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With the advancement of geopositioning systems and mobile devices, much research with 
geopositioning data are currently ongoing. Along with the research applications, map matching is 
a technology that infers the actual position of error-prone trajectory data. It is a core preprocessing 
technique for trajectory data. Among various map matching algorithms, map matching using 
Hidden Markov Model (HMM) has gained high attention. However, the HMM model simplifies 
the dependency of time series data excessively, which leads to inferring incorrect matching 
results for various situations. For example, complex road relationships or movement patterns, 
such as in urban areas, or serious observation errors and sampling intervals make matching more 
difficult. In this research, we propose a new algorithm called trendHMM map matching, which 
complements the assumptions of HMM. This algorithm considers a wider range of dependencies 
of geopositioning data by incorporating the movements of neighboring data into the matching 
process. For this purpose, the concept of the window containing adjacent geopositioning data 
is introduced. Thus trendHMM can utilize relationships among continuous geopositioning data 
and showed considerable enhancement over HMM-based algorithm. Through experiments, we 
demonstrated that trendHMM map matching provides more accurate results than the existing 
HMM map matching for various environments and geopositioning data sets. Our trendHMM 
algorithm shows up to 17.58% of performance enhancement compared to HMM based one in 
terms of Route Mismatch Fraction.

1. Introduction

Due to advancements in wireless communication and geopositioning technologies, it has become possible to collect a large 
amount of geolocation data from various devices such as smartphones and vehicles in different geopositioning systems. The contin-

uous movements of objects can be represented in periodic time series form. However, issues such as low measurement frequency 
and measurement errors can lead to discrepancies between the actual position and the collected data. Therefore, proper data pre-

processing is necessary. During the data preprocessing process, map matching technology is frequently used to infer the actual path 
taken by the subject. This approach involves depicting the connectivity between roads as a graph and inferring which edge, or road, 
the data at a specific point in time corresponds to. Among various map matching algorithms, those using the Hidden Markov Model 
(HMM) have gained attention. The HMM-based map matching algorithm, first introduced by Newson and Krum [1], has been widely 
utilized in research due to its performance and robustness. Particularly, it is known for its excellent performance with data having 
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sampling intervals of less than 30 seconds. However, the existing HMM-based map matching approach oversimplifies the problem. 
One fundamental issue is that it considers the data at time 𝑡 to be dependent only on the data at time 𝑡 − 1. Therefore, the existing 
HMM-based map matching approach yields inaccurate results for data with large errors or sampling intervals, as well as for areas 
with complex road networks such as urban areas. To overcome these limitations, there have been studies utilizing high-order HMMs 
that consider time points earlier than 𝑡 − 1, such as [2,3]. However, the computational cost significantly increases as the dimension-

ality increases, preventing the extension of the model beyond second order. Therefore, instead of simply increasing dimensions, we 
considered the dependencies among various data by grouping multiple data points to account for the movement trend in the dataset, 
without explicitly expanding the dimensionality. In this research, we propose the trendHMM map matching algorithm, which com-

plements the existing HMM-based map matching algorithm by considering a wider range of dependencies. This algorithm takes into 
account the “trend,” which represents broader movements by grouping the matching data and neighboring data. By considering the 
trend, we were able to address the issues of dependency and dimensionality increase that the conventional approach had. Through 
experiments using various geopositioning data, we confirm that the trendHMM map matching algorithm yields more accurate re-

sults than the existing HMM map matching approach. Furthermore, we performed a detailed comparison between trendHMM and 
the well-known HMM-based map matching algorithm, which is a representative map matching algorithm, both with and without 
preprocessing. This allowed us to make a precise comparison between trendHMM and HMM. The results of this comparison can be 
found in subsection 4.3.

The key contributions of this research are as follows:

• It expands the dependency between data by reflecting the movement trend of data.

• It demonstrates good performance without the need for data preprocessing, unlike conventional HMM-based algorithms.

• It exhibits similar time and space complexity as conventional HMM-based algorithms, but achieves better performance.

The contents of this research paper are as follows: Section 2 discusses about research results related with our topic. In section 3, 
a new algorithm developed in this paper, trendHMM, will be explained. As well, we will discuss existing map matching algorithm 
based on HMM as a basis of our algorithm along with terminology used in the research paper. Section 4 will show the experimental 
results, both for HMM-based algorithms and trendHMM algorithm as well as comparison of results of both algorithms. Final section 5

will conclude this research and discuss about possible future researches.

2. Related works

According to the map matching survey research [4], map matching algorithms can be broadly classified into four categories based 
on the applied techniques: Similarity Model, Candidate-Evolving Model, Scoring Model, and State-Transition Model. The Similarity 
Model infers the closest road geometrically and topologically. In other words, it matches the trajectory data to the road that is closest 
in terms of shape. Since the moving object always travels on the road network and cannot leap from one segment to another, the 
measured geolocation series closely resembles the actual path on the map. This model generally demonstrates high efficiency, but it 
exhibits lower accuracy when dealing with data with large sampling intervals or errors, or in complex road scenarios.

There exists another related survey to our study [5]. In this survey, the authors classified and reviewed existing map matching 
algorithms. The previously mentioned Similarity Model, Candidate-Evolving Model, Scoring Model, State-Transition Model, etc., are 
also included, and our research falls within the State-Transition Model category. In addition to this, various research results related 
to map matching include the following.

In a research [6], the Similarity Model is further classified into two subcategories: point-to-curve matching, where the model is 
applied to each point of the trajectory data, and curve-to-curve matching, where the model is applied to segments formed by grouping 
the trajectory data. This classification is also mentioned in research results such as [7] and [8]. In point-to-curve matching, each 
point of the trajectory data is matched with the nearest edge of the road network. On the other hand, in curve-to-curve matching, 
the trajectory data is grouped to form trajectory (Tr) segments, and then matched with the closest edge. Various models have been 
proposed based on different definitions of proximity, and notable research in this area include [9] and [10].

The Candidate-Evolving Model maintains a candidate set (also known as particles or hypotheses) during the map matching 
process. The candidate set is initialized by the first trajectory (Tr) sample, and only the candidates that are closest to the latest 
observation are kept from the existing candidates. By iterating the algorithm, the number of times each candidate is included in the 
candidate combination can be calculated. The most frequently included candidates are then used to compute segments and determine 
the matching path. Prominent models in this category include methods that combine Monte Carlo sampling techniques and Bayesian 
inference, such as Particle Filter-based approaches [11,12], and methods that utilize the Multiple Hypothesis Technique (MHT) [13]. 
These approaches effectively utilize the candidate set to infer the most likely matching path.

The Scoring Model, as described in research such as [14] and [15], does not rely on a specific model. Instead, it searches for 
candidate points that maximize a pre-defined scoring function for each Tr segment. In particular, a research shown in [15] achieved 
lane-level map matching performance using this approach. The road network is partitioned into grid cells. For each timestamp, 
the candidate grid cells corresponding to the observed values are identified, and the candidate with the highest scoring function is 
selected. The scoring function is determined using four linear features, such as the proximity between the grid cell and the trajectory 
sample. By utilizing the scoring function, the Scoring Model evaluates and selects the most suitable candidates for each Tr segment, 
2

providing a flexible and effective approach for map matching tasks.
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The State-Transition Model constructs a weighted topological graph consisting of all possible paths that the subject can take. In 
this graph, nodes represent the possible states of the subject at specific moments, and edges represent transitions between states at 
different timestamps. The model infers the optimal path by determining the path that maximizes the weights. Notable approaches 
in this category include the conditional random field (CRF) model [16], the weighted graph transition (WGT) model [17,18], and 
methods that utilize Hidden Markov Model (HMM). While these algorithms share similarities, they differ in how they calculate the 
weights. We focus on the method that utilizes HMM, which is a popular choice for map matching tasks.

HMM (Hidden Markov Model) is one of the most widely used methods in the State-Transition Model for map matching. HMM 
focuses on cases where the states in a Markov chain cannot be directly observed but can be inferred from the observed measure-

ments. This assumption aligns well with map matching problems, where each point in the trajectory (Tr) is treated as an observed 
measurement, and the actual position of the subject is considered as an unobserved state. In HMM, the roads near the measured 
values are considered potential locations (states) of the subject due to observation errors in the trajectory. The probability of the 
measured values being observed when the subject is actually located on a road is expressed as emission probability. The probability 
of the subject transitioning from one candidate location to the next candidate location consecutively is represented as the transition 
probability. By finding the combination of candidate locations with the highest probability, HMM determines the final matching 
path.

HMM-based map matching can be broadly classified into online and offline models. The offline model uses the entire trajectory 
(Tr) to understand the overall relationships within it. It demonstrates robust performance against variations in sampling intervals 
and observation errors but can be computationally inefficient. The online model, first proposed in [19], performs map matching 
by incorporating the data collected in real-time and constructing segments. It is utilized in real-time navigation and similar online 
services, and most online models employ sliding window techniques for the matching process. The algorithm we will present belongs 
to offline algorithm.

Recently, several algorithms have been proposed to enhance traditional HMM-based map matching by incorporating a range of 
factors such as speed, angle, preference, and more, aiming to achieve higher accuracy. For example, research like [20–22,2] include 
factors such as speed limits, road levels, and the difference between the vehicle’s heading change and the road segments’ heading 
change in the probability calculations. Additionally, research like [2,23,24] take into account driver’s travel preference information 
obtained through heuristics or learning. However, these models assume a perfect road network representation. They assume that 
the road network includes all roads existing at the time when the trajectory is measured and does not account for any hidden or 
missing roads. As more factors are considered in map matching, there is a tendency to interpret the data according to the road 
network as much as possible. Therefore, these models, as shown in [25], may not be suitable for solving the map inference problem 
of discovering hidden roads when the network itself is incorrect.

Indeed, there have been studies that consider a larger temporal dependency to overcome the Markov property in HMM. Since the 
movement of the target is a continuous time series, there exist complex spatio-temporal relationships between the current state and 
previous states. In other words, the Markov property overly simplifies the map matching problem. To address this, [2] proposed a 
second order HMM-based map matching algorithm, which showed better performance than the first-order approach. However, [2]

did not extend the algorithm beyond two dimensions due to computational efficiency issues. Our aim is to provide an algorithm 
which maintains the same time complexity as traditional HMM-based map matching but incorporates a larger temporal dependency 
compared to second order HMM.

There are research results that share similar objectives to our study [26]. It proposes methods to minimize errors in GPS obser-

vation data, but its approach to model construction differs from ours. Moreover, its focus on online algorithms is apart from our 
study. There are also research outcomes that utilize additional equipment over map matching algorithms. In [27], this research 
demonstrates cases where map matching technology is applied. It introduced radar/INS integrated techniques with map matching 
techniques to achieve the high level of accuracy required for autonomous navigation.

We propose a statistical model called trendHMM map matching, which complements traditional HMM map matching. We primar-

ily focused on comparing the most common map matching algorithm, Hidden Markov Model (HMM) map matching, rather than other 
map matching algorithms shown in subsection 4.3. To consider a larger temporal dependency beyond just the previous timestamp, 
trendHMM map matching constructs a window by grouping several data points based on the point of interest. Representative points 
within the window are selected to form a new trajectory 𝑇 𝑟𝑛𝑒𝑤 that captures broader movements. During the map matching process 
of 𝑇 𝑟𝑛𝑒𝑤, the generated weights are additionally considered, reflecting the movements and trends over a wider range. The size of 
the window in trendHMM can be adjusted to control the temporal dependency, and even with varying window sizes, it provides the 
same time complexity as the HMM approach. Furthermore, as trendHMM is a purely statistical algorithm without external factors, it 
is expected to achieve better performance in map inference problems.

3. An enhanced version of HMM based map matching algorithm

In this section we have to define terminology used in this paper. Then, we will explain basics of existing HMM based map matching 
algorithm as a basis of our algorithm, with its limitation and point of advancement. The core of this section is subsection 3.4 which 
3

explains trendHMM algorithm on the basis of previous subsections in this section.
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Fig. 1. Typical Operation of Map Matching Algorithm based on HMM.

3.1. Terminology

Movement data refers to measured geopositioning coordinates, and a trajectory represents the temporal sequence of movement 
data. Each geopositioning coordinate includes longitude, latitude, and a timestamp, and there may be discrepancies between the 
measured coordinates and the actual positions due to inherited geopositioning system properties and/or environmental problems. 
Regarding GPS error is described in [28].

Map matching is a crucial technology for preprocessing trajectories. It involves representing the connectivity between roads in 
the form of a graph and assigning each movement data point to a specific road segment, thereby inferring the actual location of the 
object. The concepts used in this manuscript are as follows.

• Geolocation data: It refers to a single geopositioning point. The t-th movement data in the trajectory is denoted as 𝑔(𝑡).
• Trajectory (Tr): It is a time series of movement data. It can be represented as 𝑔(1) → 𝑔(2) → ... → 𝑔(𝑛), and can be written as 𝑇 𝑟𝑛. 

Then the number of geolocation data in 𝑇 𝑟𝑛, i.e., cardinality of 𝑇 𝑟𝑛 is n.

• Road Network: It is represented as a graph to depict the connectivity relationship between roads, denoted as 𝐺(𝑉 , 𝐸). Here, 𝑉
represents the set of nodes, and 𝐸 represents the set of edges.

• Route: It is a time series composed of edges from the Road Network that match the trajectory, denoted as 𝑇 𝑟.

3.2. Basics on map matching based on HMM

The purpose of map matching is to match each movement data in the trajectory, denoted as 𝑇 𝑟, with a specific edge in the road 
network. The HMM proceeds by modeling the edge where the object is actually located at that point as a hidden state, and modeling 
the measured location point as an observed value.

First, based on a given mobility dataset, roads within a radius of 𝑟 are selected as candidates for the data point. 𝐶𝑔(𝑡) ∈𝐸 represents 
a candidate for the data point 𝑔(𝑡). The emission probabilities and transition probabilities are calculated using the shortest distance 
between the data point and candidate edges, as well as the points 𝐶𝑔(𝑡).𝑝 and 𝐶𝑔(𝑡+1).𝑝 located at the shortest distance. The emission 
probability represents the probability of observing a measurement given the actual road position. The emission probability 𝐸𝑃 for 
the candidate 𝐶𝑔(𝑡) is defined by equation (1).

𝐸𝑃 (𝐶𝑔(𝑡)) =
1√
2𝜋𝜎

exp
−𝑑𝑖𝑠𝑡2
2𝜎 (1)

In Equation (1), 𝑑𝑖𝑠𝑡 represents the distance between 𝑔(𝑡) and 𝐶𝑔(𝑡).𝑝, and 𝐸𝑃 follows a Gaussian distribution with zero mean for 𝑑𝑖𝑠𝑡.
The transition probability represents the probability of transitioning from 𝐶𝑔(𝑡) to 𝐶𝑔(𝑡+1) in reality. Fig. 1(a) shows an example 

of 𝐶𝑔(𝑡).𝑝. As shown in Fig. 1(b), let 𝑒𝑑𝑖𝑠𝑡 be the distance between 𝑔(𝑡) and 𝑔(𝑡 + 1), and let 𝑠𝑝𝑑𝑖𝑠𝑡 be the shortest distance traveled 
along the road between 𝐶𝑔(𝑡).𝑝 and 𝐶𝑔(𝑡+1).𝑝. The transition probability 𝑇𝑃 is calculated as Equation (2), and it follows an exponential 
distribution with respect to the difference between 𝑠𝑝𝑑𝑖𝑠𝑡 and 𝑒𝑑𝑖𝑠𝑡.

𝑇𝑃 (𝐶𝑔(𝑡), 𝐶𝑔(𝑡+1)) =
1
𝛽
exp−

|𝑒𝑑𝑖𝑠𝑡−𝑠𝑝𝑑𝑖𝑠𝑡|
𝛽 (2)

The actual path inferred by the algorithm is the combination of candidates that maximizes Equation (4) with respect to Tr. Equation 
(3) represents the weights that will be used to compute emission and transition probabilities for each candidate of the data. The 
weights are larger for candidates that are closer to the data and have smaller differences between 𝑒𝑑𝑖𝑠𝑡 and 𝑠𝑝𝑑𝑖𝑠𝑡. This can be 
4

efficiently computed using the Viterbi algorithm [29]. The algorithm based on the Viterbi algorithm is described in Algorithm 1.
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Algorithm 1 An algorithm of HMM map matching with Viterbi.

Input: 𝐶𝐷𝑆 , array of sets of candidate site objects (𝐶𝑔(𝑡)) for all geolocations.

Function forward(𝐶𝐷𝑆):
𝐿 ⟵ length of 𝐶𝐷𝑆 ;

for each 𝐶𝑔(0) in 𝐶𝐷𝑆[0] do
𝐶𝑔(0) .𝑝𝑟𝑜𝑏 ⟵ 0;

end

for 𝑖 ← 0 to 𝐿 − 2 do

for each 𝐶𝑔(𝑖) in 𝐶𝐷𝑆[𝑖] do
𝑗 ⟵ 𝑖 + 1;

for each 𝐶𝑔(𝑗) in 𝐶𝐷𝑆[𝑗] do
𝑊 ⟵ 𝑇𝑃 (𝐶𝑔(𝑖) , 𝐶𝑔(𝑗)) +𝐸𝑃 (𝐶𝑔(𝑗));

if 𝐶𝑔(𝑗).𝑝𝑟𝑜𝑏 < 𝐶𝑔(𝑖) .𝑝𝑟𝑜𝑏 +𝑊 then
𝐶𝑔(𝑗) .𝑝𝑟𝑜𝑏 ⟵ 𝐶𝑔(𝑖) .𝑝𝑟𝑜𝑏 +𝑊 ;

𝐶𝑔(𝑗) .𝑝𝑟𝑒𝑣 ⟵ 𝐶𝑔(𝑖) ;

end

end

end

end

End Function

Input: 𝐶𝐷𝑆 , array of candidate site sets for all geolocations.

Output: 𝑟𝑒𝑠𝑢𝑙𝑡, list of street numbers that the algorithm matches to each geolocation.

Function backward(𝐶𝐷𝑆):
𝑟𝑒𝑠𝑢𝑙𝑡 ⟵ 𝑒𝑚𝑝𝑡𝑦𝑙𝑖𝑠𝑡;

𝐿 ⟵ length of 𝐶𝐷𝑆 ;

𝑡𝑒𝑚𝑝 ⟵ The candidate object in 𝐶𝐷𝑆[𝐿 − 1] with the highest 𝑝𝑟𝑜𝑏;
while 𝑡𝑒𝑚𝑝 is not null do

insert 𝑡𝑒𝑚𝑝.𝑒𝑑𝑔𝑒 to 𝑟𝑒𝑠𝑢𝑙𝑡;
𝑡𝑒𝑚𝑝 ⟵ 𝑡𝑒𝑚𝑝.𝑝𝑟𝑒𝑣;

end

reverse 𝑟𝑒𝑠𝑢𝑙𝑡’s order;

return 𝑟𝑒𝑠𝑢𝑙𝑡;

End Function

In Algorithm 1, the Viterbi algorithm is divided into two stages: forward and backward. The input parameter 𝐶𝐷𝑆 is an array 
of candidate sets for each geolocation data in 𝑇 𝑟. In other words, 𝐶𝐷𝑆[𝑡] represents the set of candidate objects 𝐶𝑔(𝑡) for 𝑔(𝑡). Each 
candidate object 𝐶𝑔(𝑡) has instance variables: 𝑒𝑑𝑔𝑒, 𝑝𝑟𝑜𝑏, and 𝑝𝑟𝑒𝑣, which are denoted as 𝐶𝑔(𝑡).𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 in the algorithm. 𝐶𝑔(𝑡).𝑒𝑑𝑔𝑒

represents the road that the candidate object points to. 𝐶𝑔(𝑡).𝑝𝑟𝑜𝑏 stores the maximum 𝑠𝑐𝑜𝑟𝑒 (Equation (4)) from 𝑔(1) to 𝑔(𝑡) in 
𝑇 𝑟. Therefore, for a given 𝐶𝑔(𝑡), the following equation (Equation (5)) holds true. 𝐶𝑔(𝑡).𝑝𝑟𝑒𝑣 refers to the t-1 candidate object that 
maximizes the value in Equation (5).

𝑊ℎ𝑚𝑚(𝐶𝑔(𝑡), 𝐶𝑔(𝑡+1)) = log 𝑒𝑝(𝐶𝑔(𝑡+1)) + log 𝑡𝑝(𝐶𝑔(𝑡), 𝐶𝑔(𝑡+1)) (3)

𝑠𝑐𝑜𝑟𝑒(𝑇 𝑟) =
𝑛−1∑
𝑡=1

𝑊ℎ𝑚𝑚(𝐶𝑔(𝑡), 𝐶𝑔(𝑡+1)) (4)

In Algorithm 1, the forward step is a function that computes the probabilities of all candidate objects. After executing the forward 
step, the candidate object in 𝐶𝐷𝑆[𝐿 − 1] with the highest prob value corresponds to the maximum value of 𝑠𝑐𝑜𝑟𝑒(𝑇 𝑟) in Equation 
(4). The backward step is a function that returns the matched path. Starting from the candidate object with the highest prob value 
in 𝐶𝐷𝑆[𝐿 − 1], it follows the 𝑝𝑟𝑒𝑣 pointers to return the matching result of the path.

𝐶𝑔(𝑡).𝑝𝑟𝑜𝑏=𝑀𝐴𝑋(𝐶𝑔(𝑡−1).𝑝𝑟𝑜𝑏+𝑊ℎ𝑚𝑚(𝐶𝑔(𝑡))) (5)

3.3. Limitation of map matching based on HMM

HMM assumes that the observation at time 𝑡 depends only on the previous time step 𝑡 − 1, which is known as the Markov 
Property. However, this assumption oversimplifies the map matching process and can lead to incorrect results. Fig. 2 illustrates 
incorrect matchings. The area inside the red circle shows incorrect matching, where the path deviates from the correct route. 
Fig. 2(a) represents a case with large sampling intervals and significant data errors. While considering multiple time steps in the 
map matching process could help mitigate the impact of errors, HMM only considers the immediate previous time step, leading to 
ambiguous results. And Fig. 2(b) depicts a situation that can occur in densely populated urban areas. Similarly, due to data errors, a 
5
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Fig. 2. Example of Erroneous Matching by HMM based Map Matching Algorithm.

Fig. 3. Raw Trend Examples: geolocation data (blue dot) and movement trend (red line).

3.4. Proposed algorithm: trendHMM map matching algorithm

The main concepts of trendHMM are as follows. The movement data 𝑔(𝑡) at the time 𝑡 is dependent on a wider range of movement 
data as well as the time 𝑡 −1. In particular, neighboring data points such as 𝑔(𝑡 −2), 𝑔(𝑡 −1), 𝑔(𝑡 +1), 𝑔(𝑡 +2) have a closer relationship 
with 𝑔(𝑡) compared to other data points. Although these neighboring data points may exhibit different characteristics in terms of 
direction, speed, and other movement-related features, they share a common underlying movement pattern. These unique movement 
patterns exhibited by neighboring data points are defined as movement trend. Fig. 3 provides an example of movement trend. Fig. 3(a) 
represents a movement trend of vehicle and Fig. 3(b) represents a movement trend of pedestrian. The measured geopositioning 
coordinates (blue dots) exhibit variations due to observation errors and have different movement-related characteristics. However, 
they share a common movement trend (red line). The actual location of 𝑔(𝑡) is significantly influenced not only by the immediate 
previous data point, 𝑔(𝑡 −1) but also by the wider movement trend. To address this, we propose a trendHMM map matching algorithm 
that supplements the traditional HMM model with movement trends. We introduce a weight 𝑊𝑡𝑟𝑒𝑛𝑑 that considers the movement 
trend in addition to the existing weight 𝑊ℎ𝑚𝑚 combined into equation (4) when calculating the map matching score. In other words, 
trendHMM aims to infer the path by maximizing the following equation (6), which takes both the traditional HMM score and the 
movement trend weight into account.

𝑡𝑟𝑒𝑛𝑑_𝑠𝑐𝑜𝑟𝑒(𝑇 𝑟) =
𝑡=𝑛−1∑
𝑡=1

(𝑊ℎ𝑚𝑚(𝐶𝑔(𝑡), 𝐶𝑔(𝑡+1)) +𝑊𝑡𝑟𝑒𝑛𝑑 (𝐶𝑔(𝑡+1))) (6)

𝑊𝑡𝑟𝑒𝑛𝑑 assigns a higher value to candidates that fit the movement trend. The specific method for calculating 𝑊𝑡𝑟𝑒𝑛𝑑 for candidate 
𝐶𝑔(𝑡) is as follows. Firstly, create a window by grouping 𝑊 neighboring data points around 𝑔(𝑡) as the reference. This window is 
constructed to capture the relevant movement trend, as illustrated in Fig. 4(a). Within the window, including 𝑔(𝑡), calculate the 
centroid (𝑙𝑚𝑖𝑑) of the data points from previous time steps. After obtaining the centroid 𝑙𝑚𝑖𝑑 for the data points preceding 𝑔(𝑡), the 
same procedure is applied to the subsequent data points to obtain the centroid 𝑟𝑚𝑖𝑑. Then, as illustrated in Fig. 4(b), we connect 
𝑔(𝑜𝑢𝑡), 𝑙𝑚𝑖𝑑, 𝑔(𝑡), and 𝑟𝑚𝑖𝑑 to create a new trajectory 𝑇 𝑟𝑛𝑒𝑤. 𝑔(𝑜𝑢𝑡) represents the data point outside the window, and its corresponding 
6

𝑜𝑢𝑡 value is determined as 𝑚𝑎𝑥(0, 𝑡 −𝑤 + 1), where w is window size. By considering the centroids, 𝑇 𝑟𝑛𝑒𝑤 incorporates the movement 
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Fig. 4. Examples of TrendHMM Algorithm Operations.

trend more robustly, even in the presence of errors. In Fig. 4, 𝑇 𝑟𝑜𝑢𝑡 represents a trajectory constructed from the original trajectory up 
to 𝑔(𝑜𝑢𝑡). Finally, the generated 𝑇 𝑟𝑛𝑒𝑤 and 𝑇 𝑟𝑜𝑢𝑡 are used to calculate 𝑊𝑡𝑟𝑒𝑛𝑑 (𝐶𝑔(𝑡)) according to Equation (7).

𝑊𝑡𝑟𝑒𝑛𝑑 (𝐶𝑔(𝑡)) =
1
𝑁

𝑚𝑎𝑥(𝑡𝑟𝑒𝑛𝑑_𝑠𝑐𝑜𝑟𝑒(𝑇 𝑟𝑜𝑢𝑡) + 𝑠𝑐𝑜𝑟𝑒(𝑇 𝑟𝑛𝑒𝑤)) (7)

The equation (7) represents the maximum value obtained from conducting trendHMM map matching on 𝑇 𝑟𝑜𝑢𝑡 and performing 
traditional HMM map matching on 𝑇 𝑟𝑛𝑒𝑤 while fixing the candidate for 𝑔(𝑡) as a specific 𝐶𝑔(𝑡). This can be efficiently computed 
using the Viterbi algorithm. It’s important to note that equation (7) incorporates the influence of the original 𝑇 𝑟𝑜𝑢𝑡. The trend score 
𝑡𝑟𝑒𝑛𝑑_𝑠𝑐𝑜𝑟𝑒(𝑇 𝑟𝑜𝑢𝑡) is calculated by the Viterbi algorithm before determining 𝑊𝑡𝑟𝑒𝑛𝑑 (𝐶𝑔(𝑡)). The normalization parameter 𝑁 is used to 
ensure that the magnitudes of each 𝑊ℎ𝑚𝑚 and 𝑊𝑡𝑟𝑒𝑛𝑑 in equation (6) are equal. The value of N can be determined from the equations. 
The total number of weights for 𝑡𝑟𝑒𝑛𝑑_𝑠𝑐𝑜𝑟𝑒(𝑇 𝑟𝑜𝑢𝑡) is 2 × 𝑜𝑢𝑡 from Equation (6), and the total number of weights for 𝑠𝑐𝑜𝑟𝑒(𝑇 𝑟𝑛𝑒𝑤) is 3
from Equation (5). Therefore, the value of 𝑁 can be set to 2𝑜𝑢𝑡 + 3 for the calculation of equation (7).

The trendHMM algorithm using the Viterbi algorithm is described in Algorithm 2. In Algorithm 2, trendForward is an algorithm 
that modifies the forward step to align with trendHMM. The function addTrendWeight incorporates the trend into the calculation 
according to the trendHMM algorithm. Afterwards, the backward step of Algorithm 1 is performed to return the final matching path.

Algorithm 2 An algorithm of trendHMM with map matching Viterbi.

Input: 𝐶𝐷𝑆, array of candidate site object (CD) sets for all geolocations.

Function addTrendWeight(𝑡, 𝐶𝐷𝑆):
make candidates array 𝑡𝑟𝑒𝑛𝑑𝐿𝑖𝑠𝑡 with 𝑔(𝑜𝑢𝑡), 𝑙𝑚𝑖𝑑, 𝑔(𝑡), 𝑟𝑚𝑖𝑑 as shown in Fig. 4;

calculate 𝑊𝑡𝑟𝑒𝑛𝑑 (𝐶𝑔(𝑡)) using equation (7) with 𝑡𝑟𝑒𝑛𝑑𝐿𝑖𝑠𝑡 and add to 𝐶𝑔(𝑡) .𝑝𝑟𝑜𝑏;

End Function

Input: 𝐶𝐷𝑆, array of candidate site object (CD) sets for all geolocations.

Function trendForward(𝐶𝐷𝑆):
𝐿 ⟵ length of 𝐶𝐷𝑆 ;

for each 𝐶𝑔(0) in 𝐶𝐷𝑆[0] do
𝐶𝐷.𝑝𝑟𝑜𝑏 ⟵ 0;

end

for 𝑖 ← 0 to 𝐿 − 2 do
addTrendWeight(i, CDS)

for each 𝐶𝑔(𝑖) in 𝐶𝐷𝑆[𝑖] do
𝑗 ⟵ 𝑖 + 1
for each 𝐶𝑔(𝑗) in 𝐶𝐷𝑆[𝑗] do

𝑊 ⟵ 𝑇𝑃 (𝐶𝑔(𝑖) , 𝐶𝑔(𝑗)) +𝐸𝑃 (𝐶𝑔(𝑗));
if 𝐶𝑔(𝑗).𝑝𝑟𝑜𝑏 < 𝐶𝑔(𝑖) .𝑝𝑟𝑜𝑏 +𝑊 then

𝐶𝑔(𝑗) .𝑝𝑟𝑜𝑏 ⟵ 𝐶𝑔(𝑖) .𝑝𝑟𝑜𝑏 +𝑊 ;

𝐶𝑔(𝑗) .𝑝𝑟𝑒𝑣 ⟵ 𝐶𝑔(𝑖) ;

end

end

end

end

addTrendWeight(L-1);
7
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The algorithm proposed in this research has the same time complexity as traditional HMM-based map matching. Let’s denote 
the average number of candidate points for each geolocation coordinate as 𝐶 , and the number of geolocation coordinates in 𝑇 𝑟 as 
𝑇 . The time complexity of traditional HMM-based map matching, determined by the Viterbi algorithm, is 𝑂(𝑇𝐶2). For trendHMM, 
each geolocation requires an additional map matching for 𝑇 𝑟𝑛𝑒𝑤, which consists of 4 data points. This means that 3 additional 
computations are performed for each geolocation compared to the traditional HMM. However, since 𝐶 and 𝑇 remain the same, 
the overall time complexity of trendHMM remains 𝑂((3𝑇 + 𝑇 )𝐶2) = 𝑂(4𝑇𝐶2) = 𝑂(𝑇𝐶2). Therefore, we can conclude that the time 
complexity of both algorithms is the same.

For the spatial complexity, both HMM and trendHMM have the same spatial complexity, which is 𝑂(𝐿), where 𝐿 represents the 
number of candidate spatial objects for the next step. Here, 𝐿 is a variable meaning the length of trajectory. Regardless of window 
size, two major points are generated for map matching one point. Algorithm 2 generates two more CDS during the process. Thus, we 
can conclude the space complexity of trendHMM algorithm is 𝑂(𝐿 + 2𝐿) =𝑂(𝐿).

4. Experiments

4.1. Data and experiment setup

The dataset used in the experiments consists of a large-scale real-world dataset comprising 100 geopositioning tracks, with 
locations spanning various locations worldwide. The dataset is publicly available in [30]. Each track is represented by a map or 
a route that accurately matches the map. Additionally, some tracks are labeled with features that may pose challenges for map 
matching algorithms.

• u-turns: the vehicle turned 180◦ and reversed the direction of travel

• hives: large numbers of points packed in a small area

• loops: the vehicle was traveling in circles

• gaps: temporal gaps existing in the track

• severe congruence issues: situations where the map and the track are incongruent or dissimilar

In addition, in the data sets, there are 19 tracks formed by 19 high-quality geopositioning data points without connected segments. 
The length of the tracks ranges from 5 to 100 kilometers, and the dataset contains a total of 247,251 points with a sampling rate of 
1 Hz. The average length and duration of the 100 tracks are 26.8 km and 4950.7 seconds, respectively. More detailed information 
can be found in the dataset documentation [30].

We subsampled the original datasets in order to create five different datasets concentrating on sampling intervals rather than 
one second of original datasets: 10 seconds, 20 seconds, 30 seconds, 60 seconds, and 120 seconds. Additionally, we generated 
preprocessed datasets using the Douglas-Peucker algorithm [31] on each dataset.

The matching accuracy is measured by the Route Mismatch Fraction (RMF) proposed by Newson and Krumm [1]. The measured 
values include the total length of false positive road segments, denoted as 𝑑+, and the total length of false negative road segments, 
denoted as 𝑑−. If we consider 𝑑0 as the sum of 𝑑+, the 𝑅𝑀𝐹 quantifies the map matching error as the ratio (𝑑+ + 𝑑−)∕𝑑0. A smaller 
𝑅𝑀𝐹 value indicates that the map matching results are more similar to the actual path.

Next, we evaluate the efficiency of trendHMM for geolocation data with various sampling intervals. To compare trendHMM 
with the traditional HMM-based method, we derive the 𝑅𝑀𝐹 values for each approach. Throughout the experiments, we set the 
geopositioning measurement standard deviation 𝜎 to 10 𝑚𝑒𝑡𝑒𝑟𝑠 in Equation (1) for both methods. The scaling factor 𝛽 in Equation 
(2), used for estimating transition probabilities, is also set to 10 𝑚𝑒𝑡𝑒𝑟𝑠, but the qualitative results are maintained within the range 
reported in [23]. For efficiency purposes, we construct candidates by searching for road segments within a radius of 200 𝑚𝑒𝑡𝑒𝑟𝑠

from each geopositioning point. All methods are implemented in Python, and the experiments are conducted on two Intel Xeon CPU 
E5-2630 v2 2.60 GHz CPUs with 64 GB RAM.

4.2. Parameter estimation

The trendHMM algorithm proposed in this research requires an additional estimation of the window size, denoted as 𝑊 . According 
to the algorithm in Section 3.4, as the value of 𝑊 increases, the distance and time interval between the considered movement data 
points also increase. In other words, the range of temporal dependencies expands.

In this experiment, we conducted experiments by varying the value of 𝑊 as shown in Fig. 5 to select an appropriate 𝑊 value for 
the data generated with different sampling intervals (10 sec, 20 sec, 30 sec, 60 sec, 120 sec). Overall, we observed a trend where a 
higher 𝑊 value tends to result in lower 𝑅𝑀𝐹 values when the sampling interval is smaller. However, when the sampling interval is 
larger, we noticed that a higher 𝑊 value leads to lower performance. To accurately estimate the precise location of the movement 
data 𝑔(𝑡), a narrow range of movement trend composed of data points with close temporal and spatial proximity is required. However, 
with larger sampling intervals, although approximate location estimation is still possible, the lack of precision compared to smaller 
8

sampling intervals results in lower performance as the value of 𝑊 increases.
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Fig. 5. 𝑅𝑀𝐹 Values with respect to Window Size W.

4.3. Experimental results

The experiments were conducted based on two main criteria: trendHMM vs. HMM and the presence or absence of data preprocess-

ing presented by Douglas-Peucker algorithm [31]. In all experiments, the parameter value 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 for the Douglas-Peucker algorithm 
was fixed at 0.001 for data preprocessing. The radius 𝑟 for the 𝑔(𝑡) data was set to 0.002, and the number of neighboring data points 
to be grouped, denoted as 𝑤, was set to one of {3, 4, 5, 6, 7, 8}.

• 𝑒𝑝𝑠𝑖𝑙𝑜𝑛: The value of the parameter 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 for the Douglas-Peucker algorithm is 0.001.
9

• 𝑟: The value of the radius 𝑟 for the 𝑔(𝑡) data is 0.002.
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Fig. 6. The RMF values of trendHMM and HMM with and without Data Preprocessing.

• 𝑤: The number of neighboring data points to be grouped, denoted as 𝑤, is a value from integer set {3, 4, 5, 6, 7, 8}.

Firstly, we compared the results of trendHMM and HMM with and without data preprocessing. Each of the basic algorithms was 
applied in the same manner, with the only difference being the inclusion or exclusion of the data preprocessing step. In Fig. 6, (a) 
shows that without preprocessing has better overall performance than with preprocessing in trendHMM, and (b) shows that with 
preprocessing is better in HMM. In Fig. 6(a), the red line representing “without_preprocessing” generally exhibits lower 𝑅𝑀𝐹 values 
10

than the brown line representing “with_preprocessing.” This means that trendHMM without preprocessing performs better compared 
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Fig. 7. The 𝑅𝑀𝐹 values for trendHMM and HMM, all without Preprocessing.

to trendHMM with preprocessing. On the other hand, in Fig. 6(b), for HMM, “with_preprocessing” shows lower 𝑅𝑀𝐹 values than 
“without_preprocessing.” In other words, in the case of trendHMM, results without preprocessing are generally better, however, in the 
case of HMM, it was confirmed that the results with preprocessing are better. Next, we compared the non-preprocessed trendHMM 
with each HMM. Fig. 7 shows a comparison with the HMM without preprocessing, and Fig. 8 shows a comparison with the HMM 
with preprocessing. Overall, it can be confirmed that trendHMM without preprocessing shows superior performance than the cases 
of HMM with or without preprocessing.

However, in cases of a sampling interval of 20 sec and 𝑊 values of [3, 4, 5], trendHMM without preprocessing showed lower 
performance compared to the HMM with preprocessing. To investigate the cause, we plotted some of the data that resulted in lower 
11

performance on the map. Fig. 9 shows that it corresponds to cases where the trajectory stays in one location for a long time.
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Fig. 8. The 𝑅𝑀𝐹 values for trendHMM without Preprocessing versus HMM with Preprocessing.

Fig. 9(a) represents the map with the highest error, and Fig. 9(b) represents the map with the second-highest error. This suggests 
that the lower performance in certain situations may be due to factors such as the data preprocessing and variations caused by the 
window size 𝑊 . It is likely that some inaccuracies occurred under specific conditions. However, trendHMM with preprocessing at 
the corresponding sampling interval showed higher performance than HMM of each case.

According to Table 1, it can be observed that among all the models, trendHMM without preprocessing exhibits the highest 
performance. Additionally, when comparing trendHMM and HMM as shown in Table 2, irrespective of preprocessing, it can be 
observed that trendHMM shows improved performance. In general, the best 𝑅𝑀𝐹 value of trendHMM was extracted from trendHMM 
12

without preprocessing, and the best 𝑅𝑀𝐹 value of HMM was extracted from HMM with preprocessing.
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Fig. 9. A Mapping of the Geopositioning Dataset representing Unexpected Results.

Table 1

Comparison of 𝑅𝑀𝐹 Values w.r.t. Various Sampling Intervals.

Sampling Interval(s) 10 20 30 60 120

trendHMM_with_preprocessing 0.0918 0.0938 0.1083 0.1658 0.2491

trendHMM_without_preprocessing 0.0880 0.0968 0.0980 0.1438 0.2469

HMM_with_preprocessing 0.1053 0.0956 0.1189 0.1707 0.2678

HMM_without_preprocessing 0.1049 0.1463 0.1523 0.1846 0.2969

Table 2

𝑅𝑀𝐹 values comparison: trendHMM versus HMM with their best RMF Values.

Sampling Interval(s) 10 20 30 60 120

trendHMM 0.0880 0.0938 0.0980 0.1438 0.2469

HMM 0.1049 0.0956 0.1189 0.1707 0.2678
13

Performance Enhancement 16.11% 1.88% 17.58% 15.76% 7.80%
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Traditional HMM-based map matching only considers very short-term dependencies by utilizing the immediate past data. How-

ever, trendHMM has the advantage of being able to adjust the time dependencies more flexibly by using the window size 𝑊 . 
Additionally, trendHMM achieves high performance even without data preprocessing, while HMM requires preprocessing as a cru-

cial step. Therefore, trendHMM has the advantage of reducing the costs associated with preprocessing, making it more efficient 
compared to HMM.

5. Conclusion and future research

We proposed the trendHMM map matching method as an enhancement to the existing HMM-based map matching. The trendHMM 
overcomes the limitations of HMM by considering a wider range of movement patterns, while maintaining the same time complexity 
as traditional methods. Through experiments with diverse sampling intervals, trendHMM demonstrated superior performance. No-

tably, trendHMM achieved high accuracy without the need for data preprocessing, whereas HMM required preprocessing as a crucial 
step. Therefore, it can be concluded that trendHMM can reduce the preprocessing costs associated with traditional HMM approaches.

The trendHMM is a method that purely relies on statistical modeling without considering external factors such as speed, heading, 
or road preferences. Therefore, it is expected to be more suitable for addressing the map inference problem of identifying unmapped 
roads. Future research is planned to further explore and address this aspect. In the trendHMM, a fixed value of 𝑊 was used for 
extracting movement trends. If 𝑊 is too small, it may not properly capture the movement trend. On the other hand, if it is too 
large, it may incorporate irrelevant and extensive movement trend unrelated to the current motion. Therefore, a method for dynam-

ically determining an appropriate 𝑊 value is needed. In future research, we plan to explore methods for self-adaptive window size 
determination using factors such as the angle and speed of movement data.
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[30] M. Kubička, A. Cela, P. Moulin, H. Mounier, S.-I. Niculescu, Dataset for testing and training of map-matching algorithms, in: 2015 IEEE Intelligent Vehicles 
Symposium (IV), IEEE, 2015, pp. 1088–1093.
15

[31] A. Saalfeld, Topologically consistent line simplification with the Douglas-Peucker algorithm, Cartogr. Geogr. Inf. Sci. 26 (1999) 7–18.

http://refhub.elsevier.com/S2405-8440(23)08576-6/bib84E693DBA25B1FA360063F5C22AE2CCBs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib84E693DBA25B1FA360063F5C22AE2CCBs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib8FAB515B151610AD2273335BA1EE514Cs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib8FAB515B151610AD2273335BA1EE514Cs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib687620500AF8130BF9F2BC88359F3395s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib687620500AF8130BF9F2BC88359F3395s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib343840F3C7F8988C29C81C33B0A279B7s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib343840F3C7F8988C29C81C33B0A279B7s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib18186BCC30AF7D8CBCFB304449673B0As1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib18186BCC30AF7D8CBCFB304449673B0As1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib588FC679F5F3C8D89EF853DC388DA77Es1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib588FC679F5F3C8D89EF853DC388DA77Es1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bibBD8515CF07463EAB70A94BCBEA6E6997s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bibBD8515CF07463EAB70A94BCBEA6E6997s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib8E31CC6086A5E15B9A0F6C60103C6407s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib8E31CC6086A5E15B9A0F6C60103C6407s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bibF892AE11BD6BB90AD8AB10E8546294CAs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib3E444980B6B976553C9AA1A98F7A5A43s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bibCA718ABB45CC02201CD2D3DA27F322FAs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bibCA718ABB45CC02201CD2D3DA27F322FAs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib5ACEEC4457EC9E36C0C2DC14E0C431FCs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib5ACEEC4457EC9E36C0C2DC14E0C431FCs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib20224356279ABF65534E88D1E6AAF713s1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib2501B7FB8952E656982E8A1B77D487C7s1
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/
http://refhub.elsevier.com/S2405-8440(23)08576-6/bibF594D5C7683AF6B3853926C063A591BEs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib3C4D09E4EF50B370AE0EFACDB43EC2DDs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bib3C4D09E4EF50B370AE0EFACDB43EC2DDs1
http://refhub.elsevier.com/S2405-8440(23)08576-6/bibB961977F0A65C7931E1238C93BC79570s1

	A map matching algorithm based on modified hidden Markov model considering time series dependency over larger time span
	1 Introduction
	2 Related works
	3 An enhanced version of HMM based map matching algorithm
	3.1 Terminology
	3.2 Basics on map matching based on HMM
	3.3 Limitation of map matching based on HMM
	3.4 Proposed algorithm: trendHMM map matching algorithm

	4 Experiments
	4.1 Data and experiment setup
	4.2 Parameter estimation
	4.3 Experimental results

	5 Conclusion and future research
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


