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Abstract: In this paper, we propose a semantic segmentation-based static video stitching method to
reduce parallax and misalignment distortion for sports stadium scenes with dynamic foreground
objects. First, video frame pairs for stitching are divided into segments of different classes through
semantic segmentation. Region-based stitching is performed on matched segment pairs, assuming
that segments of the same semantic class are on the same plane. Second, to prevent degradation
of the stitching quality of plain or noisy videos, the homography for each matched segment pair
is estimated using the temporally consistent feature points. Finally, the stitched video frame is
synthesized by stacking the stitched matched segment pairs and the foreground segments to the
reference frame plane by descending order of the area. The performance of the proposed method is
evaluated by comparing the subjective quality, geometric distortion, and pixel distortion of video
sequences stitched using the proposed and conventional methods. The proposed method is shown to
reduce parallax and misalignment distortion in segments with plain texture or large parallax, and
significantly improve geometric distortion and pixel distortion compared to conventional methods.

Keywords: video stitching; homography estimation; semantic segmentation; region-based video
stitching

1. Introduction

With the development of information and communications technology (ICT) such
as 5G and artificial intelligence and changes to the content creation environment, there
is a growing demand for immersive media [1–4], which refers to a medium that conveys
information of all types of senses in the scene to maximize immersion and presence for user
satisfaction. Immersive media may include multisensory information such as high-quality
visual information, multichannel audio information, and tactile information. In particular,
as high-quality visual information, virtual reality (VR) media has attracted much attention
because it can maximize immersion of users in 3D or ultra high definition (UHD) media.
VR media are applied in many fields, such as broadcasting, education, and games, and
they are being developed or planned by many companies as a core application service in
the 5G era with augmented reality (AR) media [5].

As VR media change from graphic to real images, various 360-degree image capturing
equipment types and shooting techniques are being developed. A 360-degree image is
synthesized using images taken using a plurality of cameras with wide-angle or fisheye
lenses. Generally, 360-degree cameras are configured to shoot images from all directions by
radially arranging the cameras of a narrow field of view (FoV) around the same point, and
then stitching the captured images offline.

A stitching process is required to generate a 360-degree or panoramic photo-realistic
image from images captured by a plurality of cameras [6–9]. Estimation of the correct
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alignment to relate various pairs of images, a choice of a final compositing surface to warp
aligned images, and seamless cutting and blending of overlapped images are required for
image stitching even in the presence of parallax, lens distortion, scene motion, and exposure
difference. The stitching process is a critical step in determining the quality of panoramic
images, and research is being actively conducted to improve stitching performance [8–13].

Three hundred and sixty-degree image stitching tools use the intrinsic and extrinsic
parameters of the cameras used in the shooting to stitch images. Commercial 360-degree
imaging equipment selects intrinsic parameters according to the camera model used and
extrinsic parameters specific to the rig of a specific structure used to mount cameras. The
structure of commercial 360-degree video recording equipment is generally set so that the
optical axes of the cameras pass through the same point, and the cameras photograph
radially using an omni-directional angle of view. Thus, only the rotational transform com-
ponent is present in the extrinsic parameters of the cameras; the translational component is
absent or small enough to be ignored. In such a setting, parallax distortion in a wide-angle
panorama or a 360-degree stitched image rarely occurs.

However, when the optical axes of the cameras are not in a radial arrangement
passing through a common point, and there is a translational component in the extrinsic
parameters of the cameras, parallax may occur at the boundary portions of regions having
different depths in the captured image. Parallax increases as the translational component
between camera positions increases, and as the depth difference between regions in the
image increases.

Due to inaccurate homography estimation, conventional tools for producing panoramic
images have poor stitching performance for plain background images or noisy night im-
ages. The poor performance is because the number of extracted feature points is small, and
these are not consistent in the temporal or spatial directions [7,10].

In real-world video applications such as sports and surveillance, multiple static cam-
eras capture target scenes mainly composed of a ground, a far distant background, and
foreground objects. In videos, foreground objects, especially dynamic objects, can draw
more visual attention than the background. Typically, single or multiple homography-
based stitching can be applied to such video sequences. If the estimated homographies are
accurate, the stitched ground and background regions that make up most of the scenes and
can be assumed to plane would not have parallax distortion. However, foreground objects
at different distances from the cameras have depth differences from adjacent areas, leading
to significant parallax distortion severely degrading the visual quality.

In this study, we focused on stitching video sequence pairs captured using static cam-
eras in sports stadiums with running tracks enclosing a grass field. There are two challenges
for stitching such video sequences. First, dynamic foreground objects in overlapped regions
typically have parallax distortion. Second, the ground plane consisting of a grass field and
a running track may not provide a sufficient number of feature points for homography
estimation. This may cause misalignment distortion in the stitched ground region.

We propose a semantic segmentation-based video stitching method to reduce parallax
and misalignment distortion in stitched video sequences. First, to reduce parallax distortion,
video frames are divided into segments of different classes using a semantic segmentation
module trained for sports stadium scenes. Stitching for matched segment pairs is performed
assuming that these segments exist on the same plane. Second, to reduce the misalignment
distortion for plain or noisy video frames, the homography is estimated by searching
for consistent feature points in the temporal direction. Finally, the final video frames are
stitched by stacking the stitched segments and foreground segments on the reference frame
by descending order of area.

The contribution of the proposed method is three-fold. First, the proposed approach
presents a reference framework for stitching videos, including foreground objects captured
in specific scene environments such as sports stadiums. Although image or video stitching
methods after foreground and background separation have been tried [11,14], parallax
distortion still exists for static foreground regions [14] and multiple foreground regions [11].
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A pre-trained semantic segmentation module can separate video frames into planar or
multiple foreground segments of different classes and make per-segment stitching and
stacking possible. For video stitching of other scene types, the semantic segmentation
module should be re-trained with images from the scenes. Second, the proposed method
can reduce the quality degradation of stitched videos by reducing the parallax distortion
around foreground objects drawing great visual attention. Third, the proposed method can
reduce the misalignment distortion in planar segments with simple texture or noise, such
as the grass field in a typical sports stadium.

This paper is organized as follows: In Section 2, existing studies related to the reduction
of parallax distortion in image or video stitching are explained. In Section 3, a semantic
segmentation-based video stitching method is proposed for the reduction of parallax and
misalignment distortion. In Section 4, the performance and effectiveness of the proposed
method are evaluated. Finally, in Section 5, conclusions and future works are presented.

2. Related Works

Conventional stitching techniques to reduce parallax distortion can be divided into two
groups. The first group selects a stitching seam between images and expresses only one piece
of image information to the left and right of the seam to hide parallax and misalignment
distortion [8,9,15–18]. The second group divides the image into small regions and then
warps them locally by estimating the homography for each region [10–12,14,19,20].

2.1. Seam-Based Stitching

Yoon et al. estimated an initial homography between the first frames of a video
sequence pair for stitching [15]. The homography for the following frame pair is calculated
using the recent homography and the movement component of each camera. For the
reduction of misalignment distortion, the homography is improved through block matching
around feature points warped to the stitching frame plane. However, the accuracy of
the homography for the following frames is affected by that of the initial homography.
Additionally, when pixels in regions have different depths, misalignment distortion may
occur due to inaccurate homography.

Jiang et al. warped an entire video frame using global homography and then divided
the frame into a grid mesh and performed local warping to minimize the spatio-temporal
cost function. Then, by selecting a seam to avoid moving objects, they reduced parallax
distortion caused by the depth difference between foreground and background in the
image. However, if there are few feature points extracted from foreground objects or if
foreground objects show static movement, distortion occurs around the seam [8].

Kim et al. performed content-preserving warping by optimizing an energy function
that sets the seam close to the midline of the overlapped region between frames for stitching,
avoiding spatial misalignment and structures with sharp edges. To reduce the quality
degradation of the stitched video caused by frequent changes of the seam during warping,
they proposed a method that partially updates the seams around objects. However, since
warping using a single homography does not consider the depth of each region in the
video frame, misalignment or ghosting distortion may occur around the seam, except in
object regions [16].

Seam-based stitching methods have in common that they define energy functions
according to the researchers’ intention and establish seams for minimum energy [8,15,16].
However, these methods hide rather than reduce the misalignment distortion and thus
are not a fundamental solution to reduce distortion. In our previous works, to reduce the
misalignment distortion for scenes with plain textures or few feature points, we estimated
homography using feature points extracted during a predetermined time interval [21,22].
We showed experimentally that these methods could reduce misalignment distortion in
overlapped regions in video sequences without foreground objects [21,22].
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2.2. Multiple Homography-Based Stitching

Gao et al. divided an image into a ground plane and a far-field background plane and
estimated the homography of each plane. For each pixel, the authors took the distance to
the nearest feature point as a weight for each plane and warped each pixel to the target
plane using a weighted homography [12]. Yoon et al. proposed a method to reduce the
amount of computation in Gao’s dual homography method [19]. The weight was calculated
using the Mahalanobis distance from the center of the matching feature points to each pixel.
However, this method involves a large amount of weight calculation per pixel and suffers
from parallax distortion if there are moving foreground objects or small regions of different
depths in each plane [12,19].

Zaragoza et al. divided the input image into several cell regions and estimated the
homography of each cell using a direct linear transform (DLT) and applying weights
according to the distance between the center point of each cell and the matched feature
point [10]. This method is more effective at reducing parallax distortion than are the dual
homography estimation methods [12,19]. However, for increased cell sizes, the estimated
homography becomes inaccurate because regions of different depths exist in the same
cell. For decreased cell sizes, the estimated homography becomes accurate, but the com-
putational load increases. This method is not efficient at removing parallax distortion if
there is a significant depth difference across the boundaries of large foreground regions in
the video.

Zhang et al. proposed a method of processing the background and foreground sepa-
rately to remove ghosting distortion in the foreground region. Background with a wide
field of view is stitched using background models. Foreground regions are segmented by
the background subtraction method and warped to the target image planes. For matched
foreground regions, a larger region is selected as the final foreground [14]. This method
treats all static regions without movement as background, so ghosting distortion may still
occur in static regions of different depths in the background.

Lee et al. segmented an input image using mean-shift. They classified the segments
into background and foreground based on the ratio of inliers of feature points through the
global homography transformation. They performed stitching by estimating homography
for background and foreground separately. However, this method cannot be applied to
images with multiple foreground regions or with a foreground region with an insufficient
number of feature points [11].

These studies attempt to reduce parallax distortion by estimating region-specific com-
mon homography. However, there is a limit to the reduction of parallax distortion because
there still exist pixels of different depths in cells or regions due to the low performance of
background and foreground separation [10–12,14,19].

Another approach for matching a video sequence pair with large parallax is to use
activity features of moving objects [20,23,24]. Activity features are defined as a temporal
series of binary values at each pixel position indicating foreground objects’ existence. The
corresponding pixels in a different view with the activity feature that are most similar to
that of the pixels in the reference view are selected for matching. Although these methods
are robust for arbitrary orientation, zoom level, and lighting conditions, they are limited to
video sequence pairs with moving objects in the overlapped regions.

3. Semantic Segmentation-Based Static Video Stitching

In this section, a novel semantic segmentation-based static video stitching method
is proposed to reduce parallax and misalignment distortion in stitched video frames.
The proposed method, as shown in Figure 1, consists of three steps. In the first step,
semantic segmentation is applied to an incoming video sequence pair. In the second step,
for each background segment, multi-frame-based homography estimation and stitching
are performed to generate stitched segments. Finally, all of the stitched segments and
foreground segments are stacked on the reference view plane to generate panoramic
video frames.
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Figure 1. Proposed semantic segmentation-based video stitching.

3.1. Semantic Segmentation and Matching

Most image and video stitching algorithms yield unconvincing results if an input
image or video frame pair violates the following assumptions: (1) two images or video
frame planes differ purely by rotation, or (2) the captured scene is effectively planar.
However, in general image or video shooting environments, these assumptions are often
violated, yielding parallax distortion in the stitching results. This parallax distortion is
more severe in sports stadium videos with dynamic foreground objects of different depth
from the surrounding areas than in landscape videos without foreground objects. Since
dynamic foreground objects receive more visual attention than their surrounding regions,
parallax distortion around them can significantly degrade the quality of stitched videos.

The purpose of the proposed algorithm is to reduce the parallax distortion around
foreground objects and misalignment distortion in ground and background regions in
stitching a video sequence pair captured using static cameras in sports stadiums. For
semantic segmentation, the state-of-the-art algorithm DeepLab is employed [25]. DeepLab
is trained to segment five classes of regions using images taken inside stadiums, including
ground, goalpost, building, human, and other.

In the first step of the proposed algorithm, the reference and target frames are semanti-
cally segmented. Semantic labels are assigned to every pixel in the video frame by semantic
segmentation. For scenes consisting of large planar segments, although pixels on the same
segment may have different depths, they are assumed to be on the same plane. The pixels
on small segments of foreground objects are also assumed to be on the same plane because
the distance to the segment from the camera is a lot longer than the maximum difference of
depth in the segment. The matched segment pairs, which have the same semantic class
and are close to each other on the reference frame plane, are searched from the reference
and target frames.

Let Ft and Fr denote the target and the reference video frames, respectively. After
semantic segmentation, each video frame is divided into several disjoint segments. Each
segment has its semantic class, such as ground (Rg), building (Rb), human (Rh), goalpost
(Rp), and other (Ro). A background segment is defined as a static segment such as ground,
building, goalpost, and other. The category of the foreground segment is defined into small
semantic segments surrounded by background segments, i.e., a human semantic segment
in our study.

For the i-th segment Rt
i in the target frame and the j-th segment Rr

j in the reference
frame, an indicator function comparing the semantic classes for two segments is defined
as follows:

I(Rt
i , Rr

j ) =

{
1, T(Rt

i) = T(Rr
j )

0, otherwise
, (1)

where T(·) represents the semantic class of the argument.
After matching the feature points extracted from these frames, a global homography,

Hg, is estimated by random sample consensus (RANSAC), which relates a pixel p in Ft to
a pixel p′ in Fr. Then, the segment Rt

i in the target frame can be warped into the segment
Rw

i in the reference frame.
For each segment in the target frame, the matched segment in the reference frame is

the one with a maximum overlapped area within a distance threshold. For the segment Rt
i ,

the index of the matched segment in the reference frame is found as follows:
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Ir
m(i) =

 arg minj
|S(Rw

i )−S(Rr
j )|

S(Rr
j )

, ∀j s.t. I(Rt
i , Rr

j ) = 1 and d(Rw
i , Rr

j ) ≤ dth

null, otherwise
, (2)

where d(Rw
i , Rr

j ), S(·), and dth represent the distance between the centroids of Rw
i and Rr

j ,
the area of the argument, and the distance threshold, respectively.

3.2. Homography Estimation for Matched Segment Pairs

The correct alignment parameters need to be found between matched segment pairs
while suppressing incorrect feature point extraction caused by time-varying noise. Primar-
ily, segments of plain texture or small area may not provide a sufficient number of feature
points for homography estimation by direct linear transformation [26].

In this section, a homography estimation method on a multi-frame basis is proposed to
stitch matched segment pairs in static video camera environments. The proposed method is
performed on every matched segment pair. For each side of the video sequences, as shown
in Figure 2, feature points are extracted from the matched segment pair over an interval N
using the SURF algorithm [27]. The extracted feature points are saved in the feature buffers
until the end of the interval. Then, using the buffered feature points, a homography for
the matched segment pair for the interval is estimated throughout feature matching and
RANSAC [28].

Figure 2. Homography estimation for a sequence of matched segment pairs.

In video stitching, there may exist time-varying noise and different illumination
conditions. The proposed homography estimation method uses feature points extracted for
multiple frame intervals. Feature points extracted multiple times at the same location can be
considered as consistent against noise in the spatio-temporal domain. Multiple occurrences
of feature points at the same location may increase their chances of being sampled by
RANSAC in proportion to their number of occurrences [28]. Homography estimation is
performed on background matched segment pairs, but not on foreground segments.

3.3. Panoramic Video Frame Synthesis Based on Segment-Based Stitching

In this section, a panoramic video frame synthesis method based on segment-based
stitching is proposed. The left camera plane is selected as the reference view plane. After
semantic segmentation and matching of segments, the segments can be grouped into
three sets of segments. First, the sets Gt

b and Gr
b consist of matched pairs of background

segments in the target and the reference frames, respectively. Second, the set Gr
f consists of

foreground segments or non-matched segments in the reference frame. Lastly, the set Gt
f

consists of non-matched segments in the target frame.
The target frame Ft can be defined as the union of its segments, as follows:

Ft =
Nt⋃

i=1

Rt
i , (3)
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where Nt represents the number of segments.
Similarly, the reference frame Fr is defined as follows:

Fr =
Nr⋃
i=1

Rr
i , (4)

where Nr represents the number of segments.
The sets of matched background segments for the target and the reference frames are

defined as follows:
Gt

b = {Rt
i |Ir

m(i) 6= null, 1 ≤ i ≤ Nt}. (5)

Gr
b = {Rr

Ir
m(i)|I

r
m(i) 6= null, 1 ≤ i ≤ Nt}. (6)

The set of the foreground or non-matched segments in the reference frame is defined
as follows:

Gr
f = Fr − Gr

b. (7)

The set of non-matched segments in the target frame is defined as follows:

Gt
f = Ft − Gt

b. (8)

For the image pair shown in Figure 3, these sets can be constructed as Gt
b = {Rt

1, Rt
2, Rt

3},
Gr

b = {Rr
1, Rr

2, Rr
3}, Gt

f = {R
t
7}, and Gr

f = {R
r
4, Rr

5, Rr
6}.

Figure 3. Segment-based homography estimation and stitching.

For the warping and stitching of segments, sets of different semantic classes are
handled in different ways. For each pair of matched background segments in the sets
Gr

b and Gt
b, a homography is estimated using the proposed multi-frame feature buffering

during one interval. Then, the target background segment, Rt
i , is warped into the reference

frame plane, aligned with its matched segment, Rr
Ir
m(i). The stitched matched segment can

be defined as follows:
Rs

i = f (Hi, Rt
i)⊕ Rr

Ir
m(i), (9)
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where f (Hi, Rt
i) and ⊕ represent the warping of the segment Rt

i using the homography Hi
and the stitching operation of two segments, respectively.

In this paper, to show unwanted parallax distortion or misalignment distortion from
inaccurate homography in the overlapped segment, if they exist, the warped target back-
ground segments and their matched segments are average blended into background
stitched segments without post-processing, such as the seam-line selection, gain compensa-
tion, or multi-band blending used in [7,16,18].

Segments in the set Gr
f are kept intact, regardless of the existence of matched segments.

The matched foreground segments in the target frame are discarded without their warping
to the reference frame plane. In Figure 3, Rr

4, Rr
5, and Rr

6 are kept intact in the reference
frame plane.

Each segment in the set Gt
f is warped to the reference frame plane using the homogra-

phy estimated for the adjacent background segment having the highest number of edge
pixels shared with the segment. In Figure 3, Rt

7 is warped to the reference frame plane
using the homography H2.

If all processes of segment-based stitching and warping are performed, there are
background stitched segments, warped non-matched segments from the target frame, and
foreground or non-matched segments from the reference frame. These segments are stacked
on the reference frame plane. First, background stitched segments are stacked according to
the area of the segments, in descending order. Thereafter, foreground and non-matched
segments are stacked irrespective of the order. In Figure 4, the stacking order of background
stitched and foreground segments is shown. In this example, to synthesize the stitched
video frame, the proposed algorithm stacks the segments in the order of Rs

1, Rs
2, Rs

3, and
Rs

4(= Rr
4). Then, the remaining unused segments are stacked as Rs

5(= Rr
5), Rs

6(= Rr
6), and

Rs
7. The sequence of stacking foreground and non-matched segments is random.

Figure 4. Panoramic frame synthesis.

4. Experimental Results

In this section, the experimental environments and results are presented for the
proposed segment-based video stitching method.

4.1. Experimental Environments

The proposed video stitching method was implemented using the C++ programming
language and OpenCV functions related to feature extraction, matching, and RANSAC op-
erations [29]. The proposed method targets sports stadiums with running tracks enclosing
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a soccer field. For the training of the semantic segmentation tool, DeepLab, the training
image dataset in Figure 5 was constructed; the dataset consists of 380 images captured at
different locations with different viewing angles in a sports stadium located on a university
campus. Five classes were defined for semantic segmentation: ground, goalpost, building,
human, and other. Ground truths for semantic classes of segments were generated for every
image for DeepLab training [25]. Figure 6 shows the results of semantic segmentation for
test video sequences captured in the target sports stadium.

Figure 5. Image database for training of semantic segmentation module.

(a) An input frame (b) A segmented frame

Figure 6. Example of semantic segmentation: green: ground; black: other; yellow: building; blue: goalpost.

Four video sequence pairs, seq1–4, were shot at two sports stadiums for the perfor-
mance evaluation of the proposed method. A static video camera pair installed with a
separation of 1–2 m captured the inside of the stadiums from the stands. Each video se-
quence pair consists of two video sequences captured using the left and right video cameras.
There exists a maximum 70% overlap in the field of view in the left and right video frames
in each video sequence pair. The resolution and the frame rate of each video sequence are
1920× 1080 and 30 Hz, respectively. For a quantitative performance evaluation of stitched
video frames, a center video sequence was shot simultaneously with the video sequence
pair seq2. The homography estimation interval N was set at 20 frames.



Sensors 2021, 21, 4020 10 of 17

The quality of the video sequences stitched by the proposed method was compared
with those stitched using the commercial software AutoStitch [7] and the cell-based ho-
mography estimation and stitching method APAP [10]. There are two methods of quality
evaluation. The first method compares the misalignment and parallax distortion in the
overlapped region. After Delaunay triangulation [30], the second method evaluates the ge-
ometric and pixel distortion of stitched or warped images based on an objective assessment
method [31]. This method uses the left, center, and right video frames of the same scenes
at different viewing angles. The panoramic image synthesized using the left and right
video frames is aligned with the center image to compare geometric distortion and pixel
distortion. Because the proposed method attempts to improve the alignment performance
by reducing parallax distortion, the seam-line selection method used in AutoStitch was
not implemented. The quality of AutoStitch was evaluated for two options: with seam-line
selection (AutoStitch_Seam) and without seam-line selection (AutoStitch_NoSeam).

4.2. Region-Based Stitching Results

In this section, we present the stitched segments and their stacked panoramic video
frames for each video sequence pair processed by the proposed method. As can be seen in
Figure 7, the left frame was set as the reference plane for stitching, and the right frame was
warped and aligned to the left frame. The left and right images of seq1 overlap by 80%.

Figure 7. Segment-based stitching for background segments: seq1.
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Each video frame is segmented into five semantic classes. In the target environment
of this study, the foreground segments are human objects in the general sports stadium.
For the foreground segments, it is difficult to estimate the homography consistently over a
time interval because a sufficient number of feature points cannot be extracted. Thus, as
described in Section 3.3, for each human object, the left foreground segment is selected with-
out warping. For the other segments, the stitched segments are used for the composition of
the final stitched frame.

Excluding the foreground segments, the matched background segment pairs on the
frame boundaries are stitched and stacked on the reference view plane by order of area.
Figure 7c shows a stacking example of the stitched ground and other segments and the
non-matched goalpost segment in the reference view plane. Since the goalpost segment has
no matched segment in the left frame, it is stacked after being warped to the reference
view plane using the homography estimated for the adjacent other segment. If a matched
foreground human segment exists, the foreground segment on the reference frame plane is
stacked as is, without warping. If there is a non-matched foreground segment of human
class, the warping and stacking process is performed in the same manner as for the non-
matched goalpost segment. After the proposed stitching and stacking of foreground and
background segments, the panoramic video frame shown in Figure 8f is synthesized.

Figure 8. Quality comparison of stitched video frames: seq1.
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4.3. Evaluation of Subjective Quality of Stitched Videos

The subjective quality of the stitched video sequences can be evaluated for misalign-
ment distortion in ground and other segments and for ghosting distortion due to parallax in
foreground segments. Figures 8–11 show results of test video sequence pairs stitched by
the proposed and existing methods.

Figure 9. Quality comparison of stitched video frames: seq2.

The AutoStitch_NoSeam method warps the entire right frame using global homog-
raphy and superimposes that frame on the reference frame. Global homography cannot
be accurately estimated when the inter-frame relation does not exhibit pure rotation, or
the segments have significant depth difference. Therefore, misalignment distortion and
ghosting distortion of the foreground segment may occur in the entire frame. In Figure 8c,
global homography is advantageously estimated for the other segment with a large number
of feature points, but the results show significant misalignment distortion in the ground
and human segments. In Figures 9c–11c, it can be easily seen that misalignment distortion
is substantial in all segments.

The AutoStitch_Seam method selects a seam showing little change between its left
and right pixels and warps the pixels in the video frame selectively based on the seam.
Therefore, no misalignment distortion of the foreground segment is noticeable. However,
since a segment having a plain texture, such as the ground of the stadium, has no significant
signal change in any direction, a wrong seam is likely to be set. In Figures 9d–11d, there is
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misalignment distortion in the ground and other segments due to the incorrect seam. Only
in seq1 in Figure 8d is misalignment distortion not noticeable with the seam.

The APAP method can reduce the local misalignment distortion of other or ground
segments without seam selection by dividing the input video frame into small rectangular
cells and warping them using the homography estimated for each cell. However, if cells
are set over several segments of significant depth difference, misalignment distortion still
exists. In Figures 8e–11e, misalignment distortion is not noticeable in ground and other
segments, but is noticeable in human and goalpost segments.

The proposed method stacks the foreground human segments in the overlapped region
without warping, so ghosting distortion does not exist. Additionally, the proposed method
shows no noticeable misalignment distortion because it stitches semantic segments using
segment-based stitching and stacking and multi-frame-based homography estimation. In
Figures 8f–11f, there is no misalignment distortion for any of the segments in seq1–4.
However, if the boundary of a human segment in Figure 10f is not correctly segmented,
there may, depending on the performance of the semantic segmentation, be an afterimage
of the segment boundaries in the stitched video frame.

Figure 10. Quality comparison for stitched video frames: seq3.
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Figure 11. Quality comparison for stitched video frames: seq4.

4.4. Objective Quality Evaluation of Stitched Videos

For objective quality evaluation of stitched videos, triangulation-based geometric
distortion and pixel distortion measures were used [31]. For distortion calculation, the left
and right video sequences for stitching and the central video sequence for comparison are
required. Thirty video frames were taken from three video sequences (seq2–4). The stitched
frames were warped to the central frame using the homography estimated by matching
the feature points of the stitched and the central video frames.

Delaunay triangulation was performed using the matched feature points in the warped
stitched and central frames [30]. Geometric distortion was used to calculate the average
distance between matched feature points from the warped stitched and the central frames
in the central frame plane. Pixel distortion calculates the PSNR between triangles on the
warped stitched frame and their matched triangles on the central frame.

In the process of warping and aligning the stitched frame to the central frame plane,
AutoStitch warps the entire frame using a global homography, as in the case of stitching
the left and right video sequences. The APAP method divides the input video frames into
small rectangular cells and warps them using the homography estimated for each cell.
Since the proposed method performs segment-based stitching, the aligned stitched frame
is synthesized by stacking the warped segments from the stitched frame.
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Quantitative quality comparison results for the proposed, the APAP, and the Au-
toStitch methods are shown in Table 1. The segment or cell-based stitching methods, the
proposed and the APAP methods, showed performance improvements in the geometric dis-
tortion over the frame-based stitching methods, AutoStitch_NoSeam and AutoStitch_Seam,
especially for seq2–3. The proposed method showed performance improvements of around
2 dB in pixel distortion over other methods for seq2–3. Although all the methods showed
similar geometric and pixel distortions for seq4, the proposed method shown in Figure 11
showed less parallax distortion and a smaller misalignment error in the overlapped region
compared to other methods.

Table 1. Objective quality evaluation.

Stitching Method

Geometric Distortion (Pixel) Pixel Distortion (dB)

seq2 seq3 seq4
seq2 seq3 seq4

avg std avg std avg std

AutoStitch_NoSeam 12.6 20.8 8.9 18.2 4.5 11.2 19.3 21.7 22.7
AutoStitch_Seam 11.7 15.5 10.3 16.9 4.8 11.5 21.1 21.9 22.8

APAP 8.5 13.6 6.4 11.7 4.9 9.8 21.0 22.0 22.3
Proposed 6.6 16.6 7.7 10.8 4.1 8.9 23.8 24.2 22.5

avg and std in column 2–7 represent the average and the standard deviation of the geometric distortion. The bold figure in each
column is the best case.

5. Conclusions

In this paper, we proposed a semantic segmentation-based video stitching method
to reduce parallax and misalignment distortion between cameras. To eliminate parallax
distortion, video frames are segmented into different semantic classes of segments. As-
suming that a matched segment pair of the same semantic class exists on the same plane,
segment-based stitching and stacking of the stitched segments are performed. To reduce
misalignment in video sequences with simple texture or noise, homography is estimated us-
ing consistent feature points in the temporal direction. The proposed method outperformed
existing methods for parallax, misalignment, geometric, and pixel distortions, especially in
the plain ground segment and the foreground human segments that have significant depth
differences from surrounding segments.

The proposed method has two limitations. First, if the boundary between neighboring
segments is not accurately extracted, afterimages of the segment boundary remain in the
adjacent region. Second, misalignment distortion may occur in background other segments
in some video sequences due to the significant depth difference.
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Abbreviations
The following abbreviations are used in this manuscript:

ICT Information and Communications Technology
VR Virtual Reality
UHD Ultra High Definition
AR Augmented Reality
FoV Field of View
DLT Direct Linear Transform
RANSAC Random Sample Consensus
SURF Speeded-Up Robust Features
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