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Abstract

The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a 

heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac 

death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT 

Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 

individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of 

QT variation and highlight the importance of calcium regulation in myocardial repolarization. 

Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding 

variants not found in controls but of uncertain causality and therefore requiring validation. Several 

newly identified loci encode for proteins that physically interact with other recognized 

repolarization proteins. Our integration of common variant association, expression and orthogonal 

protein-protein interaction screens provides new insights into cardiac electrophysiology and 

identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD.
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Introduction

Prolongation or shortening of the QT interval on the electrocardiogram are non-invasive 

markers of delayed or accelerated myocardial repolarization, increased risk of sudden 

cardiac death (SCD) and fatal arrhythmia as a side effect of medication therapy. Mendelian 

Long and Short QT Syndromes (LQTS, SQTS)1 stem from mutations of strong effect (QT 

increase or decrease per mutation > ∼20-100 msec) in genes encoding ion channels or 

channel-interacting proteins. In unselected community-based individuals, variation in 
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continuous QT interval is normally distributed (ranging from 380 to 460 msec), with 

heritability estimates of 30-40%2. Common genetic variants that are associated individually 

with modest (≈1-4 msec/allele) increments in QT interval duration have been detected 

through candidate gene and genome-wide association studies (GWAS) in large sample sizes 

including the QTGEN3 and QTSCD4 consortia, as well as others5-9.

Several loci have been discovered independently in both genome-wide linkage studies of 

Mendelian LQTS families and GWAS of QT interval duration in unselected populations, 

including those harboring KCNQ1, KCNH2, SCN5A, KCNE1, and KCNJ2, highlighting the 

value of both approaches and the overlap of common and rare variant loci. To date, 

hundreds of rare mutations in 13 LQTS-susceptibility genes have been reported, with 75% 

of LQTS stemming from KCNQ1 (LQT1), KCNH2 (LQT2) and SCN5A (LQT3) mutations, 

< 5% due to LQT4-13 and ∼20% remaining genetically elusive. Identification of the causal 

genes underlying QT interval variation in the general population has been more challenging.

Here, the QT Interval-International GWAS Consortium (QT-IGC) performed an expanded 

meta-analysis of GWAS in 76,061 individuals of European ancestry with targeted 

genotyping in up to 33,316 additional individuals, completed mutational analysis in 

probands with genetically elusive LQTS, determined whether QT-associated SNPs have 

effects on gene expression in various tissues (eQTLs) or on other human phenotypes, and 

further annotated QT-associated genes using protein-protein interaction analyses.

GWAS identifies 22 novel QT loci

Clinical characteristics of 31 study cohorts of European ancestry who contributed to the 

stage 1 GWAS are shown in Supplementary Table 1. All studies excluded individuals with 

atrial fibrillation, QRS duration greater than 120 msec, bundle branch block, or 

intraventricular conduction delay, and when available electronic pacemaker use or QT-

altering medication use. In each cohort, QT interval duration adjusted for age, sex, RR 

interval (inverse heart rate), and principal components of genetic ancestry was tested for 

association with 2.5 million directly genotyped or imputed SNPs under an additive genetic 

model (Supplementary Table 2 and 3). We performed inverse variance weighted meta-

analysis on the GWAS results from 76,061 individuals, and observed only modest over-

dispersion of the test statistics given the sample size (λGC = 1.076, Supplementary Figure 

1a). Exclusion of SNPs within 500kb of the sentinel SNP at genome-wide significant loci 

(some identified only after incorporation of replication genotyping; see below) did not 

significantly attenuate the excess of low p-values, consistent with a polygenic model of QT 

interval variation10 (λGC = 1.069, Supplementary Figure 1b).

At an interim meta-analysis of GWAS results, SNPs were selected for two forms of 

replication. First, a set of the top 35 independent SNPs (one per locus) were selected for 

targeted replication genotyping in as many as 31,962 individuals of European ancestry 

(Supplementary Table 1) on a variety of platforms (Supplementary Table 2). Second, a set 

of ∼5,000 LD-pruned (r2 > 0.2) SNPs with nominal evidence of association with QT 

interval (P ≤ 0.015) were included in a custom genotyping array (Metabochip) and 

genotyped in 1,354 individuals (Supplementary Note, Supplementary Tables 1, 4, 5)11. 
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Meta-analysis of all GWAS and replication genotyping results in up to 103,331 individuals 

(Supplementary Note) identified a total of 35 genome-wide significant (P < 5×10-8) loci, of 

which 22 were novel and 13 have been reported previously3-5,9 (Table 1, Figure 1, 

Supplementary Table 6). Some SNPs initially selected for replication genotyping were not 

ultimately the most significant SNP at a locus (Supplementary Table 7). Many loci had 

evidence of multiple independent signals of association based on having low LD (r2 < 0.05) 

to other genome-wide significant SNPs, with a total of 68 independent SNPs at 35 loci 

(Supplementary Note, Supplementary Table 8a, Supplementary Figure 2).

Association of QT SNPs in individuals of African Ancestry

We examined the association of 67 of these SNPs in 13,105 individuals of African ancestry 

in the CARe-COGENT consortium12 (one SNP was poorly imputed due to low minor allele 

frequency, MAF). Despite the limited power due to smaller sample size, 10 SNPs at 9 loci 

were significantly associated with QT interval (P < 0.0007 = 0.05/67) in the same direction 

as in QT-IGC (Supplementary Table 9). The SNP direction of effect was concordant 

between European- and African-derived samples for 51/67 SNPs (binomial P = 5×10-5) and 

effects were highly correlated (r = 0.60, P = 9×10-10, Supplementary Table 9). These 

findings are consistent with the hypothesis that a majority of common variants are associated 

with QT interval in both ancestral populations.

Variants with additional non-QT effects

Because heart rate (HR) is a strong determinant of unadjusted QT interval (r2 ∼0.5-0.8), we 

examined the 68 independent SNPs at 35 QT loci in a HR GWAS in 92,355 individuals of 

European or Indian Asian ancestry13. Among the 35 loci examined, we found significant 

association with HR of 5 SNPs at the 4 loci including PLN, FEN1—FADS2, ATP2A2, and 

SCN5A-SCN10A (p < 0.0007 = 0.05/68, Supplementary Table 10). Arguing against 

inadequate heart rate adjustment as the source of association of QT variants with HR was the 

modest correlation of QT effects (in models adjusting for RR interval, inverse heart rate) and 

HR effects for QT associated SNPs (r2 = 0.16). Only 38 of 68 of the SNP effects on HR 

showed the inverse relationship that has been well established between QT interval duration 

and HR (binomial p = 0.20).In ARIC (n = 8,524), we found no evidence that QT-SNP 

associations were altered with additional adjustment for RR2, RR3, RR1/2 or RR1/3. In total, 

these findings favor independent pleiotropic effects of the SNPs on heart rate and QT 

interval.

QRS prolongation due to bundle branch block can result in delayed myocardial 

repolarization and QT prolongation, hence our exclusion of individuals with prolonged QRS 

duration/bundle branch block (Supplementary Note). We examined QT interval SNPs in a 

published GWAS of QRS duration (N = 40,407), which reflects electrical impulse 

propagation in the cardiac ventricles14. Among the 68 QT-associated SNPs, 15 were 

significantly associated with QRS duration (p < 0.0007) at 8 loci (Supplementary Table 

10)7,14.Because QRS duration is a subinterval of QT interval on the ECG, it is perhaps not 

surprising that some QT-prolonging variants are also positively associated with QRS 

duration. However, the significant genetic effects show concordant (N = 6) as well as 
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discordant effects (N = 9).Across all SNPs there was no significant excess of concordant vs 

discordant effects (37 vs 31, binomial p = 0.27) or significant correlation of effect sizes (r2 = 

0.03, p = 0.18, Supplementary Table 10). Collectively, these findings suggest that while the 

fundamental electrophysiologic mechanisms underlying the SNP-QT relationships for some 

SNPs may be shared, many involve cell-type-specific effects and that a consistent general 

relationship between SNP effects on QT interval and QRS duration does not hold.

Examination of the NHGRI GWAS database (Supplementary Note) revealed additional 

associations of our QT associated SNPs (or their close proxies with r2 > 0.8) at SCN5A-

SCN10A with PR interval15, at MKL2 with age of menarche16 and at FEN1-FADS2 with 

high-density lipoprotein cholesterol, triglycerides17, n-3 fatty acids18, fasting plasma 

glucose and HOMA-B19 and alkaline phosphatase20 (Supplementary Table 11), which may 

point to novel repolarization mechanisms or simply reflect independent (pleiotropic) effects 

of the same genetic variation in different tissues.

Functional annotation of associated variants

Because common variants that code for changes in protein structure have an increased 

potential to be causal, we investigated the presence of coding variants among QT-associated 

loci using 1000 Genomes Project data (CEU).Among 68 total genome-wide significant 

SNPs at 35 loci, there were 5 loci in which the index or a highly correlated SNP was 

nonsynonymous.(Supplementary Table 8b).While most loci have multiple genes in 

associated intervals (Supplementary Figure 2), the genes that harbor genome-wide 

significant missense SNPs highly correlated with the top SNP are high-priority candidates to 

underlie the QT interval association at those loci.

Since non-coding variants may influence gene expression, we examined the index SNPs or 

proxies (r2 > 0.8) at the 68 SNPs at 35 loci in publicly available eQTL datasets from diverse 

tissues. Twelve QT interval loci are associated with variable expression of at least one gene 

in one or more tissues with high correlation (r2 > 0.8) between the top QT SNP and the top 

eQTL SNP (Supplementary Note, Table 1, Supplementary Table 12). QT-associated SNPs 

are associated with expression of the nearest gene at loci including ANKRD9, ATP1B1, 

CNOT1, FADS1, LIG3, and TCEA3. The eQTL data help point to specific genes at these loci 

as a potential source of the repolarization association signal, presumably through regulatory 

variation. However, some loci are associated with expression of multiple genes. We did not 

observe a significant signature of eQTLs among the QT loci that implicate a specific tissue 

or cell type in an atlas of human and mouse expression (P>0.01, Supplementary Note)21.

Because genetic variants that influence gene expression may do so in a cell-type specific 

manner, we examined the association of QT-associated SNPs with gene expression in a 

collection of 313 left ventricular biopsy samples in the MAGNet consortium. This collection 

included samples from the hearts of individuals transplanted for heart failure (n=177) or 

healthy hearts from potential donors (n=136) that were ultimately not used (Supplementary 

Note). We examined 63 of the 68 QT-associated SNPs that were well imputed from 

genome-wide genotyping in relation to cis-expression of all genes within 1Mb of each SNP.
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After adjusting for age, sex, study site and presence of heart failure, 9 SNPs at 8 loci were 

significantly associated with one of 9 transcripts (one SNP was associated with 2 

transcripts), correcting for multiple testing (P < 4.4 × 10-5 = 0.05/1,146 SNP-transcript 

associations, Supplementary Note, Table 2). After adjustment for the best eSNP, the QT 

SNP association became non-significant (all P ≥ 0.01) for 8 of the 9 SNP-transcript 

associations, consistent with a potentially causal effect for these 8 eQTLs. Inclusion of 

interaction terms for heart failure status did not alter the results (data not shown). In sum, 

these findings highlight several genes that are plausibly modulated by the QT SNP (or a 

correlated variant) and thus high priority targets for further experimental work.

Lastly, because genetic variation that influences gene expression may act through 

modulation of enhancers, we examined data available from the NIH Roadmap Epigenomics 

Program22. We specifically focused on transcriptional enhancer elements marked by 

combinations of histone modifications (specifically presence of H3K4me1 and absence of 

H3K4me3), as emerging evidence indicates that variants associated with complex traits 

preferentially reside in these non-coding regulatory regions and can affect gene 

expression23,24. We tested whether lead QT interval-associated SNPs or highly correlated 

variants (r2>0.8) overlapped enhancers in adult left ventricular tissue. Of 68 lead (or 

correlated) SNPs, 34 overlapped a left ventricular enhancer, a substantially greater 

proportion than randomly sampled sets of matched SNPs (z-score = 9.45, P ≪ 10-200 

Supplementary Note, Supplementary Figure 3). These findings highlight specific SNPs at 

QT-associated loci that can be prioritized for experimental follow-up (Supplementary Table 

13).

We also examined the association results for over-representation of specific pathways in QT 

loci compared to the genome as a whole using GO, KEGG, Panther, and Ingenuity gene set 

annotations (Supplementary Note). Three of the top 10 pathways in this analysis are 

specifically involved in calcium processes including: “regulation of the force of heart 

contraction” (P = 1×10-4), “cation transport” (5x10-4), “cellular calcium ion homeostasis” 

(1×10-3, Supplementary Note, Supplementary Table 14)25. These signals were confirmed by 

a secondary analysis, in which we matched the 68 QT-associated SNPs to randomly selected 

genome-wide SNPs to calculate statistical significance (Supplementary Note). Three GO 

terms involving “ion transport” were significantly enriched for QT associations (P < 

0.00044) as well as a gene set based on having a cardiac phenotype in knockout mice (P < 

0.00025, Supplementary Note).

Population variation in QT interval explained

The common variants at the 12 previously published common variant loci from the QTGEN 

and QTSCD consortia explained 3-6% of variation in QT interval, after accounting for 

effects of age, sex and heart rate3,4. The top SNPs at the additional novel loci increase the 

variance explained to 5.5-7.0%, while all 68 independent SNPs at the 35 loci explain 

7.6-9.9% of variance (Supplementary Tables 15 and 16). A recent heritability analysis found 

that 21% of overall variance (>50% of heritable variation) in QT interval is explained by 

common autosomal SNPs captured on contemporary genome-wide genotyping arrays10. 

Because the current study was focused on identifying bona fide associations of specific loci, 

Arking et al. Page 5

Nat Genet. Author manuscript; available in PMC 2015 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rather than explaining overall variance, we set a stringent p-value threshold for identifying 

individual SNPs. Larger studies are likely to continue to identify additional novel QT loci, 

as well as additional independent signals of association at the 35 loci described here.

LQTS proband mutation screening

Common variant loci found in the current and prior studies include 5 genes previously 

established to cause monogenic LQTS (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNJ2). 

Given the co-existence of common QT variants at loci with established rare coding 

mutations in LQTS disease genes, we hypothesized that some of the novel QT loci may 

likewise contain previously unrecognized Mendelian LQTS genes. We selected on the basis 

of statistical significance, proximity to the signal of association, absence of multiple nearby 

genes in the associated interval and known cardiac expression or involvement in ion flux, 6 

genes (ATP2A2, CAV1, CAV2, SLC8A1, SRL, and TRPM7) from 5 novel loci for coding 

mutation screening. We studied 298 unrelated individuals with clinically diagnosed LQTS 

on the basis of the Schwartz score, but genotype negative for the canonical LQTS1-3 

causative genes, for rare exonic or splice site sequence variants in these 6 genes 

(Supplementary Note, Supplementary Table 17). We identified 13 amino acid-altering 

variants present in cases but not in ≥ 300 controls of the same continental ancestry (Table 3). 

Of these, 11 were not observed in ∼6,800 individuals whole-exome sequenced by the 

Exome Sequencing Project (ESP), or included on the Exome Chip array; several are 

predicted to be disruptive to protein function (Supplementary Note, Table 3).

Of the 13 amino-acid altering variants, two mutations in ATP2A2 (p.Ile276fsX281) and 

TRPM7 (p.Ile19fsX59) result in frame shifts and premature truncation of the corresponding 

protein product. The ATP2A2 mutation was detected in a 6-year old girl with LQTS on the 

basis of a QTc of 492 msec without symptoms. The proband's mother carried the mutant 

allele and had borderline QTc prolongation and T wave abnormalities; the proband's father 

lacked the mutation and had a normal QTc. The TRPM7 mutation was detected in a 14-year 

old girl with LQTS on the basis of a QTc of 500 msec without symptoms. The mutation was 

found in the proband's mother and brother, both of whom had a normal QTc, and was absent 

in the proband's father who had a normal QTc. Whether or not these two loss-of-function 

alleles contribute to LQTS pathogenesis in these individuals cannot be determined from 

these observations alone.

Protein-protein interaction networks

We next sought evidence that proteins encoded by genes at common variant loci interact 

physically with known myocardial repolarization proteins. We have constructed a protein-

protein interaction network from the InWeb database (Supplementary Note)26. Using the 

DAPPLE algorithm27 we seeded the network with the first 12 known Mendelian LQTS 

genes and seven loci harboring previously-identified common QT variants (but not known 

Mendelian genes)3,4. Consistent with the known relationships among several of the 

Mendelian genes, significant interconnectivity was observed (P = 0.0006 for direct 

connections, P = 0.008 for indirect connections, Supplementary Note). We thus identified 

606 proteins interacting directly with the seed proteins and investigated whether these 
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protein-protein interactions could help identify candidate genes within any of the 22 novel 

loci identified in the current study. We found 8 interactors from 7 novel loci (ATP2A2, 

CAV1, CAV2, PRKCA, SLC8A1, ATXN1, ETF1, SGOL2), representing significant 

enrichment compared to the null expectation (hypergeometric P = 0.03, Supplementary 

Note, Supplementary Table 18). We hypothesized that the other proteins interacting directly 

with the seed network may nonetheless be enriched for association, even if not genome-wide 

significant. We assigned association scores to all interacting proteins (except those in the 35 

loci already identified) and tested for enrichment of association in those genes compared to 

all genes in the genome from non-associated regions. We found that interacting proteins 

were more associated than chance expectation (rank-sum P = 0.00012), suggesting that they 

include true associations yet to be discovered (Supplementary Figure 4, Supplementary 

Note). The protein interaction network analysis suggests that interactors of Mendelian LQTS 

genes are functionally involved in QT interval duration.

This conclusion is further supported by in vivo data presented in an accompanying paper by 

Lundby et al. (in press, Nature Methods). We immunoprecipitated proteins encoded by the 

Mendelian LQTS genes, KCNQ1, KCNH2, CACNA1C, CAV3 and SNTA1 from murine 

cardiac tissue and identified proteins they interact with by high performance orbitrap tandem 

mass spectrometry. We found proteins encoded by 12 genes from 10 loci identified by our 

GWAS that physically interact with proteins encoded by the 5 Mendelian LQTS genes, a 

significant enrichment compared to random expectation (P = 1×10-6 using permutation), 

including ATP2A2 (SERCA2a), SRL (sarcalumenin), which regulates SERCA2a in 

cardiomyocytes28-30, CAV1 (caveolin 1), PLN (phospholamban), which also regulates 

SERCA2a, and ATP1B1 (Table 1). Molecular interactions of proteins encoded by genes at 

QT-associated loci with known mediators of the currents underlying myocardial 

repolarization strongly implicates these genes, and not others in the relevant associated 

intervals, as the causal genes underlying the QT interval association.

Discussion

Altogether, our integrated analysis of genomic, transcriptomic and proteomic data highlight 

calcium signaling as playing an important role in myocardial repolarization, the cellular 

process that underlies the QT interval, derangement of which is arrhythmogenic (see 

detailed description of genes at several loci in Supplementary Note).

Electrical activation and relaxation of the ventricular myocyte on average once per second 

requires the interplay of multiple coordinated ion channel fluxes. Cellular depolarization 

begins with Na+ influx and is sustained by Ca2+ influx, which triggers Ca2+ release from the 

sarcoplasmic reticulum leading to myocardial contraction (Supplementary Figure 5). 

Prolonged inward (depolarizing) Ca2+ current during the plateau phase of the cardiac action 

potential leads to delays in ventricular myocyte repolarization, a subsequent prolonged QT 

interval on electrocardiogram, and a highly arrhythmogenic and potentially lethal substrate. 

In fact, gain-of-function mutations in the L-type Ca2+ channel lead to the highly 

arrhythmogenic Timothy syndrome (LQT8) that is associated with extremely prolonged QT 

intervals31.
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Normal myocyte repolarization results from efflux of potassium and less so Ca2+; Ca2+ is 

actively taken up by the sarcoplasmic reticulum to halt myocardial contraction. The Na+ that 

enters the myocyte is counterbalanced by an active Na+/K+ ATPase (a beta subunit of which 

is encoded by ATP1B1, at a common variant QT locus). The Ca2+ that enters the myocyte is 

counterbalanced by a Na+/Ca2+ exchanger (NCX1, encoded by SLC8A1) to ensure net even 

cation balance, at the expense of a net depolarizing effect (potentially prolonging 

repolarization). Disruption of this delicate cation balance, and in particular Ca2+ 

homeostasis, can have a profound impact on action potential duration, formation of early 

afterdepolarizations (EADs), and triggered activity, leading to potentially lethal arrhythmias 

including torsade de pointes and ventricular fibrillation. In fact, administration of an 

inhibitor of the Na+/Ca2+ exchanger is associated with reduced arrhythmia and shortened 

action potential duration in models of LQTS32 and heart failure33 and its over-expression 

delays myocardial repolarization and leads to ventricular arrhythmias34.

ATP2A2 encodes the SERCA2a cardiac sarcoplasmic reticulum calcium pump and by 

alternative splicing a ubiquitously expressed SERCA2b calcium pump (Supplementary 

Figure 5). The protein is negatively regulated by phospholamban (PLN), also a QT-interval 

associated locus3,4,6. In turn, PLN is negatively regulated by PRKCA, a gene in a newly 

discovered QT-interval associated locus35. SERCA2a is responsible for Ca2+ sequestration 

by the cardiac sarcoplasmic reticulum and its dysregulation is implicated in heart failure due 

to the centrality of calcium cycling to excitation-contraction coupling. Dominant SERCA2 

mutations are a cause of keratosis follicularis Darier-White disease (OMIM #124200)36. No 

study that we are aware of has described electrocardiographic or other cardiac changes in 

affected humans but detailed investigation of heterozygous Serca2 (+/-) mice show a 

reduction in Serca2 protein by about a third with deficits in myocardial relaxation and 

contractility, and a reduced Ca2+ transient by haploinsufficiency37 as well as upregulation of 

transient receptor potential canonical 1 (TRPC1) channel38. Moreover, overexpression of 

SERCA2a in a rat model of heart failure demonstrated a substantial reduction in 

arrhythmias39.

TRPM7 encodes the widely expressed transient receptor channel melastatin 7 protein, a 6 

transmembrane molecule which is Mg2+ and Ca2+ permeable and has protein kinase 

function40,41. The touchtone/nutria zebrafish TRPM7 mutant demonstrates defective 

skeletogenesis, kidney stones42 and abnormal melanophores43. Trpm7 (-/-) deletion in mice 

is embryonic lethal; targeted deletion disrupts normal thymogenesis40. Targeted cardiac 

deletion in cultured embryonic ventricular myocytes leads to down-regulation of several 

genes involved in calcium cycling, including SERCA2a44. In migrating human embryonic 

lung fibroblasts, TRPM7 mediates transduction of mechanical stretch into calcium influx 

underlying calcium flickers (focally high intracellular calcium microdomains), involved in 

steering cell migration45. In human atrial fibroblasts, atrial fibrillation is associated with 

increased TRPM7-mediated Ca2+ influx while TRPM7 knockdown results in loss of 

spontaneous Ca2+ influx46. More recently, targeted Trpm7 deletion in mice has been shown 

to result in lethal cardiomyopathy in early cardiogenesis; cardiomyopathy, delayed 

repolarization and heart block in mid cardiogenesis; and no recognizable phenotype in late 

cardiogenesis47. In total, this prior work raises the possibility that TRPM7 in humans leads 
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to altered myocardial repolarization through developmental differences or through ongoing 

functional effects in adulthood, potentially involving calcium signaling.

Potassium flux has long been recognized through rare mutations underlying LQTS as a 

critical effector of myocardial repolarization. Ca2+ has been recognized as a central mediator 

in excitation-contraction coupling. However, our studies of common and rare genetic 

variation now place Ca2+ as a central modulator of repolarization given the role of the 

proteins encoded by the Mendelian Timothy syndrome gene (LQT8) CACNA1C, as well as 

the following genes at common variant QT interval loci: ATP2A2, PLN, PRKCA and SRL 

and SLC8A1. How the Mg2+/Ca2+ channel TRPM7 might contribute to repolarization is 

unclear but its involvement in Ca2+ flickers45 suggests a potential role in localized Ca2+ 

fluxes or indirect effects on Ca2+-sensitive potassium channels or the Na+/Ca2+ exchanger.

Much work will be needed to understand the normal physiologic contribution to 

repolarization of these Ca2+-regulating proteins, as well as the pathophysiologic 

consequences arising from their derangements. While anti-arrhythmic agents targeting the 

IKr (LQT2/KCNH2) channel have a relatively limited contribution to clinical management of 

some arrhythmias due to their propensity to cause other arrhythmias, targeting the newly 

identified proteins that contribute to myocardial repolarization could potentially treat some 

arrhythmias without pro-arrhythmia. Conversely, existing therapies that inadvertently target 

some of the newly discovered proteins could in fact contribute to arrhythmogenesis.

We have identified 22 novel QT interval loci, bringing to a total 35 common variant loci. 

We have used diverse approaches to highlight specific genes at these loci likely to mediate 

the repolarization effects. While we cannot say with certainty which gene underlies the QT 

trait at every locus, these complementary experiments represent a quantum leap in our 

understanding of this critical electrophysiologic process. The elucidation of fundamental 

mechanisms of arrhythmogenesis promises to expose new approaches to predict and prevent 

death from lethal ventricular arrhythmias in the general population.

Online Methods

Study cohorts

Cohorts for QT interval association analyses included individuals largely with population- or 

community-based ascertainment and a few with case-control sampling for traits not strongly 

associated with QT interval. Mandatory exclusions included presence of atrial fibrillation or 

a trial flutter, and presence of QRS duration > 120 msec or presence of right or left bundle 

branch block. Optional exclusions included use of QT-altering medications, presence of a 

pacemaker or implantable cardioverter defibrillator, or pregnancy. All studies were reviewed 

by local ethics committees and all participants provided informed consent.

Genotyping, imputation, quality control

GWAS studies used a variety of genome-wide genotyping arrays. All studies used hidden 

Markov model approaches to impute genotypes at unmeasured HapMap SNPs so that a 

common set of 2.5M SNPs were available across all discovery samples. Monomorphic SNPs 

and SNPs with beta estimates larger than 100,000 were removed from all results. Cohort-
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specific SNP filters on minimum minor allele frequency, imputation quality metric, call rate 

and Hardy-Weinberg equilibrium p-value were selected to minimize any test statistic 

distortion of the quantile-quantile plot or genomic inflation factor (λ). Replication 

genotyping was performed using a variety of arrays.

Association analyses, meta-analysis

Genomic control was applied to genome-wide results from each cohort prior to meta-

analysis. Meta-analyses were performed in parallel at two analytic sites using MANTEL3 or 

METAL48 using inverse variance weighted, fixed effects meta-analysis. Genome-wide 

significance was set at P < 5×10-8, a threshold accounting for the effective number of 

independent common variant tests in the genome of European-derived populations.49

Expression in cardiac samples

Samples of cardiac tissue were acquired from patients in the Myocardial Applied Genomics 

Network. Left ventricular free-wall tissue was harvested at the time of cardiac surgery from 

subjects with heart failure undergoing transplantation or from unused donor hearts. DNA 

samples were genotyped using the Affymetrix 6.0 genome-wide array and RNA expression 

measured using the Affymetrix Genechip ST1.2 array. Imputation to SNP genotypes in 1000 

Genomes was performed. Analyses were restricted to samples with genetically inferred 

European ancestry. SNP genotype was tested for association with log2 transformed 

expression level, after adjustment for age, sex, study site, disease status and batch. 

Association of each QT-associated SNP with all transcripts within 1Mb of the SNP was 

examined for 63 QT-associated SNPs (5 SNPs were not available due to poor imputation). 

SNP-transcript associations meeting experiment-wide significance (P < 4.4×10-5 = 

0.05/1,146 tests) were examined after additional adjustment for the best cis eSNP for the 

transcript in question. We inferred that the SNP-transcript association could explain the 

SNP-QT association when the SNP-QT association was substantially attenuated after 

additional adjustment for the best cis eSNP.

Cardiac enhancer analyses

Enhancer annotations were generated by integrating combinations of histone modifications 

obtained from the Roadmap Epigenomics project using ChromHMM23,50. We identified 

SNPs in LD (r2> 0.8) with each of the 68 QT interval-associated loci using genotype data 

from the 1000 Genomes Project (CEU population) and computed overlap with 

ChromHMM-annotated enhancer elements in the left ventricle tissue sample (BC Left 

Ventricle N41) in the NIH Roadmap Epigenomics Program22 using the intersect BED 

command in BED Tools (v2.12.0). To assess significance of the overlap, we compared the 

set of SNPs at 68 QT interval-associated loci against 100,000 sets of randomly sampled 

control SNPs. Control SNPs were chosen from the Affymetrix 660W genotyping array and 

were matched for size of the LD block (+/- 5 SNPs), MAF of the lead SNP (+/- 0.1) and 

distance to the nearest gene (+/- 25 kb if outside a gene).
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LQTS mutation analysis

A cohort of 298 unrelated, LQT1-3 mutation negative patients with LQTS [191 females 

(64%), average age= 27 ± 20 years, average QTc = 529 ± 58 ms], who satisfied the case 

inclusion criteria of QTc ≥ 480 msec (n= 261, 86%) or Schwartz score51 ≥3.0 (n=298, 

100%), was derived from 7 international congenital LQTS recruitment centers [l'Institut du 

Thorax, Nantes, France (n=91), Mayo Clinic, Rochester, Minnesota, United States (n=72), 

University of Pavia, Pavia, Italy (n=38), Academic Medical Centre, Amsterdam, 

Netherlands (n=30), The Hospital for Sick Children, Toronto, Ontario, Canada (n=24), 

Munich Medical International GmbH, München, Germany (n=23), and St. George's 

Hospital, London, England (n=20)]. Of the 265 patients with a documented clinical history, 

175 (66%) were symptomatic with ≥ 1 LQTS-related cardiac event (i.e. syncope or cardiac 

arrest). Six genes (ATP2A2, CAV1, CAV2, SLC8A1, SRL, TRPM7), derived from 5 genome-

wide significant novel loci, were selected for comprehensive open-reading frame/splice-site 

mutation analysis. These 6 candidate genes were chosen based on nominal statistical 

significance, proximity to the signal of association, absence of multiple nearby genes in the 

associated interval, and known cardiac expression or involvement in ion channel 

macromolecular complexes. For each gene, mutational analysis was performed using either 

direct Sanger-based DNA sequencing of all patient samples or using an intermediate 

mutation detection platform (i.e. denaturing high performance liquid chromatography 

[DHPLC]) followed by direct DNA sequencing of only samples showing an aberrant 

DHPLC elution profile.

Protein-protein interaction in silico analyses

We used a public database of protein-protein interactions26. This database contains 428,430 

interactions, 169,810 of which are high-confidence interactions across 12,793 proteins. All 

human interactions were pooled and interactions in orthologous protein pairs passing a strict 

threshold for orthology were included. Each interaction was assigned a probabilistic score 

based on the neighborhood of the interaction, the scale of the experiment in which the 

interaction was reported and the number of different publications in which the interaction 

had been sited. We used a published algorithm called DAPPLE (Disease Association 

Protein-Protein Link Evaluator) to build and analyze a network of seed genes27. We seeded 

the network with 12 known Mendelian LQTS proteins (KCNQ1, KCNH2, SCN5A, KCNE1, 

KCNE2, CAV3, SNTA1, KCNJ2, CACNA1C, ANK2, AKAP9, SCN4B) as well as genes 

from 7 previously associated common variant QT loci3,4. We considered direct connections 

among the seed proteins as well as indirect connections through other proteins, filtering on 

connections between proteins from different loci. DAPPLE evaluates the significance of the 

network and individual proteins within it by comparing it to 10,000 random, matched 

networks that are generated using a within-degree node-label permutation27. We considered 

the ability of protein-protein interactions to identify proteins newly associated in the QT-

IGC meta-analysis. We translated the novel loci into genes, identifying 124 genes in total, 

85 of which were in the In Web database.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genome-wide association results for GWAS meta, annotated with gene names. Shown are 

association results from meta-analysis of QT interval GWAS in 76,198 individuals of 

European ancestry across 22 autosomes. Loci meeting P < 5×10-8 upon meta-analysis with 

replication data are annotated for novel (large font) and previously reported (small font) loci. 

Nearest genes are used for annotation but the causal gene at any given locus is unknown.
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