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and Gossypium barbadense under chilling stress

Shouli Feng,1,5 Xuan Long,1 Mengtao Gao,2 Yongyan Zhao,1,3 and Xueying Guan1,3,4,6,*

SUMMARY

Natural antisense transcripts (NATs) in model plants have been recognized as
important regulators of gene expression under abiotic stresses. However, the
functional roles of NATs in crops under low temperature are still unclear. Here,
we identified 815 and 689 NATs from leaves of Gossypium hirsutum and
G. barbadense under chilling stress. Among those, 224 NATs were identified as
interspecific homologs between the two species. The correlation coefficients
for expression of NATs and their cognate sense genes (CSG) were 0.43 and
0.37 in G. hirsutum and G. barbadense, respectively. Furthermore, expression
of interspecific NATs and CSGs alike was highly consistent under chilling stress
with correlation coefficients of 0.90–0.91. Four cold-associated NATs were
selected for functional validation using virus-induced gene silencing (VIGS). Our
results suggest that CAN1 engage in the molecular regulation of chilling stress
by regulating SnRK2.8 expression. This highly conserved NAT have valuable po-
tential for applications in breeding cold-tolerant cotton.

INTRODUCTION

Cotton (Gossypium spp.) originated from tropical and subtropical regions, is an important cash crop

throughout the world, and provides natural and renewable raw materials for the textile industry. Suitable

temperatures for cotton growth and development lie in the range of about 22�C–32�C,1–3 and tempera-

tures below 10�C will cause cold damage. Two important cultivated tetraploid species, Gossypium hirsu-

tum L. (AD1) and G. barbadense L. (AD2), are currently in widespread use for global cotton farming. After a

long period of domestication and improvement, cotton has gradually adapted to diversified climates and is

grown in the Yellow River valley, Yangtze River valley, northwest, south, and even northeast China (Fig-

ure S1A). However, both G. hirsutum and G. barbadense are chilling sensitive crops, and G. barbadense

was more sensitive to low temperature stress.4 In addition, the Xinjiang region accounts for more than

80% of the total cotton produced in China. Cotton in Xinjiang is usually sown in mid-April and covered

with mulch to keep it warm, with the seedlings emerging from the mulch in early May. From 1951 to

2021, the daily minimum temperature in Xinjiang was lower than 10�C on most days in April, and also on

some days in May (Figure S1B). The cold damage that occurs in the Xinjiang spring incurs great losses

with regard to cotton quality and yield.5 Due to the relatively short history of their cultivation and domes-

tication in cold regions, there is urgent need to improve the cold tolerance of tropical- and subtropical-

originating crops such as cotton, adapting them to the wider modern cultivation area and increasingly

severe global climate anomalies. Understanding the molecular mechanism of cold tolerance in cotton

seedlings is an important basis for breeding new varieties with cold tolerance, and also an important strat-

egy to rescue the losses resulting from cold damage.

Plants have evolved sophisticated molecular regulatory mechanisms to respond and adapt to low temper-

ature. Under low temperature, plant genes encoding transcription factors such as C-repeat (CRT)-binding

factors (CBFs) are rapidly induced; their encoded proteins then directly bind to CRT/DRE cis-elements and

activate a set of cold-regulated (COR) genes, leading to the cold tolerance response.6,7 Recently, long non-

coding RNAs have emerged as new regulation components associated with abiotic and biotic stresses in

plant genomes.8 Long non-coding genes have high interspecific specificity and are able to rapidly generate

new functions, which is the basis of rapid environmental adaptation in new species.9,10 Natural antisense

transcripts (NATs) comprise a unique type of lncRNA, being usually transcribed from the antisense strands
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of protein-coding genes (PCGs). These transcripts enact cis-regulation on their cognate sense genes

(CSGs) through several mechanisms and so directly regulate corresponding biological functions.11–13

When the CSG in question is a stress-regulated gene, production of the NAT helps the organism rapidly

develop environmental adaptation. Previous studies have shown that NATs are induced by low tempera-

ture and play an important role in plant growth, development, and stress responses. For example, cold-

induced FLC antisense transcripts have an early role in the epigenetic silencing of FLC, and their induction

predates and is independent of other vernalization markers.14 MAS generated from the antisense strand of

theMADS AFFECTING FLOWERING4 (MAF4) locus serves to activateMAF4 by recruitingWDR5a, the core

component of COMPASS-like complexes, to enhance histone 3 lysine 4 trimethylation (H3K4me3) on

MAF4.15 Moreover,MAS andMAF4 are both activated by low temperature, which has the effect of prohib-

iting premature flowering.15 SVALKA is a cold-responsive lncRNA in Arabidopsis svalka, which exhibits

decreased cold tolerance. It is transcribed from the antisense strand between CBF3 and CBF1, primarily

from the CBF1-proximal promoter, and hence inhibits transcription of CBF1 through RNA transcriptase

II collision.16 DgTCP1 and the associated NAT DglncTCP1 respond to low temperature and increase

cold tolerance in chrysanthemum.17 DglncTCP1 acts as a scaffold to recruit the histone methyltransferase

DgATX to DgTCP1 to enhance H3K4me3 level and thus activate DgTCP1 expression.17 These reported

case studies all support that NATs are actively involved with cold stress regulation in the plant kingdom.

Therefore, it is reasonable to analyze the molecular function of NATs in cotton seedlings under chilling

stress with the goal of ultimately improving cotton cold tolerance and guiding the breeding of cold-

tolerant varieties of cotton.

It is generally believed that genes with interspecific conservation have important functions. Compared with

PCGs, NATs, and lncRNAs evidence rapid evolution in their sequences and poor interspecific conservation.

Between humans and mice, a genome-wide analysis identified 313 conserved NATs, which accounted for

only 7.99%–10.30% of the total NATs identified18; in contrast, the proportion of homologous coding genes

conserved between humans and mice is about 80%.19 In addition, only eighteen human, ten mouse, and

four rat NATs are conserved in chicken,18 indicating low interspecific conservation of NATs across verte-

brates. For comparison, among long non-coding RNAs in rice and maize, the proportion of conserved

lincRNAs and NATs was about 5% and 3.5%, respectively.20

Whether NATs have a certain degree of interspecific transcriptional conservation is the main basis for eval-

uating the importance of their function, and such conservation analysis can promote our understanding in

the following respects: (1) potential biological functions, (2) mode in gene regulation, and (3) clues to origin

and evolution. Therefore, interspecific comparative genomic analyses among species with relatively close

evolutionary relationships can assist in identifying functional NATs. G. hirsutum and G. barbadense are

two allotetraploid cotton species that were formed by the hybridization and polyploidization of A and D

diploid ancestors, with an estimated divergence time of 0.4–0.6 million years ago (MYA).4 Comparative

genomic analysis has indicated high collinearity and homology of PCGs between G. hirsutum and

G. barbadense,4,21 which provides a reliable basis for the definition and screening of NATs conserved be-

tween these species.

In this study, in order to explore the interspecific conservation of NATs associated with cold stress in cotton,

we employed strand-specific RNA sequencing (ssRNA-Seq) to systematically identify NATs in G. hirsutum

and G. barbadense. In total, we characterized 815 and 689 NATs from G. hirsutum and G. barbadense,

respectively. Of those, 224 were interspecific homologs. We then selected four interspecific homologous

NATs and corresponding CSGs for validation of their functions under chilling stress at seedling stage using

virus-mediated gene silencing (VIGS) technology.

RESULTS

Identification of natural antisense transcripts (NATs) in cotton

To identify NATs at the genome-wide level in cotton, we reconstructed G. hirsutum and G. barbadense

transcriptomes using high-depth strand-specific RNA sequencing technology. cDNA libraries were con-

structed for rRNA-depleted RNAs prepared from G. hirsutum and G. barbadense leaves under favorable

(28�C) or chill stress (4�C) conditions. A total of 305.92 million (M) and 320.08 M clean reads was obtained

from G. hirsutum and G. barbadense, respectively (Table S1). Among those, 279.23 M clean reads from

G. hirsutum aligned to 82,144 genomic loci, and 284.63 M clean reads from G. barbadense aligned to

83,366 genomic loci. Based on transcript abundance, there was high consistency between biological
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replicates (Figure S2). After removing low-abundance transcripts (TPMMAX < 1), 38,054 PCGs, 3,596

lncRNAs, and 815 NATs were identified in G. hirsutum; meanwhile, 36,461 PCGs, 2,839 lncRNAs, and

689 NATs were obtained for G. barbadense. The NATs were further classified into four categories:

Head-to-Head (HH), Tail-to-Tail (TT), Full-overlap-Inside (FI) and Full-overlap-Outside (FO) (Figure 1A).

The most numerous type was FO, with 419 (51.41%) NATs in G. hirsutum and 350 (50.50%) in

G. barbadense (Figure 1B). Meanwhile, FI was the least represented at 62 (7.61%) and 43 (6.24%) NATs,

respectively. The features of the identified NATs and PCGs were further evaluated in terms of average

size (nucleotide, nt) and exon number. TT and FO NATs in G. hirsutum were significantly longer than

PCGs and lncRNAs, with mean lengths of 2,209 nt and 2,708 nt versus the 1,705 nt of coding genes and

1,049 nt of lncRNAs (p value < 0.001, Mann-Whitney U-Test) (Figure S3). Similarly, TT and FO NATs in

G. barbadense had mean lengths of 2,242 nt and 2,460 nt versus the 1,648 nt of coding genes and

1,010 nt of lncRNAs (p value < 0.001, Mann-Whitney U-Test) (Figure S2). Meanwhile, HH and FI NATs in

G. hirsutum averaged 1,835 and 1,773 nt in length, which was not significantly different from PCGs. In

G. barbadense, the average length of HH NATs was 2,267 nt, much longer than coding genes

(p value < 0.01, Mann-Whitney U-Test), but the mean length of FI transcripts was 1,626, not significantly

different from coding genes (Figure S3). NATs had fewer exons than coding genes (p value < 0.001,

Mann-Whitney U-Test) (Figure S3), and were not evenly distributed across chromosomes. Chromosome
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Figure 1. Natural antisense transcripts (NATs) from G. hirsutum and G. barbadense

(A) Schematic diagram of the four classes of NATs.

(B) The number and proportion of NATs in each class.

(C and D) GO terms enriched among NATs detected from G. hirsutum and G. barbadense.
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A04 harbored the fewest NATs in bothG. hirsutum andG. barbadense, with 14 and 7, respectively, and A05

the most, at 62 and 45, respectively (Figure S4).

To investigate the putative function of NATs, we performed Gene Ontology (GO) enrichment analysis on

the CSGs of all respective NATs in G. hirsutum and G. barbadense. Interestingly, similar GO terms were

enriched in both species, such as ‘‘RNA-DNA hybrid ribonuclease activity,’’ ‘‘endoribonuclease activity,

producing 50-phosphomonoesters,’’ and ‘‘endoribonuclease activity’’ (Figures 1C and 1D). We next per-

formed GO enrichment analysis on each of the four NAT classes. Surprisingly, we found only the FO class

to exhibit enrichment inG. hirsutum, namely for the term ‘‘RNA-DNA hybrid ribonuclease activity,’’ while all

four classes exhibited similar enrichments in G. barbadense (Figure S5). RNA-DNA hybrids can form from

RNA transcripts. In eukaryotes, nascent RNA transcripts are quickly exported out of nuclei, otherwise RNA-

DNA hybrid complexes will accumulate and then impair genome stability.22 The similarity of GO enrich-

ment results in both cotton species indicates that NATs is not transcribed noise, they may play important

roles in removing RNA-DNA hybrid complexes to protect transcript and genome stability.

Conserved NATs identified between G. hirsutum and G. barbadense

NATs are transcribed from the opposite strands of PCGs or lncRNAs. To identify homologous NATs be-

tween G. hirsutum and G. barbadense, we first identified interspecific homologous PCGs and lncRNAs

based on synteny and reciprocal best blast (Figures 2A, 2B, and S6A). This yielded 79,859 synteny anchors

and 54,281 reciprocal best hits, of which 52,263 overlapped pairs were identified as homologous PCGs or

lncRNAs (Figure 2C). These included 50,998 (97.58%), 1,123 (2.15%), and 142 (0.27%) homologous se-

quences categorized as PCG-PCG, lncRNA-lncRNA, and PCG-lncRNA, respectively (Figure S6B). The me-

dian percentage of identical matches was 99.72, 99.29, and 99.37 for PCG-PCG, lncRNA-lncRNA, and PCG-

lncRNA pairs, respectively (Figure 2D). In addition, the median blastn bit score was 2,654, 783, and 1,244 for

PCG-PCG, lncRNA-lncRNA, and PCG-lncRNA pairs, respectively (Figure 2E). These results indicated high

sequence similarity between homologous PCGs or lncRNAs, and constituted a reliable basis for subse-

quent identification of interspecific homologous NATs.

NATs corresponding to homologous genes were defined as homologous NATs. In total, 224 homologous

NATs were identified betweenG. hirsutum andG. barbadense (Figures 2H and S6C). The sequence similarity

of these NATs was compared as aforementioned, with median percentage of identical matches and blastn bit

score 99.49 and2,823, respectively (Figures 2D and2E; Table S2). The sequence similarity of homologousNATs

betweenG. hirsutum andG.barbadensewas comparable to that of PCGs, but higher than lncRNAs (Figure 2E).

We further compared the proportions of homologous PCGs, lncRNAs, andNATs, and found that about 70%of

PCGs are interspecific homologs (Figure 2F), while proportion of homologous lncRNAs or NATs was signifi-

cantly less at about 31.23%–39.56% (Figure 2G) and 27.48%–32.51% (Figure 2H), respectively. This indicates

that there is less interspecific conservation of both lncRNAs and NATs. With regard to categorization, the ho-

mologous NATs comprised 122, 68, 17, and 17 FO, TT, HH, and FI NATs, respectively. In addition, five NATs

were transcribed from the antisense strands of lncRNAs, and 219 from the antisense of PCGs (Figure S6C).

GO enrichment analysis of homologous NAT CSGs unsurprisingly revealed enriched terms to include ‘‘RNA-

DNA hybrid ribonuclease activity’’ and ‘‘endoribonuclease activity, producing 50-phosphomonoesters’’ (Fig-

ure S7A). The specific NATs from G. hirsutum and G. barbadense were also enriched in the same GO terms,

indicating that conserved NATs do not collectively perform a unique function (Figures S7B and S7C).

Conserved NATs identified between subgenomes in G. arboreum, G. hirsutum, and

G. barbadense

Examining NATs by subgenome revealed 49 NATs as conserved between AT (A subgenome in tetraploid)

and DT (D subgenome in tetraploid) in G. hirsutum (Figure S8A) and 39 in G. barbadense (Figure S8B).

These subgenome-conserved NATs comprised about 8.19%–11.54% of all identified NATs (Figures S8A

Figure 2. Homologous NATs between G. hirsutum and G. barbadense

(A) The schematic of identify homologous genes/lncRNAs.

(B) The schematic of identify homologous NATs.

(C) Upset plot displaying synteny and RBblast gene overlap.

(D) Percentage of match bases within homologous sequences.

(E) Blast bit scores of homologous sequences.

(F–H) Venn plot indicating sharing of PCGs, lncRNAs, and NATs between G. hirsutum and G. barbadense. Wilcoxon test: **, p value < 0.01.
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and S8B), which was significantly less than the proportion conserved between G. hirsutum and

G. barbadense (�27.48%–32.51%). To further assess how many G. hirsutum and G. barbadense conserved

NATs were inherited from ancestral species, we determined those between G. arboreum and the AT sub-

genome of each tetraploid species. This revealed 43 conserved NATs between G. arboreum and

G. hirsutum AT and 37 between G. arboreum and G. barbadense AT (Figures S8C–S8E), comprising about

9.75%–15.87% of all identified NATs (Figure S8).

Conserved NATs of G. hirsutum and G. barbadense have similar expression patterns under

chilling stress

The differential expression of PCGs, lncRNAs, andNATs was evaluated under chilling stress. InG. hirsutum,

a total of 7,948(17.72%)/669(16.28%)/259(24.74%) up-regulated and 5,917(13.19%)/1052 (25.6%)/

198(18.91%) down-regulated PCGs, lncRNAs, and NATs were identified, respectively (Figure 3A;

Table S3). The corresponding totals in G. barbadense were 8,574(18.93%)/667(18.68%)/240(24.14%) up-

regulated and 7,229(15.96%)/1064(29.80%)/366(36.82%) down-regulated PCGs, lncRNAs, and NATs,

respectively (Figure 3A). The proportion of up-regulated PCGs was similar to that of lncRNAs in both

G. hirsutum and G. barbadense, while the proportion of up-regulated NATs was higher. Similarly, the pro-

portion of down-regulated lncRNAs and NATs was higher than that of PCGs (Table 1). To validate this

observation, we performed 1000 bootstrap re-samples of random PCGs with the same sample size as

NATs, and found that the proportion of up-regulated and down-regulated NATs was significantly higher

than randomly selected PCGs sets (Table 1). Moreover, we investigated the response intensity of CSGs

and NAT under cold stress, and found that the response intensity of up-regulated and down-regulated

NATs were higher than that of CSGs (Figure S9). These results suggested that NAT expression is more

responsive than PCG expression under chilling stress. Similarly, it has been reported that NAT is more sen-

sitive to drought response in maize.23 Notably the proportion of up-regulated NATs was similar in

G. hirsutum andG. barbadense, whileG. barbadense evidenced a much greater proportion of down-regu-

lated NATs than did G. hirsutum (Figure 3A). This was mainly driven by the FO category, which featured

many more down-regulated NATs in G. barbadense (Figure S10).
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Figure 3. Conservation of the expression trends of homologous NATs and CSGs between G. hirsutum and G. barbadense
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(B) Correlation and regression analysis of logFC(cold/control) for PCGs, lncRNAs, NATs, and CSGs betweenG. hirsutum andG. barbadense. The blue line is

the regression curve; the shading indicates 95% confidence intervals. The R value is the correlation coefficient, both the r and p value were obtained from

Pearson correlation test.
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To compare whether the response patterns of homologous NATs under chilling stress were similar be-

tween G. hirsutum and G. barbadense, we counted up the co-differentially expressed PCGs, lncRNAs,

NATs, and CSGs and performed Pearson correlation and linear regression analysis of log2(Fold Change)

(logFC) between G. hirsutum and G. barbadense. Of the 33,090 expressed homologous PCGs, 4,226,

19,194, and 2,457 were up-regulated, non-different, and down-regulated in both species, while only 19

and 32 homologous PCGs displayed opposite differential expression patterns (Figure 3B). Among the

1,073 expressed homologous lncRNAs, 111, 491, and 196 were up-regulated, non-different, and down-

regulated in both species, while only four homologous lncRNAs displayed opposing differential expression

patterns (Figure 3B). Of the 224 expressed homologous NATs, 37, 69, and 41 were up-regulated, non-

different, and down-regulated in both species, and no homologous NATs were found to display opposite

differential expression patterns (Figure 3B). The logFC correlation coefficients of PCGs, lncRNAs, NATs,

and CSGs between G. hirsutum and G. barbadense were 0.86, 0.85, 0.91, and 0.90, respectively

(p value < 2.2 3 10�16) (Figure 3B). These results indicated that homologous PCGs, lncRNAs, and NATs

of G. hirsutum and G. barbadense have similar expression patterns under chilling stress. The similarity in

expression patterns between G. hirsutum and G. barbadense could either have originated from diploid

ancestor species, or it may have arisen following polyploidization and subsequently been retained during

species divergence. That is, these conserved NATs in both G. hirsutum and G. barbadense have main-

tained similar expression patterns over millions of years of natural selection, indicating their potential sig-

nificance in imparting cotton resistance to cold stress.

The expression of NATs is positively correlated with their cognate sense genes

To explore the gene regulation function of NATs, we first examined the expression correlation between

NATs and their CSGs. The correlation coefficient between logFC of NATs and logFC of CSGs was 0.43

(p value < 2.2 3 10�16) in G. hirsutum and 0.37 (p value < 2.1 3 10�13) in G. barbadense, which indicated

that NAT and CSG expression tend to a positive correlation under chilling stress (Figures 4A and 4B). CSGs

were then divided into three classes based on the expression pattern of NATs: Up, Down, and Non-diff.

Relative to the Non-diff genes, the logFC of Up class CSGs was significantly higher, while the logFC of

Down class CSGs was significantly lower in both G. hirsutum and G. barbadense (Figure 4C). However,

individual NAT classes varied in their adherence to this overall pattern. In G. hirsutum, the respective cor-

relation coefficients of HH, TT, FI, and FO NATs were 0.41, �0.02, 0.45, and 0.61, and the corresponding

p values were 0.0007, 0.80, 0.0015, and < 2.2 3 10�16 (Figure S11). Similarly, the correlation coefficients

of HH, TT, FI, and FO NATs in G. barbadense were 0.38, 0.14, 0.32, and 0.58, and the p values were

0.009, 0.09, 0.06, and 2.73 3 10�12, respectively (Figure S12). These results suggested that FO NATs and

their paired genes have consistent expression trends in G. hirsutum and G. barbadense, while TT NATs

have relatively diversified expression.

NATs are involved in chill-tolerance regulation

To validate the function of the characterized NATs in chill-tolerance regulation, we selected conserved

NATs based on expression levels and differentially expressed NATs and CSGs. This yielded four

Table 1. The number and ratio of cold responsive transcripts in cotton

Category

TM-1 H7124

Up-regulated Down-regulated Up-regulated Down-regulated

Sig.PCGs 7948(17.72) 5917(13.19) 8574(18.93) 7229(15.96)

Sig.lncRNA 669(16.28) 1052(25.6) 667(18.68) 1064(29.8)

Sig.CSGs 137(16.81) 58(7.12) 88(12.77) 76(11.03)

Sig.NATs 259(24.74) 198(18.91) 240(24.14) 366(36.82)

p value (c2 test) 6.05 3 10�9 9.5 3 10�8 4.17 3 10�5 1.03 3 10�68

Sig.bootstrap 144.49(17.73) 107.56(13.20) 130.78(18.98) 109.99(15.96)

p value (t-test) 0 0 0 0

The ratio of cold responsive transcripts is in parentheses (%). Sig.: Significantly responded to cold stress. p value (c2 test):

p value of c2 test for assessing differences between significantly up- or down-regulated PCGs andNATs s identified in cotton.

p value (t-test): p value of t-test for assessing differences between significantly up- or down-regulated PCGs of bootstrap sam-

ples compared with NATs identified in cotton.
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differentially expressed conserved NATs, termed cold-associated NAT 1 through 4 (CAN1-4) (Figure S13).

These four NATs are abundantly expressed, and compared with the control, NATs and CSGs were differ-

entially expressed in both G. hirsutum and G. barbadense under chilling stress. The observation of similar

expression patterns in both cotton species suggests that these transcripts play conserved roles in coping

with chilling injury. CAN1, which was up-regulated during chill stress, is transcribed from the antisense

strand of a PCG homologous to SnRK2.8, which encodes a serine/threonine-protein kinase (Figures 5

and S13). CAN2, which was down-regulated during chilling stress, corresponds to a CSG that was up-regu-

lated under chilling stress and is homologous to BBX27, a B-box zinc finger family protein (Figures S13 and

S14). CAN3 was down-regulated during chill stress, as was its CSG TOM3, which encodes a G-protein

coupled receptor (GPCR) (Figures S13 and S14). CAN4, which was up-regulated during chill stress, corre-

sponds to the geneMAG2, which encodes a protein required for protein transport between the Golgi and

the endoplasmic reticulum (Figure S13 and S14).

To investigate the roles of these NATs in cotton cold tolerance, the four NATs and their CSG were silenced

using VIGS technology. Compared with empty vector-infected plants (TRV2::0), TRV2::CAN1- and

TRV2::SnRK2.8-infected plants demonstrated reduced transcription of GhCAN1 and GhSnRK2.8, respec-

tively (Figures 6A and 6B). Interestingly, the level of GhCAN1 transcripts was also decreased in

TRV2::SnRK2.8-infected plants (Figure 6A). However, the expression ofGhSnRK2.8 in TRV2::CAN1-infected

plants was slightly increased (Figure 6B). The chilling injury index and injured leaf area of TRV2::CAN1-in-

fected plants were significantly less than with TRV2::0, indicating silencing of CAN1 to increase tolerance to

cold injury (Figures 6C–6F). Conversely, the chilling injury index and injured leaf area of TRV2::SnRK2.8-in-

fected plants were significantly higher than with TRV2::0, indicating silencing of SnRK2.8 to increase sensi-

tivity to cold injury (Figures 6C–6F). With silencing of CAN2, CAN3, and CAN4, all plants were more sen-

sitive to chilling stress (Figures S15–S17). In addition, silencing of TRV2::BBX27 slightly increased cold

tolerance (Figure S15), that of TRV2::TOM3 had no significant effect (Figure S16), and loss of TRV2::MAG2

resulted in cold sensitivity (Figure S17).

DISCUSSION

In 43 years ago, the first natural antisense transcript (NAT) was reported in plasmids,24 and NATs were sub-

sequently found in both mammals25 and plants.26 Recently, these transcripts (NATs) have been increasingly

identified to function in various biological processes in plants.14–17,27–29 However, due to their regulating

gene expression in varied ways30 and being characterized by poor interspecific conservation,18,20 the gen-

eral laws and interspecies universality of functional NATs has not been well elucidated. Generally, genes/

lncRNAs/NATs that have been retained after a long period of natural selection in the process of species

divergence are more likely to have important potential functions. Other species-specific NATs could either

be transcriptional noise, or they could be the molecular basis that shapes species specificity. Therefore,
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Figure 4. The positive expression trend of NATs and their cognate sense genes

(A and B) Correlation analysis of logFC of NATs(cold/control) and logFC of CSGs(cold/control) inG. hirsutum andG. barbadense, respectively. The R value is

the correlation coefficient, both the r and p value were obtained from Pearson correlation test.

(C) Boxplot showing the distribution of logFC of CSGs based on differentially expressed NATs. Wilcoxon test: **, p value < 0.01, *, p value < 0.05.
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interspecific conservation analysis is an important tool for analyzing the regulation modes of NATs and

exploring functional NATs. However, there are yet few reports focusing on interspecific-conserved NATs

in plants.

Interspecific-conserved NATs in cotton

In this study, 815 and 689 NATs were identified fromG. hirsutum andG. barbadense, respectively (Figure 2).

In previous studies, 2,486 and 4,718 NATs were identified in G. arboreum31 and G. barbadense,32 respec-

tively, which was significantly more than the number reported here. This could be attributable to the

following reasons. Firstly, it may be due to the tissue-specific expression patterns of non-coding genes.

Here, we identified NATs from control and chilling-stressed leaves specifically, while previous studies

examined different tissues such as leaves and ovules and fibers from multiple developmental stages of

G. arboreum and G. barbadense.31,32 The number of NATs in this study is less than report in Arabidopsis

(Ivanov et al., 2021) and similar to report in maize,20 Brassica rapa,33 and Salvia miltiorrhiza.28 Secondly,

persistently low expressed genes/NATs are unlikely to be assessed as significant DE because low counts

do not provide enough statistical evidence to make a reliable determination. In this work, NATs with low

expression levels (TPM < 1) were removed from subsequent analysis, similar to previous studies.15,20

In addition, we identified 224 NATs conserved between G. hirsutum and G. barbadense (Figure 2). The

expression changes of these NATs under cold stress were highly consistent between species, with logFC

correlation coefficients as high as 0.91 (p value < 2.2 3 10�16) (Figure 3B). This is consistent with and even

higher than the trends of conserved PCGs and lncRNAs, for which the correlation coefficients were 0.86 and

0.85, respectively (Figure 3B). This similar interspecies expression pattern of homologous NATs suggests

that the response pattern of NATs under cold stress was preserved during the divergence of

G. hirsutum and G. barbadense. Allotetraploid cotton originated from genomic hybridization and poly-

ploidy between an ancestral A genome diploid species (G. arboreum or G. herbaceum) and a D genome

species (G. raimondii) at �1.7–1.9 MYA, with the divergence of G. hirsutum and G. barbadense occurring
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subsequently at �0.4–0.6 MYA.4 The relatively high proportion of conserved NATs in G. hirsutum and

G. barbadense (27.48%–32.51%) may be due to their relatively short period of divergence.

Diploid cotton, which includes the A and D genome species, diversified at �4.7–7.1 MYA.21 The conserved

NATs between the AT and DT subgenomes indicates that they originated before the divergence of the A

and D genome diploid species. In total, 49 and 39 subgenome-conserved NATs were found in G. hirsutum

and G. barbadense, respectively (Figures S8A and S8B), constituting about 8.19%–11.54% of all identified

NATs (Figures S8A and S8B), which was significantly less than the proportion shared between G. hirsutum

and G. barbadense (�27.48%–32.51%). The significant difference in the number and proportion of

conserved NATs between subgenomes and between species may be due to the decrease of interspecific

conserved NATs with longer divergence time, or it may be due to a large number of NATs originating from

hybridization and polyploidy and then being retained. The interspecies hybridization and polyploidization

always introduce huge genome-wide variations, namely genome shock, normally resulting demethylations

of retroelements,34 changes in histone modification,35 relaxation of imprinting genes,36 silencing and acti-

vation of homologous genes37,38 and so on. Latest researches reveal that, genome shock is often accom-

panied by the emergence of newly activated lncRNAs and neofunctionalization.9,39 To further explore the

origin and evolution of conservative NATs, we analyzed the number shared between G. arboreum and the

AT subgenome. This yielded 43 conserved NATs between G. arboreum and G. hirsutum AT, and 37 be-

tween G. arboreum and G. barbadense AT (Figures S8C–S8E); these comprised about 9.75%–15.87% of

all identified NATs (Figure S8). The A genome (G. arboreum) and the AT subgenome were separated at

�0.8–1.0 MYA after genomic hybridization and polyploidy, which is significantly later than divergence of

the A and D genomes (�6.2–7.1 MYA).4 However, the number and proportion of NATs conserved between

G. arboreum and the AT subgroups were similar to the corresponding values between AT and DT sub-

groups (37–43, 9.75%–15.87% vs. 39–49, 8.19%–11.54%). These results seem to suggest that a large number

of NATs were generated after hybridization and polyploidy and retained during the divergence of

G. hirsutum and G. barbasense.

NAT expression is positively correlated with CSG expression

NATs exert biological functions through a variety of molecular mechanisms.29 In this study, we found the

expression trends of NATs and CSGs to be consistent, with logFC of NATs and logFC of CSGs having a

correlation coefficient of 0.43 (p value <2.2 3 10�16) and 0.37 (p value = 2.1 3 10�13) in G. hirsutum and

G. barbadense, respectively (Figures 4A and 4B). For up-regulated NATs, logFC of CSGs was significantly

higher than in non-differentially expressed NATs (Figure 4C). This is consistent with reports from previous

studies in Arabidopsis15 and Salvia miltiorrhiza.28 In addition, positive correlations between sense/anti-

sense are consistent with model presented in human and yeast, while antisense transcription increases

sense transcript stability in chromatin-dependent manner (Brown et al., 2018). In Arabidopsis, MAS posi-

tively regulated the transcription level of MAF4 by regulating the H3K4me3 modification level at the

MAF4 site, indicating that changing the histone modification level was also one of the factors positively

correlated with sense/antisense expression.15 Among NAT types, FO NATs exhibited the greatest consis-

tency with CSG expression, while the expression trend in TT NATs was the least consistent (Figures S11 and

S12). Overall, these results indicate that NAT-CSG pairs have a strong tendency to positively correlated

expression patterns during chill stress in both G. hirsutum and G. barbadense. Elucidating the regulatory

mechanism that governs NATs under cold stress will provide a new direction for improving chill tolerance

of cotton. In total, this study identified 259 (24.74%) and 240 (24.14%) NATs that were up-regulated and

198 (18.91%) and 366 (36.82%) that were down-regulated under chilling stress in G. hirsutum and

G. barbadense, respectively (Figure 3A).

NATs are potential loci with utility for genetic improvement

CBF has been widely studied as a core functional gene in cold stress.6,7 In the regulatory network governing

plant response to cold stress, OST1(SnRK2.6) is located upstream of CBF, and is responsible for cold injury

signal transduction and CBF activation.40 In this study, we found that a cold-induced NAT (CAN1) is

Figure 6. Silencing GhCAN1 enhances chill tolerance in G. hirsutum

(A and B) qRT-PCR of GhCAN1 and GhSnRK2.8, respectively. t-test, *, p value < 0.05, **, p value < 0.01. The error bar is standard error.

(C) Cold injury phenotype of plants after silencing GhCAN1 and GhSnRK2.8.

(D) Leaf chilling injury phenotype after silencing GhCAN1 and GhSnRK2.8.

(E and F) Chilling injury index and leaf injured area after silencing GhCAN1 and GhSnRK2.8. t-test, **, p value < 0.01. The error bar is standard error.
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transcribed from the antisense strand of SnRK2.8, another member of the SnRK family (Figure 5). Expression

ofGhSnRK2.8 was slightly increased in TRV2::CAN1-infected plants, suggesting a potential regulatory role

of CAN1 on SnRK2.8 (Figure 6B). In addition, silencing CAN1 significantly enhanced the cold tolerance of

plants, while silencing SnRK2.8 made them more sensitive (Figures 6E and 6F). Sucrose nonfermenting1

(SNF1)-related protein kinases (SnRKs) are essential for regulating plant responses to stress conditions.41

Heterologous expression of AcSnRK2.11 and TaSnRK2.4 increases freezing tolerance in tobacco42 andAra-

bidopsis,43 respectively. Interestingly, where we observed SnRK2.8 to be cold-repressed in cotton, a pre-

vious study in grape reported it to be a cold-inducible gene, and to have higher expression in cold-tolerant

varieties.44 Another study in tea plants found SnRK2.8 to be dramatically up-regulated during 7-day long-

term chill acclimation and 6-h short-term cold stimulus, and higher expression of SnRK2.8 to correlate with

cold tolerance.45 In wheat, TaSnRK2.8 was induced in response to cold stress, and overexpression of

TaSnRK2.8 resulted in enhanced tolerance to freezing.46 However, the current work found CAN1 to be a

cold-induced gene and SnRK2.8 a cold-repressed gene in cotton, which may be due to the influence of

CAN1 on the expression of SnRK2.8. While SnRK2.8 has been demonstrated to be involved in cold stress

regulation in other crops, this study is the first to report the existence of a cold-induced NAT of SnRK2.8.

Although the specific mechanism of this regulatory relationship is still unclear, this study provides a new

perspective for further research on NAT regulation of SnRK2.8 in response to cold injury stress, and also

provides a new molecular basis for the cultivation of cold-tolerant cotton varieties.

NATs play important roles in various stress responses. Delay of germination 1 (DOG1) is the major quan-

titative trait locus for seed dormancy in Arabidopsis thaliana that is reported to be expressed exclusively

in seeds and suppressed in seedlings by an antisense transcript (asDOG1).47 The suppression is released

by down-regulated asDOG1, which is induced by the plant hormone abscisic acid (ABA) and drought.48

Loss of asDOG1 leads to constitutive high-level DOG1 expression, resulting in increased drought toler-

ance.48 Conversely, DOG1 inactivation causes enhanced drought sensitivity.48 Another example of func-

tional NAT in crop is ZmNAC48 in maize, which encodes an NAC transcript factor playing crucial roles in

response to abiotic stress.29 cis-NATZmNAC48 is located in the second intron and third exon of ZmNAC48,

and negatively regulates ZmNAC48 expression by generating small interfering RNAs.29 Similarly, drought

response NATs was identified in Oryza nivara and O. sativa.49 A pair of natural antisense transcripts could

be generated by overlapping coding genes. P5CDH (Delta(1)-pyrroline-5-carboxylate dehydrogenase) was

a stress-related gene, and overlapping with SRO5.50 SRO5 is induced by salt and leads to degradation of

P5CDH through formation small interfering RNAs, resulting in proline accumulation and increased Arabi-

dopsis salt-tolerance.50 The collective of data suggest that stress-induced NATs may influence plant resis-

tance by regulating the expression of sense genes, and cold-induced CAN1 may have a similar regulatory

mechanism in inhibiting SnRK2.8 in cotton. Furthermore, NATs were reported response to heat stress,51,52

cadmium exposure,53 and phosphate fluctuations.54 These findings suggest that NATs have tremendous

potential for crop genetic improvement under various stress.

Limitation of the study

Natural antisense transcripts related to cotton cold stress were identified by transcriptome strand-specific

library sequencing. However, RNA-seq lacks the ability to define 50- and 30-ends precisely to accurately

define transcript boundaries. Combined with high-quality 5’and 3’ tag sequencing, identification of new

transcripts including NAT will be more accurate.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

lead contact Xueying Guan (xueyingguan@zju.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All RNA sequencing reads have been deposited in the NCBI Short Read Archive (https://www.ncbi.nlm.nih.

gov/sra) under Bioproject: PRJNA901542. Sample IDs and metadata can be found in Table S1. The proced-

ure and code used for identifying conservative NATs have been stored in the following GitHub repository:

https://github.com/ShouliFeng2020/CAN_cotton.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant materials and growth conditions

G. hirsutum L. acc. Texas Marker-1 (TM-1, AD1) and G. barbadense L. acc. Hai7124 were used in this

research. All plants were grown under controlled chamber conditions (day/night, 28/26�C, 16/8 h and

70-80% relative humidity). First, 14-day-old seedlings were transferred to a chilling chamber (4�C). Forty-
eight hours later, leaves were collected from control or cold treatment plants and immediately placed

into liquid nitrogen for flash-freezing. After removal from the liquid nitrogen, all samples were kept in a

freezer at -80�C until use.

METHOD DETAILS

Library construction and sequencing

Total RNA was isolated from tissues using an RNA extraction kit (Mofan Bio, RK16-50T). RNA purity was

checked using a NanoPhotometer� spectrophotometer (IMPLEN, CA, USA), and RNA integrity was

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data This paper Bioproject PRJNA901542

Software and algorithms

Cutadapt 1.18 Martin55 https://cutadapt.readthedocs.io/en/stable/

Hisat2 v2.2.0 Kim et al.56 http://daehwankimlab.github.io/hisat2/

StringTie v2.1.2 Pertea et al.57 https://ccb.jhu.edu/software/stringtie/

Gffcompare v0.11.2 Pertea and Pertea58 http://ccb.jhu.edu/software/stringtie/gffcompare.shtml

TransDecoder 5.5.0 Haas et al.59 https://github.com/TransDecoder/TransDecoder/releases

CPC 0.1 Kang et al.61 https://github.com/biocoder/CPC2

McScan v1.0.8 Wang et al.62 https://github.com/tanghaibao/jcvi/wiki/MCscan-%28Python-version%29

Code for analysis NAT This paper https://github.com/ShouliFeng2020/CAN_cotton
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assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies,

CA, USA). After RNA isolation, 20 ng RNA per sample was depleted of ribosomal RNA using

the Epicentre Ribo-zero�rRNA Removal Kit (Epicentre, USA). Subsequently, sequencing libraries

were generated from the rRNA-depleted RNA with the NEBNext� Ultra� Directional RNA Library

Prep Kit for Illumina� (NEB, USA) following the manufacturer’s recommendations. Finally, strand-

specific sequencing was performed on the Illumina NovaSeq 6000 platform and 150 bp paired-end reads

were generated.

NAT identification

The raw data were firstly processed to remove reads containing adapter sequence, poly-N reads, and

low-quality bases using cutadapt.55 Next, strand-specific clean reads were aligned to G. hirsutum and

G. barbadense references using Hisat2 v2.2.056 with parameters ‘–dta –rna-strandness RF’; other param-

eters were set as default. StringTie (v2.1.2) was used to assemble transcripts for each gene locus with

parameters ‘–rf -f 0.1 -j 10 -c 10’.57 After merging transcripts, they were compared with reference genome

annotations using Gffcompare.58 Those transcripts given a class code of ‘‘u’’, ‘‘i’’, or ‘‘y’’ and length

greater than 200 bp were selected for open reading frame (ORF) prediction using TransDecoder.59 Tran-

scripts with a predicted open reading frame of less than 100 amino acids and that had no coding ability

predicted by Coding Potential Calculator (CPC) or did not contain a known protein domain were labeled

as candidate long non-coding RNAs.60,61 The GTF files of candidate lncRNAs and reference coding

genes were then merged and compared to the StringTie assembled transcripts using Gffcompare. Tran-

scripts with class code ‘‘x’’ were labeled as natural antisense transcripts (NATs) of lncRNA or coding

genes.

Identification of NATs conserved between G. hirsutum and G. barbadense

First, McScan (JCVI Toolkit) was used to establish genome-wide collinearity between the cotton species

based on PCG and lncRNA sequences to obtain intergenic collinearity anchors.62 The allotetraploid cotton

has two subgenomes, we only utilized collinearity within the same subgenome for subsequent analysis

since our focus was on identifying conserved regions between G. hirsutum and G. barbadense. Second,

reciprocal best blast was performed between PCGs/lncRNA. The overlapped pairs between synteny an-

chors and reciprocal best hits were defined as homologous lncRNA or gene pairs. If a NAT was contained

within both members of a pair, that NAT was defined as a candidate interspecific conserved NAT. Finally,

the sequences of the candidate NATs were compared and those with sequence consistency greater than

80% were considered interspecific conserved NATs.

Virus-induced gene silencing (VIGS)

Vector construction for virus-induced gene silencing (VIGS) was carried out using homologous recombina-

tion to clone the target fragments into the TRV2 vector. The target fragments were obtained by PCR with

gene-specific primers (Table S3) from G. hirsutum leaf cDNA. The generated recombinant vectors were

then transformed into Agrobacterium tumefaciens GV3101. Briefly, freshly-cultured TRV1 and TRV2 resus-

pensions were mixed at a 1:1 volume ratio. 1�2 weeks cotton seedlings after germination were then in-

fected using the cotyledon syringe infiltration method. The empty vector TRV2::0 was used as the negative

control, and TRV2::CLA1 and TRV2::GhPGF as positive controls. The seedlings were grown in controlled

chambers under a 14-hour light/10-hour dark and a temperature of 22�C. Three to four weeks after the in-

jection treatment, plants were transferred to a chilling chamber of 4�C for 48 h. Subsequently, they were

then moved back to a controlled environment at 22�C for 48 h to recover before the assessment of cold

damage and physiological phenotype. Samples before chilling treatment were collected for RT-qPCR anal-

ysis of target NATs or genes.

Quantitative RT-PCR

Total RNA was extracted with an RNA extraction kit (Mofan Bio, RK16-50T). Reverse transcription was per-

formed with the HiScriptR II Q RT SuperMix for qPCR (R223-01, Vazyme, Nanjing, China). Primers for qPCR

(Table S4) were designed with Primer3 (https://bioinfo.ut.ee/primer3-0.4.0/) and the reaction was carried

out using ChamQ� Universal SYBR� qPCR Master Mix (Q711-02/03, Vazyme, Nanjing, China) on a

StepOnePlus system (Applied Biosystems, Thermo Fisher Scientific) using histone H3 (AF024716) as a refer-

ence gene. The data was analyzed using the DDCt method.63
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were conducted usingMicrosoft Excel and R. Differentially expressed genes/NATs were

identified using the EdgeR package with significance thresholds set at FDR < 0.05 and absolute logFC > 1.

Correlation analysis was carried out using cor.test in R, while regression analysis was performed using

geom_smooth (method = ‘‘lm’’) in the ggplot2 package. Additionally, the Wilcoxon Rank-Sum Test was

applied in R using wilcox. test (* p-value < 0.05, ** p-value < 0.01), and the Student’s t-test was conducted

in Microsoft Excel with significance thresholds set at *p-value < 0.05 and **p-value < 0.01.
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