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Essential hypertension in adolescents and children: 
Recent advances in causative mechanisms 
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A B S T R A C T

Essential hypertension is the most common form of hypertension in adults, and it is recognized more often in adolescents than in 
younger children. It is well known that the probability of a diagnosis of essential hypertension increases with age from birth onward. 
The initiation of high blood pressure burden starts in childhood and continues through adolescence to persist in the remaining 
phases of life. The genesis of essential hypertension is likely to be multifactorial. Obesity, insulin resistance, activation of sympathetic 
nervous system, sodium homeostasis, renin-angiotensin system, vascular smooth muscle structure and reactivity, serum uric acid 
levels, genetic factors and fetal programming have been implicated in this disorder. In addition, erythrocyte sodium transport, the free 
calcium concentration in platelets and leukocytes, urine kallikrein excretion, and sympathetic nervous system receptors have also 
been investigated as other possible mechanisms. Obesity in children appears to be the lead contributor of essential hypertension 
prevalence in children and adolescents. Suggested mechanisms of obesity-related hypertension include insulin resistance, sodium 
retention, increased sympathetic nervous system activity, activation of renin-angiotensin-aldosterone, and altered vascular function. 
The etiopathogenesis of essential hypertension in children and adolescents appears to closely resemble that of adults. The minor 
variations seen could probably be due to the evolving nature of this condition. Many of the established mechanisms that are confirmed 
in adult population need to be replicated in the pediatric age group by means of definitive research for a better understanding of this 
condition in future.
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IntRoductIon

Essential hypertension is the most common form of  
hypertension in adults and it is recognized more often 
in adolescents than in younger children.[1] Hypertension 
is a major contributor to the global burden of  disease. 
Worldwide, 7.6 million premature deaths were attributed to 
high blood pressure in 2001.[2] Roughly half  of  stroke and 

ischemic heart disease events worldwide were attributable to 
high blood pressure during the same period.[2] Suboptimal 
blood pressure was reported to account for 10% of  global 
health care expenditure in 2001 for population aged 30 
years and more.[3] The global public health significance 
of  high blood pressure in childhood and adolescence is 
based on observations that confirm a strong tracking of  
blood pressure levels from childhood to adulthood.[4] It is 
well known that the probability of  a diagnosis of  essential 
hypertension increases with age from birth onward.[1] 
Children and young adolescents with blood pressure 
greater than the 90th percentile for age have roughly 
threefold greater likelihood of  becoming adults with 
hypertension compared to their peers with blood pressure 
at the 50th percentile.[1] These findings clearly suggest that 
the initiation of  high blood pressure burden starts in 
childhood and continues through adolescence to persist 
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in the remaining phases of  life. The current review is an 
attempt to present recent research in basic etiopathogenesis 
of  essential hypertension in children and adolescents.

etIoPAthogenes Is  of essent IAl 
hyPeRtensIon

The genesis of  essential hypertension is likely to be 
multifactorial. Obesity, insulin resistance, activation 
of  sympathetic nervous system, sodium homeostasis, 
renin-angiotensin system (RAS), vascular smooth muscle 
structure and reactivity, serum uric acid levels, genetic 
factors and fetal programming have been implicated in this 
disorder.[1,5-8] In addition, erythrocyte sodium transport, 
the free calcium concentration in platelets and leukocytes, 
urine kallikrein excretion, and sympathetic nervous system 
receptors have also been investigated.[1] 

Obesity and high blood pressure
Obesity in children is well known to be associated with 
hypertension. Data from a recent study covering 25,000 
school children in the age group of  5–16 years reported 
increased prevalence of  prehypertension and hypertension 
among overweight and obese children when compared to 
their non-overweight counterparts.[9] Hypertension (first 
instance) was seen in 10.10% of  normal weight, 17.34% 
of  overweight and 18.32% of  obese children in this study. 
The corresponding figures for systolic hypertension were 
5.38%, 12.31% and 14.66%, respectively. The same for 
diastolic hypertension were 6.45%, 8.86% and 8.90%, 
respectively.[9] Suggested mechanisms of  obesity-related 
hypertension include insulin resistance, sodium retention, 
increased sympathetic nervous system activity, activation 
of  renin-angiotensin-aldosterone system (RAAS), 
and altered vascular function.[10] Probable reasons for 
activation of  the sympathetic nervous system in obesity 
include hyperinsulinemia and/or insulin resistance; leptin, 
adiponectin or other adipokines; renin-angiotensin; and 
lifestyle factors.[10] Obesity-related hypertension is associated 
with renal sodium retention and impaired pressure 
natriuresis.[11] Circulating adiponectin levels are decreased 
in obesity-induced insulin resistance, and some studies 
suggest that adiponectin is protective against hypertension 
through an endothelial-dependent mechanism.[12,13]

Sodium and high blood pressure
Sodium and sodium-related mechanisms have been 
investigated in detail for their role in essential hypertension. 
These include dietary sodium load, salt sensitivity and an 
impaired ability for urinary excretion of  a sodium load. 
Evidence from epidemiological, clinical and experimental 
studies confirms a strong relationship between dietary salt, 
renal salt handling and blood pressure.[14] Blood pressure 

response to changes in salt intake, namely, salt sensitivity, 
exhibits marked heterogeneity on an individual basis.[15] Salt 
sensitivity is defined as an augmentation of  mean arterial 
pressure on 24-hour ambulatory blood pressure monitoring 
during increased salt intake.[16,17] Weinberger et al. reported 
that 51% of  hypertensives and 26% of  normotensives 
were sodium sensitive.[18] The distribution of  salt sensitivity 
and resistance in normal and hypertensive subjects is bell 
shaped, and in both the proportion of  individuals who 
become salt sensitive increases with age.[14] Familial patterns 
to acute and chronic salt challenges have been reported, 
but the genetic basis of  salt sensitivity remains poorly  
known.[19,20] In one study done on 44 families of  identical 
twin children who participated in a sodium restriction 
protocol, mother–offspring resemblance in blood pressure 
change with sodium restriction was significant both for 
systolic and diastolic blood pressure.[21] Sibling–sibling 
and twin–twin resemblance was also highly significant in 
this study. Body sodium and blood pressure regulation is 
achieved through the interaction of  several mechanisms, 
starting from sodium handling in kidney tubular cells, 
moving to the myogenic tone at vascular level.[22] Physical, 
nervous, and hormonal factors modulate the ability of  
tubular cells to transport sodium according to the body’s 
needs.[23] A defect in sodium excretion is also seen as a 
contributor to essential hypertension. Normally, sodium 
excretion increases when there is an acute increase in 
blood pressure. In persons with hypertension, however, 
the blood pressure required to excrete a given sodium 
load is higher than that in persons without hypertension.[24] 
This may be related to a congenital reduction in the 
number of  nephrons, limiting the filtration of  sodium.[25] 
Genetic alterations in the expression or regulation of  
vasoactive mediators or transport molecules involved in 
sodium excretion may also contribute to the development 
of  hypertension.[26] 

Renin-angiotensin system and high blood pressure
The RAS is believed to play a major role in regulating 
blood pressure and body fluid volumes, as evidenced by 
the effectiveness of  various RAS blockers in reducing 
arterial pressure in normotensive and hypertensive  
subjects.[27] The physiologic functions of  RAS are exerted 
mainly by angiotensin II, which participates in both short-
term and long-term blood pressure regulation. Angiotensin 
II is a powerful vasoconstrictor and contributes to the 
maintenance of  blood pressure in conditions associated 
with acute volume depletion or circulatory depression.[27] 
The long-term effects of  angiotensin II on blood pressure 
are closely linked with volume homeostasis through direct 
and indirect effects on renal excretory function.[28] Two 
comparative studies done on offspring of  hypertensive and 
non-hypertensive parents failed to document any major 
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differences in RAS activity between the two groups in 
childhood in spite of  them showing differences in blood 
pressure levels.[29,30] The RAAS was investigated in offspring 
of  essential hypertensives and in offspring of  normotensive 
parents, both aged 5–34 years.[29] Offspring of  essential 
hypertensives showed higher systolic and diastolic blood 
pressure values than those of  normotensive parents. With 
the exception of  significant, lower mean supine plasma 
aldosterone values in children of  hypertensive parents, no 
major differences between the two groups were seen in 
supine and stimulated plasma renin activity, and stimulated 
aldosterone.[29] A recent cross-sectional study performed in 
211 healthy normotensive children aged 4–16 years with 
hypertensive parents and normotensive parents replicated 
similar findings. Although the two groups of  children were 
normotensive, the group of  children with hypertensive 
parents had a higher systolic blood pressure (SBP) index 
than those with normotensive parents. In spite of  this 
difference, there were no significant differences in serum 
aldosterone, plasma renin activity or aldosterone/renin 
ratio.[30] These two studies suggest that currently there 
is lack of  evidence confirming an active role for RAS 
activation in pediatric essential hypertension. 

Insulin resistance and blood pressure
Insulin resistance plays a major role in the pathogenesis 
and clinical course of  patients with essential  
hypertension.[31] Approximately 50% of  adult patients 
with essential hypertension, both treated and untreated, 
appear to be insulin resistant.[32] Insulin resistance and 
hyperinsulinemia appear to develop in obese children at 
an early age.[33,34] Insulin can be a determinant of  blood 
pressure in children similar to that in adults.[35] The 
association between fasting insulin and blood pressure 
appears to be independent of  adiposity.[35] The relationship 
between insulin sensitivity and systolic blood pressure is 
evident early in life.[36] In a study on 101 children, Cruz 
et al. reported that fasting insulin and the acute insulin 
response were positively related to systolic blood pressure 
but not to diastolic blood pressure, and insulin sensitivity 
was negatively related to systolic blood pressure but not to 
diastolic blood pressure. Insulin sensitivity was negatively 
associated with systolic and diastolic blood pressure after 
adjustment for body composition. This study also suggests 
that low insulin sensitivity contributes independently to 
higher blood pressure in children.[36] The probable reasons 
by which insulin resistance and/or hyperinsulinemia may 
increase the blood pressure include an anti-natriuretic effect 
of  insulin, increased sympathetic nervous system activity, 
augmented responses to endogenous vasoconstrictors, 
altered vascular membrane cation transport, impaired 
endothelium-dependent vasodilatation and stimulation 
of  vascular smooth muscle growth by insulin.[10] The 

compensatory hyperinsulinemia resulting from insulin 
resistance results in a paradoxical situation of  benefit on 
one side and harm on the other. This is probably due to 
the fact that all tissues in the body are not equally resistant 
to the actions of  insulin in the so-called state of  insulin 
resistance.[31] The kidney in insulin resistance remains to be 
sensitive to insulin, thereby retaining the ability of  insulin 
to enhance renal sodium reabsorption. This probably 
explains higher salt sensitivity and resultant salt and water 
retention in individuals with insulin resistance and/or 
hyperinsulinemia.[37] The sympathetic nervous system 
also remains to be normally sensitive to insulin, favoring 
vasoconstriction and sodium retention as a response to 
hyperinsulinemia resulting from insulin resistance.[38,39] 
Thus, the pancreatic b-cell response with an intention 
to maintain normal glucose homeostasis in an individual 
with adipose tissue and muscle insulin resistance results in 
augmenting the risk of  developing essential hypertension.[31]

Sympathetic nervous system activation and hypertension
Studies in the past have suggested that sympathetic activation 
probably has a dynamic role in the development of  the 
hypertensive state.[5] Sympathetic activation represents a 
major link between the hemodymanic (increased peripheral 
vascular resistance, decreased arterial distensibility, impaired 
organ perfusion, etc.) and the metabolic (insulin resistance, 
dyslipidemia, etc.) abnormalities frequently associated 
with hypertension.[5] In subjects with borderline or very 
mild hypertension, sympathetic nerve traffic is increased, 
indicating that central sympathetic outflow is already 
activated.[40,41] The level of  the sympathetic neural activation 
appears to parallel the severity of  the blood pressure 
elevation.[42] Plasma norepinephrine values are already 
elevated in young hypertensive subjects with mild blood 
pressure increase.[43] Resting tachycardia probably resulting 
from increased levels of  norepinephrine is consistently 
seen in these young patients.[43] The increased sympathetic 
activity is probably due to a derangement in the sympatho-
inhibition exerted by reflexogenic areas (such as the 
arterial baroreceptors, the cardiopulmonary receptors or 
the chemoreceptors) that restrain adrenergic outflow in 
normal individuals.[44] Metabolic alterations associated with 
hypertension, such as the hyperinsulinemic state and the 
related insulin resistance, may be the triggering factors for 
this stage.[45] An increase in sympathetic drive can also result 
in blood pressure elevation via an increase in renal sodium 
reabsorption.[44] High heart rate is a known predictor for the 
development of  essential hypertension.[46] Whether heart 
rate itself  is a risk factor for development of  hypertension 
or is just a marker for sympathetic overactivation is still 
unclear. Increases in blood pressure variations as well as 
levels in childhood and adolescence are also predictive of  
adult hypertension.[47] Considering the role of  sympathetic 
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nervous system in heart rate and blood pressure variability, 
the same also provides support for the role of  sympathetic 
nervous system in the evolution of  essential hypertension 
in childhood and adolescence. 

Vascular smooth muscle function and high blood pressure 
Blood vessels are under constant mechanical loading 
from blood pressure and flow which cause endothelial 
shear stress as well as circumferential wall stress.[48] In 
addition to the morphological changes of  endothelium 
and blood vessel wall, the same mechanical forces also 
trigger biochemical and biological events.[48] The normal 
endothelium responds to hemodynamic forces and 
biochemical signals from the blood by synthesizing and 
releasing vasoactive substances.[48] Endothelial-dependent 
flow-mediated vasodilation is predominantly modulated by 
endothelium-derived nitric oxide, which stimulates soluble 
guanylyl cyclase activity in vascular smooth muscle cells.[49] 
Studies have shown that hypertension is associated with 
impaired flow-mediated arterial dilation, suggesting that 
endothelial dysfunction is probably playing an important 
role in the evolution of  hypertension.[50,51] Endothelium-
mediated vasodilation is impaired in patients with essential 
hypertension.[50] Patients with essential hypertension have 
increased vascular endothelin activity, which may be 
related to their increased vascular tone.[52] Endothelin is 
the most potent vasoconstrictor substance produced by 
the cardiovascular system.[52] Children and adolescents 
with hypertension have higher plasma concentration of  
endothelin-1 (ET-1) than healthy subjects and the same 
correlates with systolic blood pressure levels.[53] Endothelial 
dysfunction also contributes significantly to increased 
arterial stiffness in patients with hypertension.[51] Similar 
findings were reported from the pediatric population as 
well.[54,55] In a study involving 247 healthy subjects aged 
10–20 years, Jourdan et al. demonstrated that systolic blood 
pressure is strongly associated with intima media thickness 
and vascular elasticity.[54] Functional and anatomical 
changes in elastic and muscular arteries were observed in 
newly diagnosed children with essential hypertension.[55] 
Hypertensive children had greater values of  both carotid 
and femoral intima media thickness than controls. The 
distensibility and elasticity of  the common carotid artery 
were significantly decreased in these hypertensive children, 
while arterial compliance was significantly greater than 
those in controls.[55] 

Serum uric acid levels and high blood pressure
Hyperuricemia has been demonstrated to predict and be 
an independent risk factor for hypertension in adults.[56,57] 
Studies done in the pediatric population also demonstrated 
a significant correlation between elevated uric acid levels 
and blood pressure.[6,58] In one case–control study, uric acid 

levels were directly correlated with systolic and diastolic 
blood pressure in controls and in subjects with primary 
hypertension and were independent of  renal function. 
Serum uric acid concentrations >5.5 mg/dL were found 
in 89% of  subjects with primary hypertension, in 30% 
with secondary hypertension, in 0% with white-coat 
hypertension, and in 0% of  controls.[58] The Bogalusa heart 
study concluded that childhood uric acid was significantly 
correlated with childhood and adult blood pressure, both 
systolic and diastolic.[6] Childhood uric acid levels and 
change in levels of  uric acid were significant predictors of  
adult diastolic blood pressure.[6] Change in uric acid was 
a significant predictor of  adult systolic blood pressure.[6] 
Uric acid can enter the vascular smooth muscle cells and 
stimulate a number of  factors which are known to induce 
vascular smooth muscle proliferation and preglomerular 
arteriolopathy.[6,59,60] These changes produce salt sensitivity 
which remains persistent irrespective of  future uric acid 
levels.[61] This form of  persistent salt sensitivity is thought 
to be initiated by renal ischemia that in turn results in 
activation of  the renal RAS, renal vasoconstriction, and 
increased sodium reabsorption.[62,63] Whether higher level 
of  uric acid is a cause or a result of  high blood pressure 
level in childhood and adolescence remains to be confirmed 
by definitive research.

Role of genes in essential hypertension
An estimated 30–60% of  the variation in blood pressure 
between individuals, after adjustment for age and sex, is 
attributed to the effect of  genetic factors.[7] A child with 
a history of  hypertension in both parents, and who has 
a sibling with hypertension, has a 40–60% chance of  
developing hypertension as an adult.[64] If  the sibling is a 
monozygotic twin, the risk of  the same increases to 80%.[64] 
The genetic susceptibility to develop primary hypertension 
results from the effects of  multiple genes and is modulated 
by multiple environmental determinants.[65] Using linkage 
studies and positional cloning in humans, a dozen genes 
responsible for monogenic forms of  hypertension and 
hypotension or associated to essential hypertension have 
been identified.[66] All of  these genes are either mediating 
or involved in the regulation of  renal sodium transport.[67] 
These mutations alter the blood pressure through a 
common pathway, changing salt and water re-absorption 
in the kidney.[67] Genes encoding components of  the RAAS, 
and angiotensinogen and angiotensin converting enzyme 
(ACE) polymorphisms may be related to hypertension .[7] 
The same may also be related to blood pressure sensitivity 
in response to dietary salt intake.[7] Normal functioning 
of  endothelial ion channels is important in the control of  
vascular tone. Dysfunction of  these ion channels could 
contribute to alterations in blood pressure.[68] Studies 
indicate that genetic defects in sodium transport across 
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cell membranes may be important in the development of  
primary hypertension in humans.[66,68] Genetically mediated 
alterations in the regulation or expression of  renal ion 
channels and transporters may also be important in the 
genesis of  hypertension.[65] Variations and mutations in 
other genes, such as α-adducin, atrial natriuretic factor, the 
insulin receptor, β2-adrenergic receptor, calcitonin gene-
related peptide, angiotensinase C, renin-binding protein, 
endothelin-1 precursor, and G-protein b3-subunit, have 
also been reported to be associated with the development 
of  essential hypertension.[7,69-72]

Fetal programming of blood pressure
Barker et al. hypothesized that influences during fetal life 
that slow fetal growth could program or permanently 
alter the body’s structure and physiology involving major 
systems of  the body and result in an adverse health profile 
in later life.[73] The majority of  the studies in children, 
adolescents and adults included in a recent, extensive 
review on this topic reported that blood pressure fell 
with increasing birth weight, the size of  the effect being 
approximately 2 mm Hg/kg.[74] Skeletal and non-skeletal 
postnatal catch-up growth were positively associated with 
blood pressure, with the highest blood pressures occurring 
in individuals of  low birth weight but high rates of  growth 
subsequently.[74] The underlying mechanisms that lead to 
these phenomena are still unclear and widely debated. When 
nutritional deficiency occurs in utero at a critical period 
of  development, the resulting adaptive changes may be 
permanent and may lead to long-term changes in structure 
and function.[75] Birth weight is also associated with salt 
sensitivity of  blood pressure, and this may play a role in 
the maintenance of  elevated blood pressure in individuals 
with a low birth weight.[76,77] Simonetti et al. reported that 
renal mass is reduced in children born with low birth weight 
and depends on the degree of  in utero growth retardation, 
which then determines lower glomerular filtration rate, 
increased salt sensitivity, and elevated blood pressure.[77] 
The fetal programming hypothesis of  hypertension needs 
more definitive research to support itself. 

conclusIon

The etiopathogenesis of  essential hypertension in children 
and adolescents appears to closely resemble that of  adults. 
The minor variations seen could probably be due to the 
evolving nature of  this condition. More research efforts 
in pediatric population are needed to bring clarity to the 
role of  many of  the proposed mechanisms that are well 
established in adult population.
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