomic dynamics during propofol-induced unconsciousness.

Studies of anesthesia which include autonomic markers have been dominated by classifica-

tion studies that also include EEG [4, 5]. This does not allow for a detailed study specific to

autonomic dynamics alone. Most of these previous studies examined static “snapshots” or

stages of sedation in disjoint segments rather than continuous dynamics. And very few have

employed a multimodal autonomic approach, instead focusing solely on heart rate variability

metrics alone [6–10]. Finally, none have looked specifically at the time periods immediately

around loss and recovery of consciousness (LOC and ROC respectively).

In this study, we develop a principled physiologically-based statistical framework for relat-

ing behavioral and autonomic dynamics during propofol-induced unconsciousness by com-

paring: 1) consciousness versus unconsciousness; 2) the transition from consciousness to

unconsciousness; 3) the transition from unconsciousness to consciousness; and 4) the periods

of consciousness before and after unconsciousness. We characterize autonomic state using a

multimodal model that considers both heart rate variability (HRV) and electrodermal activity
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(EDA) to capture sympathetic and parasympathetic activity and their slow and fast dynamics.

Preliminary attempts to do this have been proposed in [11, 12]. In this new study, we have

refined the methodology, added additional information, updated our analysis with more accu-

rate and precise behavioral annotations, and significantly expanded the scope of the data

analysis.

The organization of the balance of this paper is as follows. In Materials & Methods, we

describe the data collection, our physiologically-based statistical indices of autonomic activity

computed from these data, and the framework we developed to compare behavioral and auto-

nomic changes using a multimodal autonomic state. In Results, we examine specifically the

autonomic indices derived from electrodermal activity in detail to show the physiologically rel-

evant information extracted. We also demonstrate the value of our framework to shed light on

all of the questions we posed. Finally, in the Discussion, we detail the scientific and clinical

implications of this work.

Materials & methods

Data collection

In this study, we analyzed data from nine healthy volunteers during a study of propofol-

induced unconsciousness, collected under protocol approved by the Massachusetts General

Hospital (MGH) Human Research Committee [13]. All subjects provided written informed

consent. For all subjects, approximately 3 hours of data were recorded while using target-con-

trolled infusion protocol. The data collection is described in [13]. The infusion rate was

increased and then decreased in a total of ten stages of roughly equal lengths (approximately

15 minutes each) to achieve target propofol concentrations of: 0 mg/kg/hr, 1, 2, 3, 4, 5, 3.75,

2.5, 1.25, 0. The two stages of 0 mg/kg/hr are hereby referred to as baselines before and after

anesthesia respectively. Continuous electrocardiogram (ECG) and EDA were collected. LOC

and ROC times were annotated based on lack of response to a button-pressing task. There

were other interventions included in the study for patient safety, such as administering phenyl-

ephrine (a vasopressor). All data were analyzed using Matlab R2020b.

Defining a multimodal autonomic state

Heart rate variability. The two modalities of autonomic activity used in this study fall in

the domains of heart rate variability (HRV) and electrodermal activity (EDA). HRV, computed

from the ECG, is the beat-to-beat variation in the heart rate which is affected primarily by

autonomic inputs, both sympathetic and parasympathetic [14]. This can be quantified in

terms of both time and frequency domain metrics. However, most standard signal processing

pipelines for HRV using time averaging methods to arrive at indices, which results in inaccu-

rate and imprecise estimates that are not instantaneous, especially for measures that require

accuracy down to the beat-to-beat level [14]. Preprocessing for the ECG data involved extract-

ing R peaks using the Pan-Tompkins algorithm [15].

Then we applied a point process HRV framework previously developed in our group that

models the rise of membrane potential in cardiac pacemaker cells as an integrate-and-fire pro-

cess [14, 16, 17, 18]. In this framework, a history-dependent inverse Gaussian model is applied

to the RR interval. The history dependence, codified as an autoregressive process for the mean

of the distribution, accounts for autonomic inputs that persist for multiple seconds or minutes.

This model yields instantaneous estimates for mean and standard deviation of heart rate as

well as frequency domain measures such as power in low frequency (LF), power in high fre-

quency (HF), and the ratio of LF/HF (possibly related to sympathovagal balance). The parame-

ters are fitted using a local likelihood method on non-overlapping windows to account for
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changing autonomic dynamics. We screened across a range of values for two hyperparameters,

the model order of the autoregressive process and window length for local likelihood parame-

ter fitting, for each subject’s data. The point process framework includes a goodness-of-fit

analysis to assess how well the model fits the data, and it has already been validated for its accu-

racy and precision in capturing heart rate variability in a number of datasets and under many

conditions, including propofol anesthesia [10, 14, 19]. We used this framework to compute ten

heart rate variability indices, summarized in Table 1. A summary of this point process frame-

work can be found in S1 Appendix.

Electrodermal activity. EDA, measured from two electrodes placed on the palmar surface

of the hand, tracks the changes in electrical conductance of the skin due to pulsatile rise of

sweat to the skin surface [20]. Unlike HRV, it is solely sympathetically controlled. It can be

broadly divided into two components, tonic and phasic. The tonic component tracks very

slow-moving changes in baseline over the course of several seconds or minutes and is thought

to relate to skin hydration, ambient temperature, and skin thickness [20]. The phasic compo-

nent tracks more transient, faster-occurring pulsatile sweat release events in response to spon-

taneous and evoked sudomotor nerve activity. These sweat release events appear as ‘pulses’ in

phasic EDA, each at a specific time and with a particular amplitude [20]. More or larger EDA

pulses correlates with increased sympathetic activity. Preprocessing of EDA consisted of two

major steps, 1) detecting and correcting artifacts and 2) isolating the phasic component. Both

have been described previously in [21]. Because of the level of high frequency noise seen in the

recording equipment used for the EDA data, those data were additionally low-pass filtered

with a cutoff of 3 Hz after artifact removal.

Our previous work showed that modeling the secretion and rise of sweat to the surface of

the skin as an integrate-and-fire process reveals previously unseen statistical structure in EDA

data [22, 23]. This structure suggests that the inter-pulse intervals in EDA data, much like RR

intervals in ECG, can be hypothesized to follow an inverse Gaussian distribution. Based on

this observation, we have also designed a physiology-informed framework for extracting pulses

from phasic EDA data that has been validated in awake subjects and those under propofol

sedation [24]. In this work, we adapted the same history-dependent inverse Gaussian frame-

work from HRV to the inter-pulse intervals in EDA to compute instantaneous estimates of

mean and standard deviation of pulse rate in EDA [11, 12].

Table 1. Summary of point process autonomic indices.

Index Modality Description
muRR HRV Mean RR interval

sigmaRR HRV Standard deviation of RR interval

muHR HRV Mean heart rate

sigmaHR HRV Standard deviation of heart rate

LF HRV Low freq. power, absolute (0.04–0.15 Hz)

HF HRV High freq. power, absolute (0.15–0.4 Hz)

LF/HF HRV Ratio of LF/HF (possibly related to sympathovagal balance)

LFnu HRV Low freq. power, normalized

HFnu HRV High freq. power, normalized

Total power HRV Total autonomic modulation

Tonic_EDA EDA Magnitude of tonic component of EDA

muPR EDA Mean pulse rate in EDA

sigmaPR EDA Standard deviation of pulse rate in EDA

mu_amp EDA Instantaneous mean pulse amplitude in EDA

sigma_amp EDA Standard deviation of pulse amplitude in EDA

https://doi.org/10.1371/journal.pone.0254053.t001
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To capture the pulse amplitude information, we used a history-dependent Gaussian model

to compute instantaneous estimates of the mean and standard deviation of pulse amplitude.

This hypothesizes a simple Gaussian model for the amplitudes with history dependence to

account for autonomic inputs. Using separate models for the temporal and amplitude infor-

mation in phasic EDA data within the same framework allowed us to explore the subject-spe-

cific interplay between them, which has not been studied. Along with tonic EDA, we

computed a total of five EDA autonomic indices, summarized in Table 1. A summary of these

frameworks can be found in S1 Appendix.

Defining a statistical framework to compare behavioral and autonomic changes

The goal of our work was not simply to assess the accuracy of classification tasks, but rather to

gain insight about the underlying physiology. We used logistic regression, a common machine

learning framework in which the left side is assumed to be ground truth and the right side

includes covariates or features which attempt to predict the ground truth. However, in this

case, we used logistic regression as a statistical tool. Since we wanted to compare the dynamics

of autonomics vs behavioral changes, we set the behavioral changes as “ground truth” on the

left side. This was not to imply that the autonomic indices as features on the right side were

not accurate, but rather to create a clear framework to identify when autonomic dynamics did

not align exactly with behavior. We applied our logistic regression framework, discussed in

more detail below, to answer four questions. For each question, the framework remained

largely the same; what changed were the durations of time used and the labeling of ground

truth. The four questions are as follows with the assignment of ground truth for each:

Starting with the most foundational question,

1. Can we differentiate the autonomic dynamics of consciousness from unconsciousness?

(Before LOC and after ROC = 0, Between LOC and ROC = 1)

Then, zooming in specifically to the transitions between states of consciousness,

2. Can we differentiate the autonomic dynamics before and after behavioral loss of con-

sciousness (LOC)? (Before = 0, After = 1)

3. Can we differentiate the autonomic dynamics before and after behavioral recovery of

consciousness (ROC)? (Before = 0, After = 1)

Finally, specifically examining autonomic dynamics when behavioral state of consciousness

is constant,

4. Can we differentiate the autonomic dynamics before and after anesthesia as a whole?

(Baseline before anesthesia = 0, Baseline after anesthesia = 1)

The logistic regression framework was set up as follows. For Question 1, we used the full

duration of the experiment for each of the nine subjects. For Questions 2 and 3, we extracted

the t minutes before and after annotated LOC (or ROC) for each subject, where t was either

10, 15, or 20 minutes. For Question 4, we used the two baseline periods for each subject. Then,

for the duration of data used for each question, we computed all of the autonomic indices

listed in Table 1. All autonomic indices were then concatenated into autonomic state vectors

for each w-second window by computing the mean or median value of each index within each

window, where w was 2, 5, 10, 15, 20, or 30. The w-second windows were labeled based on the

‘ground truth’ labels for each question indicated previously.

Then we built logistic regression models using the autonomic state vectors as features, with

LASSO regularization for feature pruning and using leave-one-subject-out cross-validation.
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Since we are using LASSO regularization, which penalizes number of surviving features with

L1 regularization, we are allowing the model to select the most informative subset of features

and remove any redundancies. We computed predictions for each subject, and area under the

receiver operating characteristic curve (AUC) was used as the measure of overall predictive

performance. The data were normalized within each subject using Z-score normalization for

each feature before being combined. We additionally tested models that allowed for lagged

time windows to be incorporated as additional features, which considers longer-range history

of up to h seconds, where h was either 30, 60, 120, or 240. In these models, a single index could

account for several features in the model when including time lagged windows. For example, if

w were 15 seconds and h were 30 seconds, each index would account for 3 features in the

model, one for the current window and two for time lagged ‘history’ windows. An illustration

of this is shown in Fig 1. This is separate from the shorter-range history of the history-depen-

dent inverse Gaussian models. A number of models were tested for each question, varying all

of the hyperparameters: w, h, the metric used within each window (mean or median), and t
(for Questions 2 and 3 only). For the best model for each question, we plotted the autonomic

predictions for each subject and computed the AUC when using unimodal indices alone

(either HRV or EDA).

Results

Comparing temporal and pulse amplitude information in EDA data

Since we applied separate models with the same framework for the temporal and amplitude

information in EDA, we could investigate the separate contributions of each and when they

seemed to relay correlated or uncorrelated information. Since we were interested in quantify-

ing this correlation on the timescale of several minutes rather than seconds, we took the

median of each index in 20-second windows, smoothed that over 3-minute sliding windows,

and then computed the Pearson correlation over 10-minute sliding windows. Correlations

were computed between the means of pulse rate and amplitude and between the standard devi-

ations of pulse rate and amplitude. These correlations show that the amplitude and temporal

information are not always correlated and vary over time for each subject; therefore, amplitude

and temporal information are not strictly redundant.

Figs 2–4 capture three examples of this interplay between pulse rate and amplitude infor-

mation. Similar figures for the remainder of the subjects can be found in S2 Appendix along

with the hyperparameters used for all subjects. The point process algorithm uses the first win-

dow length of each dataset to fit parameters, so it does not return estimates of indices in that

timeframe.

Fig 1. Schematic of incorporating longer-range history using lagged windows. This figure shows how lagged windows for each index were added to incorporate longer-

range history. For example, if w is 30 seconds and h is 120 seconds, that results in M = 4 lagged windows for each index, resulting in a total of 5 features in the model from

each index.

https://doi.org/10.1371/journal.pone.0254053.g001
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Comparing behavioral and autonomic changes

Table 2 below summarizes the results for the best models for all four questions. The StAR

framework was used to compute 95% confidence intervals for the difference in AUC values

between multimodal and unimodal models, shown in S2 Table (S3 Appendix Part A) [25]. A

confidence interval that does not contain zero is statistically significant. An asterisk in Table 2

below indicates that the unimodal model and is statistically significantly different from the

multimodal model.

Across all four questions, 20 second or longer window lengths yielded best results. When

history was useful, longer periods of history (120 or 240 seconds) were ideal. And when the

duration used was a hyperparameter (Questions 2 and 3), a longer duration (20 minutes before

and after) was optimal. The results of all hyperparameter combinations tested for each ques-

tion can be found in S3 Appendix Part B, along with an assessment of feature importance (S3

Appendix Part C) and a comparison with using standard non-point process HRV and EDA

features for Question 1 (S3 Appendix Part D).

Question 1. With respect to question 1, the multimodal model performed better than

either unimodal model, suggesting a possible synergistic effect of a multimodal approach for

assessing state of consciousness. Of the unimodal models, the HRV unimodal model per-

formed better, which makes sense given that propofol directly affects hemodynamics as a vaso-

dilator and myocardial depressant [1, 2]. Fig 5 shows the autonomic predictions from the best

logistic regression model against the behavioral markers for each subject. Overall, autonomic

Fig 2. EDA indices from Subject 4. From top to bottom, mean pulse rate, mean pulse amplitude, correlation between mean pulse rate and pulse amplitude, standard

deviation of pulse rate, standard deviation of pulse amplitude, and correlation between standard deviations of pulse rate and pulse amplitude. This subject shows several

periods of high correlation between rate and amplitude information. However, at approximately 70–90 minutes, pulse rate and amplitude information become strongly

anti-correlated. This is because mean and standard deviation of pulse rate remain elevated while mean and standard deviation of pulse rate decrease. This indicates

lingering sympathetic tone in the form of sparser but still large pulses.

https://doi.org/10.1371/journal.pone.0254053.g002
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dynamics are best-aligned with behavioral changes for Subjects 2, 4, 6, and 9. Subjects 3 and 8

show lingering autonomic dynamics that resemble unconsciousness even after recovery of

conscious behavior. Subject 7 shows a very unintuitive autonomic state for the first half of the

experiment, which may be partially due to phenylephrine administration around the time of

loss of consciousness, which counteracts the hemodynamic effects of propofol. Phenylephrine

administration may have also played a role in the variable and drawn out autonomic transition

seen in Subjects 1 and 5 between initial consciousness and unconsciousness. Several subjects

(1, 3, 4, 7, 9) exhibit a seemingly unconscious autonomic state very briefly at the very begin-

ning of the recording period. This condition was likely present even before the baseline period

of the experiment, and it might indicate that the subjects were in an extremely relaxed state

while they were simply being recorded at rest. Fig 5 indicates high inter-subject variability in

autonomic dynamics overall, but also that transitions of autonomic dynamics on a subject-by-

subject basis are neither smooth and linear nor binary, but rather exhibit more complex

dynamics. The comparison between our point process indices and more standard or non-

point process indices (in the S3 Appendix Part D) shows that the point process features consis-

tently outperform standard features, especially when using shorter time windows where

instantaneous measurements are necessary. A more extensive comparison between the point

process HRV indices and standard HRV indices in controlled scenarios can be found in [14].

Question 2. With respect to question 2, the HRV unimodal model performed best, which

is unsurprising for many physiological reasons. This question deals with more specific tempo-

ral dynamics immediately around the time of behavioral loss of consciousness, and HRV has a

Fig 3. EDA indices from Subject 6. From top to bottom, mean pulse rate, mean pulse amplitude, correlation between mean pulse rate and pulse amplitude, standard

deviation of pulse rate, standard deviation of pulse amplitude, and correlation between standard deviations of pulse rate and pulse amplitude. This subject shows both

periods of high correlation and high anti-correlation between pulse rate and amplitude information. Specifically, from 60–100 minutes, they go from highly correlated to

highly anti-correlated. This reflects a “handoff” of information, going from both rate and amplitude to largely rate alone. In this subject, the rate of pulses is heavily

modulated, while most pulses are small except for short periods when pulse amplitude increases sharply.

https://doi.org/10.1371/journal.pone.0254053.g003
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faster response time than EDA. In addition to propofol acting as a vasodilator and myocardial

depressant which directly affects HRV, the parasympathetic arm of hemodynamic reflexes, not

captured by EDA, generally reacts faster than the sympathetic arm. HRV is also more adept at

capturing complex nonlinear behavior which has been shown to exist around loss of con-

sciousness [19].

Fig 6 shows the autonomic predictions from the best logistic regression model against

behavioral markers for each subject. Again, there is strong inter-subject variability, which may

relate to why a longer window before and after (20 minutes) is ideal for best performance. It is

important to note that the autonomic predictions are showing the marked shifts in autonomics

within the time period examined, which is not the full duration of the experiment. The auto-

nomic state immediately after loss of consciousness may not be the same as that much further

Fig 4. EDA indices from Subject 7. From top to bottom, mean pulse rate, mean pulse amplitude, correlation between mean pulse rate and pulse amplitude, standard

deviation of pulse rate, standard deviation of pulse amplitude, and correlation between standard deviations of pulse rate and pulse amplitude. This subject has few periods

where pulse rate and amplitude information are highly correlated or highly anticorrelated. They are mostly decorrelated, with the correlation hovering around 0. In this

case, pulse rate and amplitude are largely complementary; excluding either would exclude valuable information.

https://doi.org/10.1371/journal.pone.0254053.g004

Table 2. Summary of results for best logistic regression models for all four questions.

Question Metric within

window

Window length (w
sec)

History (h sec) Time before and after (t
min)

AUC (multimodal) AUC (HRV

only)

AUC (EDA

only)

1 Median 20 120 N/A 0.86 0.83� 0.77�

2 Median 20 120 20 0.78 0.81� 0.65�

3 Median 20 240 20 0.83 0.80� 0.72�

4 Mean 30 0 N/A 0.75 0.68� 0.70�

�indicates statistical significance

https://doi.org/10.1371/journal.pone.0254053.t002
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into the experiment. Therefore, it does not make sense to compare the specific values of the

autonomic state from Figs 5 and 6. The time window shown in Fig 6 is only a component of

that shown in Fig 5 and will look different when considering the dynamics of the rest of the

experiment.

Question 3. With respect to Question 3, the multimodal model performed best. This sug-

gests that the dynamics of recovering consciousness are different from those of losing con-

sciousness (Question 2). Fig 7 shows the autonomic predictions from the best logistic

regression model against behavioral markers by subject. Subject 5 is the closest to exhibiting

synchronous behavioral and autonomic changes; however, there are still lesser autonomic

changes that occur first. For all of the remaining subjects, there are notable but transient auto-

nomic shifts that occur before behavioral changes. This agrees with what is often seen clini-

cally, when vital signs like heart rate and blood pressure increase before the patient is visibly

awake at the end of surgery. Comparing Figs 6 and 7, there seems to be increased variability in

autonomic state during recovery of consciousness than loss of consciousness, demonstrated by

more marked “oscillations” in autonomic state in Fig 7 across all subjects. This could also

relate to the increased history (240 seconds) required for optimal performance–to capture

these more variable dynamics.

While the response of EDA is not as fast reacting in time compared to HRV, it was stronger

in demonstrating an autonomic change–in pulse rate, pulse amplitude, or both. For example,

the EDA unimodal model without amplitude information had an AUC of only 0.62 (compared

to 0.72 with amplitude information), which implies that there are important EDA changes,

specifically in the amplitude of pulses, accompanying recovery of consciousness.

Fig 5. Autonomic predictions by subject from the best logistic regression model for Question 1. For each subject, the blue trace is the prediction of the model using

autonomic indices, while the magenta asterisks indicate the state of consciousness based on behavior, where conscious is 0 and unconscious is 1.

https://doi.org/10.1371/journal.pone.0254053.g005
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Question 4. Question 4 was the only one for which additional history was not helpful.

This might reflect that the baseline states are internally less dynamic. For question 4, like with

question 1, the multimodal model performed better than either unimodal model. Between the

two unimodal models, the EDA unimodal model performed better, indicating that sympa-

thetic tone may play an important role in lingering autonomic changes after anesthesia. This is

worthy of further study and could have clinical implications for commonly seen post-anesthe-

sia complications such as pain, hypertension, and myocardial infarction.

Discussion

In this work, we created a statistical framework for comparing behavioral changes and multi-

modal autonomic dynamics under propofol-induced loss and recovery of consciousness. We

used signal processing algorithms developed specifically to extract the physiologically relevant

information from heart rate variability and electrodermal activity. We tested this framework

on data from nine healthy volunteers who underwent a controlled propofol sedation experi-

ment. Using this framework, we investigated four scientifically and clinically relevant ques-

tions about the relationship between behavioral changes and autonomic dynamics,

comparing: 1) consciousness versus unconsciousness; 2) the transition from consciousness to

unconsciousness; 3) the transition from unconsciousness to consciousness; and 4) the periods

of consciousness before and after unconsciousness. We demonstrated a strong relationship

between behavioral state of consciousness and autonomic dynamics, but that it is complex and

Fig 6. Autonomic predictions by subject from the best logistic regression model for Question 2. Fig 6 allows for better visualization of the nuanced autonomic

dynamics immediately around loss of consciousness that were not visible in Fig 5. With these nuanced autonomic, it is clear that the autonomic shifts are rarely aligned

exactly with behavioral changes. While it is difficult to annotate behavioral changes on a continuum, autonomic dynamics allow for exactly that. Subject 4 shows the best

alignment between autonomic and behavioral changes. Subjects 2, 3, and 6 exhibit delayed autonomic shifts compared to behavioral changes, while Subjects 5, 8, and 9

exhibit earlier autonomic changes compared to behavioral changes. Subjects 1 and 7 exhibit a more complex and variable dynamic that may have also been affected by

phenylephrine administration around the time of loss of consciousness.

https://doi.org/10.1371/journal.pone.0254053.g006
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nonlinear, especially during transition periods. Autonomic dynamics may even capture

changes that cannot be tracked as well behaviorally. Autonomic dynamics provide a more

nuanced measure of underlying state that can be tracked before, during, and after anesthesia.

However, its relationship with behavioral state warrants further exploration to inform clinical

practice.

This study has a few nontrivial limitations. Since the data analysis was done post-hoc using

data collected in a previous study, we did not have access to optical measures of peripheral

blood flow such as photoplethysmography that could link central and peripheral measures of

autonomic dynamics and account more directly for the vasodilatory effects of propofol [26–

28]. In future studies, we will include this signal. Several of the indices included in this study,

such as the frequency measures of HRV and the EDA measures, are thought to relate to mark-

ers of sympathetic and parasympathetic tone, but have not been conclusively proven as such.

Their interpretations have not been fully elucidated [29–31].

Despite these limitations, this work represents a key advance in a number of ways. First, it

demonstrates that we can capture the relevant physiologic information from rich autonomic

signals with a limited number of features if the models used to extract those features are based

on physiology. The performance of our statistical framework, with AUCs of 0.75 or above for

all questions with only 15 autonomic indices, is evidence of that. Second, for phasic EDA,

physiologic experiments have indicated that there is information distributed between pulse

rate and pulse amplitude information [32], but there has been no framework for how to extract

it. Our work establishes such a framework and shows that this information can be correlated

or complementary at different times. Further investigation of these dynamics can lead to a bet-

ter understanding of how sympathetic information may be conveyed in different subjects and

Fig 7. Autonomic predictions by subject from the best logistic regression model for Question 3. Unlike in Figs 5 and 6, with respect to the behavioral markers,

unconsciousness is 0 and consciousness is 1.

https://doi.org/10.1371/journal.pone.0254053.g007
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a full appreciation of all the information EDA has to offer. Third, this work demonstrates that

a multimodal approach to autonomic dynamics is superior to unimodal approaches. Even

when optimal model performance can be achieved with a unimodal model, comparing the per-

formance of multimodal and unimodal models together allows us to assess the importance of

parasympathetic versus sympathetic activity and fast timing. Given the results across all four

questions, it appears that multimodal models perform best in most cases except perhaps when

tracking nuanced or fast temporal changes that more directly affect one modality more than

others.

Fourth, our work shows that in broad strokes, using autonomics alone can distinguish

robustly between the steady states of consciousness and unconsciousness. However, the peri-

ods of transition between the states are the greatest source of variability. The relationship

between behavioral and autonomic dynamics around the key transitions of loss and recovery

of consciousness is subject-specific and not perfectly synchronized, which supports the physio-

logic hypothesis that the circuits governing both are interconnected but separate. The subject-

by-subject results for Questions 2 and 3 show that the autonomic transitions are nuanced,

complex, and nonlinear. Previous work with our point process HRV model has shown that it

can capture nonlinear dynamics well [19]. This helps explain why the HRV unimodal model

performed better than the multimodal models for Question 2. With continued advances in sig-

nal processing, we may be able to disentangle these complex dynamics immediately around

loss of consciousness. Fifth, this work suggests that the autonomic states before and after anes-

thesia are distinguishable in terms of autonomics, and perhaps with a strong sympathetic com-

ponent since the EDA unimodal model performed better than the HRV. Further investigation

of possible lingering changes in autonomic dynamics can shed light on common postoperative

complications including pain, hypertension, or myocardial infarction.

Our work has important clinical implications, since anesthesiologists often rely on auto-

nomic inference to make nuanced adjustments to level of unconsciousness and to infer when

the patient has transitioned from conscious to unconscious or vice versa. Further improve-

ments in signal processing algorithms and the inclusion of additional modalities of autonomic

information, such as photoplethysmography or non-invasive continuous blood pressure, can

further improve our assessment of autonomic dynamics. Modeling the behavioral responses

on a continuum, such as with a state space model, rather than as a binary would also allow for

more nuanced comparison against autonomic dynamics. We will continue this work to quan-

tify the complex and subject-specific relationship between behavioral changes and autonomic

dynamics before, during, and after anesthesia.
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