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A B S T R A C T

Epidemiological models of the spread of pathogens in livestock populations primarily focus on direct contact
between farms based on animal movement data, and in some cases, local spatial spread based on proximity
between premises. The roles of other types of indirect contact among farms is rarely accounted for. In addition,
data on animal movements is seldom available in the United States. However, the spread of porcine epidemic
diarrhea virus (PEDv) in U.S. swine represents one of the best documented emergences of a highly infectious
pathogen in the U.S. livestock industry, providing an opportunity to parameterize models of pathogen spread via
direct and indirect transmission mechanisms in swine. Using observed data on pig movements during the initial
phase of the PEDv epidemic, we developed a network-based and spatially explicit epidemiological model that
simulates the spread of PEDv via both indirect and direct movement-related contact in order to answer un-
resolved questions concerning factors facilitating between-farm transmission. By modifying the likelihood of
each transmission mechanism and fitting this model to observed epidemiological dynamics, our results suggest
that between-farm transmission was primarily driven by direct mechanisms related to animal movement and
indirect mechanisms related to local spatial spread based on geographic proximity. However, other forms of
indirect transmission among farms, including contact via contaminated vehicles and feed, were responsible for
high consequence transmission events resulting in the introduction of the virus into new geographic areas. This
research is among the first reports of farm-level animal movements in the U.S. swine industry and, to our
knowledge, represents the first epidemiological model of commercial U.S. swine using actual data on farm-level
animal movement.

1. Introduction

Mathematical and computational modeling of infectious diseases is
a common approach to simulating the spread of disease in a population,
exploring key epidemiological parameters that drive transmission, and
evaluating alternative control strategies (Brooks-Pollock et al., 2015;
Craft, 2015; VanderWaal et al., 2017). In livestock populations, net-
work-based models based on data on animal movements between farms
have been a key area of research (Bajardi et al., 2012; Craft, 2015;
Green et al., 2006; Kao, 2002; Kao et al., 2007; Rossi et al., 2015).
However, animal movement data is rarely available for livestock in-
dustries in the United States due to the lack of a comprehensive national
livestock traceability program. This limits capabilities to predict the
dynamics of infectious diseases at the landscape, regional, and national
levels and hinders development of risk-based surveillance and control
measures based on movement data. Animal movement data may be
particularly important for the swine industry, where production is
highly vertically integrated in that pigs are moved between multiple

premises between birth and slaughter, with each premise potentially
located in different states (Valdes-Donoso et al., 2017). Such frequent
and long distance movement makes the U.S. swine industry vulnerable
to infectious disease epidemics.

In addition to direct contact among farms via animal movements,
indirect contact may occur between farms due to windborne propaga-
tion of aerosols and dissemination of fomites by personnel, con-
taminated vehicles, and feed (Alonso et al., 2014; Alvarez et al., 2016;
Beam et al., 2015; Dee et al., 2014; Kim et al., 2017; Lowe et al., 2014;
O'Dea et al., 2015; Pasick et al., 2014). Although the potential im-
portance of such mechanisms in creating transmission opportunities
between swine premises has been shown in experimental studies and
outbreak investigations (Alonso et al., 2014; Bowman et al., 2015; Lowe
et al., 2014; Pasick et al., 2014), indirect contact is less often accounted
for in epidemiological models (Arruda et al., 2016; Martinez-Lopez
et al., 2011; Thakur et al., 2015; Yadav et al., 2016). Models of pa-
thogen spread in livestock populations focus primarily on animal
movement and, in some cases, local spatial spread based on proximity
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between premises (Brooks-Pollock et al., 2015). Attempts to account for
indirect contact are hindered due to lack of data on which farms are
connected via indirect contact. However, the structured nature of U.S.
swine companies provides an ideal opportunity to infer patterns of in-
direct contact among farms and explore the joint impact of direct and
indirect transmission on the spread of pathogens.

In May 2013, a new pathogen emerged and rapidly spread in the
United States swine industry, resulting in major production impacts due
to a mortality rate in neo-natal piglets of up to 100% (Saif et al., 2012).
The disease was caused by porcine epidemic diarrhea virus (PEDv), an
RNA coronavirus in the family Alphacoronaviridae that previously was
circulating in Asia (Huang et al., 2013; Stevenson et al., 2013). As the
name suggests, clinical signs of PEDv include watery diarrhea and vo-
miting. By the end of June 2014, PEDv had spread to 30 states and
impacted approximately 50% of breeding herds (Goede and Morrison,
2016). PEDv may have resulted in the deaths of at least 7 million pig-
lets, and it may take up to 12 weeks for infected sow farms, where
breeding and farrowing occur, to recover their pre-infection piglet
production levels (Goede and Morrison, 2016). Furthermore, surviving
piglets exhibit poor growth during the growing period (Alvarez et al.,
2015).

Despite the rapid between-farm spread of PEDv within the U.S.
swine industry, there are a number of competing hypotheses concerning
the main mechanisms of between-farm transmission, with no clear re-
solution on the relative importance of each of these mechanisms. For
example, while contaminated feed may have contributed to the rapid
emergence of PEDv (Dee et al., 2014; Pasick et al., 2014), there is also
substantial evidence that movement of infectious pigs contributes to
spread within a single flow of animals (i.e., movement of pigs from
farrowing/sow farms to nurseries, and subsequently to finishing farms
where fattening occurs) (Bowman et al., 2015). On a larger spatial
scale, states between which there were high rates of pig movement
exhibited more synchronous PEDv epidemics in terms of weekly case
incidence, suggesting that pig movements created epidemiological lin-
kages among states (O'Dea et al., 2015).

Unrelated to animal movements, there is evidence that local spatial
spread between farms also occurs as infected farms are more clustered
geographically than expected by chance (Alvarez et al., 2016). PEDv
virus can also be recovered from air samples collected up to 16 km from
infected farms (Alonso et al., 2014). Taken together, these studies
suggest that windborne aerosols could contribute to between-farm
transmission, especially at distances less than 4.8 km (Alonso et al.,
2014; Alvarez et al., 2016). In addition, fomites may also contribute to
between-farm spread. For example, market trucks that move pigs to
slaughter facilities may function as mechanical vectors for fomites if
they become contaminated at the slaughter facility and subsequently
transmit the disease to naïve farms (Lowe et al., 2014).

The spread of PEDv in U.S. swine represents one of the best docu-
mented emergences of a highly infectious pathogen in the United States
livestock industry, providing a unique opportunity to parameterize
models of pathogen spread in U.S. swine. The objective of this research
is to apply epidemiological modeling approaches to simulate the spread
of PEDv at the regional scale in order to answer unresolved questions
concerning factors facilitating between-farm transmission. Using real-
world data on observed pig movements during the initial phase of the
PEDv epidemic, we develop a network-based and spatially explicit
epidemiological model that simulates the spread of PEDv via both in-
direct and direct movement-related contact. By fitting this model to the
observed epidemiological dynamics in a geographically isolated pro-
duction company of nearly 400 farms, we (i) evaluate the relative
contribution of each of six direct and indirect mechanisms of between-
farm transmission, and (ii) determine the most likely transmission
mechanisms responsible for long-distance jumps, and (iii) discuss how
these methods can be used to help producers mitigate future outbreaks.
This research is among the first reports of farm-level animal movements
in the U.S. swine industry (Lee et al., 2017; Valdes-Donoso et al., 2017)

and, to our knowledge, represents the first epidemiological model of
commercial U.S. swine using actual data on farm-level animal move-
ment.

2. Materials and methods

2.1. Data source

Data on farm attributes, management, and between-farm pig
movements were available for a single production company, or
“system,” located in the Great Plains states of the west-central United
States (Fig. 1). Swine production systems in the U.S. are “vertically
integrated” in that different stages of production (from birth of piglets
through slaughter) occur at different premises specializing in that
particular stage. Primary production types included sow farms (housing
sows during gestation and farrowing [birthing] periods and pre-
weaning piglets), nursery farms (housing weaned piglets for approxi-
mately six to eight weeks), and finishers (where pigs are moved after
the nursery period to fatten them for slaughter). Replacement gilts
(young females) are usually brought into sow farms from gilt devel-
opment units (GDUs), which are located either on the sow farm or at a
separate farm. High biosecurity production types involved in main-
tenance of genetic stock included boar studs (premises housing boars
used as studs for artificial insemination) and AI/Isolation units. A
summary of farms in the study by production type is provided in Sup-
plementary Table S1. Farm attribute data included the geographic lo-
cation as UTM (Universal Transverse Mercator) coordinates, herd size,
and production type for each of 376 company-managed farms.

Farm management data were available for each farm regarding the
feed mill from which feed was sourced and the organizational “flow” to
which the farm belonged. Flows were defined as groups of farms that
were managed as a unit and shared support services, personnel, and
truck washes. This production system was geographically isolated from
other swine farms; however, the locations of 84 neighboring swine
farms from seven neighboring systems were also available, as these
farms may play a role in local disease transmission.

The first PEDv case in this system occurred on May 9, 2013 in a sow
farm. Therefore, pig movement data spanned a timeframe from May 4,
2013 to October 1, 2013, as it was assumed that the farm may have
been infectious prior to detection of clinical signs. Movement data in-
cluded the date of each movement, total number of animals of moved,
and the premise ID of the source and destination farms. During this five-

Fig. 1. Map of farm locations (colored nodes) and between-farm pig move-
ments (gray lines) occurring between May through September 2013.
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month period, 10,709 between-farm shipments occurred with a mean of
339.7 pigs per load (range: 1–1378 pigs) and totaling 3.6 million pigs.
Sow farm to nursery movements accounted for 47% of movements,
followed by nursery to finisher movements (34%) and finisher to sow
farms (10.5%, see Supplementary Table S2 for a full assortativity table
by production type). Distance of movements ranged from<1 to
644 km, with median distances of 15, 40, 22 km for movements origi-
nating from sow farms, nurseries, and finishers, respectively (see
Supplementary Table S3 for full summary). 83% of movements were
within flow, and 17% of movements were between flows. Movements
from nurseries were the most common between-flow movement, ac-
counting for 38% of all nursery movements. Movements to slaughter
were not included. Movements did not occur with farms not part of the
production system, and no movement data were available for neigh-
boring farms.

Data on PEDv status in all company-managed sow farms was
available on a weekly basis via the Morrison Swine Health Monitoring
Project (MSHMP). PEDv status was not documented for non-sow farms.
Uninfected farms were classified as PEDv negative. A sow farm was
considered “positive-unstable” when clinical signs consistent with PEDv
were observed. Status was confirmed by PCR. Weaned piglets moved
from the farm during this period would likely be infected. Infected
farms were considered to have reached stability (classed as “positive-
stable”) when clinical signs were absent for> 21 days, and at least 30
litters were PCR negative.

We defined two geographic areas (Fig. 1) that were geographically
removed from the area in which the index case occurred: Region I was
450 km from the index case area and the earliest infection in this area in
the observed epidemic was day 22. Region II was 260 km from Region I
and even farther removed from the index area. Region II was not in-
fected during the observed epidemic. There was virtually no swine
production, either by this production system or by others, in the in-
termediate areas between these regions.

2.2. Model description

2.2.1. Overview
We developed a stochastic between-farm transmission model that

mechanistically simulated six types of transmission between farms,
including one direct mechanism (animal movement) and five indirect
mechanism. Mechanisms included: movement of infected animals (1),
local spatial spread (2), contaminated feed (3), and fomites that could
spread among farms receiving feed from the same mill via feed trucks
(4), among finishing farms via movement of market trucks to and from
slaughter facilities (5), and/or among farms in the same flow via shared
support services (6). Shared support services include things like per-
sonnel, vehicles, truck washes, etc., but these are not independently
account for. Because 80% of sows may be clinical within a two to three
days post-introduction of PEDv onto a farm (Bowman et al., 2015), we
considered the farm to be the epidemiological unit. The model followed
a compartmental framework, where farms were classified as Suscep-
tible, Latent (exposed but not yet infectious), or Infectious (positive-
unstable; presence of clinical animals). The model operated on a daily
time step for five months, beginning with the first observed case of
PEDv in this system.

When a farm was infected by any of the transmission mechanisms
(see sub-sections below for details), the transmission mechanism was
recorded and the farm is classified as Latent. Movements from latent
farms were considered potentially infectious, but it was assumed that
farms in the latent period did not contribute to other modes of trans-
mission (fomites or local spatial spread) due to low shedding. Indeed,
the latent period from exposure to shedding for an individual animal
ranges from 24 to 72 h (Crawford et al., 2015; Madson et al., 2014;
Song et al., 2006). The latent period at the farm level prior to detection
of clinical disease has been estimated through field investigations to be
between 2 and five days, after which up to 80% of sows may be clinical

affected (Bowman et al., 2015; CAHFS, 2013; Saif et al., 2012). Thus,
the number of days each farm remained in the latent period was drawn
from a PERT distribution with a minimum of 1, mode of 2, and max-
imum of 5 days, after which a farm becomes infectious (Bowman et al.,
2015; CAHFS, 2013; Saif et al., 2012).

Based on analysis of field data on the length of time required for a
farm to no longer produce PEDv positive piglets, the infectious period
length was drawn from a PERT distribution with a minimum of 7
weeks, mode of 23 weeks, and maximum of 64 weeks (Goede and
Morrison, 2016). After the infectious period, sow farms are classified as
positive-stable. Infection in sow farms was generally managed through
intentional exposure of gilts to increase immunity levels, thus although
virus was present, large outbreaks with high levels of shedding did not
occur and weaned piglets moved from these farms were negative. Po-
sitive-stable sow farms thus are no longer infectious to others, and due
to ongoing disease management within the farm, they are not con-
sidered susceptible for the purposes of the model. Unlike sow farms,
nurseries and finishers generally utilized all-in-all-out management,
meaning that these farms were completely emptied of live animals
before new animals were introduced. Thus, after the infectious period,
non-sow farms were moved to the susceptible class.

2.2.1.1. Direct transmission via animal movements. For each daily time
step t, all movements involving latent and infected farms at time t were
extracted from the movement database. The probability that no infected
animals are moved from infected farm i to susceptible farm j is

− μ(1 )bij, where μ is the probability that an animal is infected (based
on the within-farm prevalence) and bij is the batch size (the total
number of animals moved between farm i and j). Thus, the probability
that farm j becomes infected in time t given that it receives movements
from i farms is given by:

∏= − −P farm becomes infected μ( ) 1 (1 )j
i

b
1

ij

Movement of weaned pigs from infected sow farms may be reduced
as a result of high neonatal mortality rates. An assessment of the ob-
served movement data from PED-positive farms revealed that although
the number of pigs per shipment did not change as a result of PED
infection in a sow farm, the number of shipments leaving an infected
sow farm was reduced by 70% during the first five weeks post-infection,
and by 15% during weeks six through ten post-infection. After ten
weeks, movements returned to their pre-infection frequency. Thus, in
the model, 70% and 15% of shipments from sow farms were randomly
excluded for 0–5 weeks and 6–10 weeks post-infection, respectively.
This was done because sow farms that were uninfected in the observed
data could be infected in the model, and not accounting for their change
in movement frequency could result in overestimation of spread via
animal movements.

2.2.1.2. Indirect transmission via local spread. Local spread accounts for
localized processes that could contribute to transmission, but unlike
movements, are not directly measured. Inherent to local spread is the
assumption that transmission between farms is more likely between
farms that are geographically closer. Mechanisms include windborne
dissemination of virus aerosols, contaminated sewage or water, and
movement of vehicles/personnel. Local spread is captured via a spatial
transmission kernel (Supplementary Methods S1)(Keeling et al., 2004;
Szmaragd et al., 2009), where the probability of transmission decreases
as two farms become farther apart:

∏= − ⎛
⎝

− ⎞
⎠

−P farm becomes infected ϕ α
π

d( ) 1 1j
i

ij
α

1

Where farm j is an uninfected farm and dij is the distance between farm j
and every infected farm i within 50 km. Distances of> 50 km were not
considered as local spread over long distances is unlikely. −ϕ dα

π ij
α

K. VanderWaal et al. Epidemics 24 (2018) 67–75

69



represents the probability of transmission between farm i and j given
distance apart in kilometers, and thus 1- −ϕ dα

π ij
α is the probability that

transmission will not occur between those two farms. ϕ and α control
the shape of the transmission kernel, with ϕ representing the basal
transmission coefficient (at dij=0), α controlling the steepness with
which probabilities decline with distance. The power-law shape of the
transmission kernel and rate at which transmission declined with
increasing distance (α=0.312) were based on an analysis of the
recovery of PEDv in air samples at various distances from infected
farms (Supplementary Methods S1, Fig. S1-1) (Alonso et al., 2014). It
should be noted that Alonso et al. (2014) was conducted in the same
company and during the same time period as the modeled study period,
making their data highly relevant for inferring airborne dissemination
of virus in this system. Although PEDv recovered from air samples
collected from the field were not infectious in bioassays (Alonso et al.,
2014), the sample size and sampling duration (30min) may have been
insufficient to capture a low probability event (i.e., recovery of
infectious virus in air). Samples were also collected during the day,
when UV radiation and temperature would be expected to reduce
survival. However, infectiousness of airborne PEDv has been shown
experimentally (Alonso et al., 2014) and the possibility of this
mechanism has been supported in epidemiological investigations
(Alvarez et al., 2016; Beam et al., 2015). Thus, we believe that it is a
reasonable assumption that the likelihood of infectious virus to be
found in air would be proportional to the total concentration of virus
(inactivated or otherwise) found in the air samples.

Alvarez et al. (Alvarez et al., 2016) demonstrated that the risk of
spread at short distances (1–2 km) was three to twelve times higher
during the first week post-infection, most likely due to high morbidity
and shedding within the farm. Therefore, we included a parameter, ϕ7,
which acted as a multiplier on ϕ during the first seven days that a farm
was infected to account for potential rapid spread due to this initially
high shedding.

2.2.1.3. Indirect transmission via contaminated feed. Feed contamination
has been suggested to play a role in the dissemination of PEDv in North
America (Dee et al., 2014; Pasick et al., 2014). Here, we assumed that
infection due to contaminated feed would function as a point-source
outbreak; all farms that received feed from the same mill would be
likely to become infected near simultaneously. Thus, we identified
weeks during which a point-source outbreak appeared to be possible in
the group of sow farms receiving feed from each of the four mills
(Supplementary Methods S2, Fig. S2-1). We identified two time periods
in which sow farms associated with two separate mills experienced
temporal clustering of cases consistent with a potential point-source
outbreak in feed (Supplementary Methods S2-1). One occurred in Mill A
between May 14 and May 27, during which half of the 12 susceptible
sow farms that received feed from Mill A became infected, and the other
in Mill B between June 11 and June 24, during which over 80% of 17
susceptible sow farms receiving feed from Mill B became infected.

We modeled feed contamination as a two-step process. First, we
included a 0/1 parameter (FA and FB) in the model controlling whether
a contamination event occurred during the temporal clustering periods
in Mill A and B. Second, if an event occurred, the virus would likely not
be homogenously distributed in feed, hence all farms receiving feed
from those mills became infected with probability pcon.feed. In this way,
we captured the potential for feed contamination events to drive
sudden increases in the number of infected farms. However, such in-
creases could be explained by other mechanisms. We explore the ability
of alternate mechanisms to explain observed patterns during the pro-
cess of selecting the best-performing models described below.

2.2.1.4. Indirect transmission via feed trucks: fomite transmission among
farms receiving feed from the same mill via feed trucks. Regardless of
contaminated feed, all farms receiving feed from the same mill were
assumed to be in indirect contact, with potential risk for transmission

via fomites spread through the movement of feed trucks between farms.
However, the actual network of movement of trucks between farms was
not known. Thus, a farm’s risk of becoming infected via this mechanism
was assumed to be proportional to the number of farms infected within
its feed truck network. Thus, we defined the feed truck force-of-
infection as the per capita risk at which susceptible farms become
infected. For each feed truck network, this was represented as a daily
probability:

=P farm becomes infected β I
N

( )j f
k

k

Where βf is the transmission coefficient for feed truck related spread, Nk

and Ik are the total number and number of infected farms in the kth feed
truck network. Although it’s possible that trucks remain contaminated
even after farms recover, we made the simplifying assumption that
fomite contamination would be far higher when farms are actively
infected and would be negligible after farms are no longer infectious.
This also applies to other fomite-related transmission mechanisms.

2.2.1.5. Indirect transmission via market trucks: fomite transmission among
finishing farms via movement of trucks to and from slaughter
facilities. Finishing farms were assumed to be in indirect contact with
one another due to the movement of market trucks to and from
slaughter facilities (Lowe et al., 2014). We assumed that as more
finishing farms became infected, the amount of contamination at
slaughter facilities increases. This would subsequently lead to an
increased likelihood that a market truck returning from a slaughter
facility would be contaminated. Similar to feed trucks, a finishing
farm’s risk of becoming infected via this mechanism was based on the
force-of-infection amongst finishing farms. The daily probability of a
finishing farm becoming infected via market trucks was defined as:

=P farm becomes infected β
I
N

( )j m
fin

fin

Where βm is the transmission coefficient for market truck related
spread, Nfin and Ifin are the total number and number of infected
finishing farms. All finishing farms in this company utilized a single
slaughter facility owned by the company therefore were all indirectly
connected in our model.

2.2.1.6. Indirect transmission within-flows: fomite transmission via shared
support services. Farms that were managed together as a “flow” were
assumed to be in indirect contact due to sharing of support services.
Similar to feed and market trucks, a farm’s risk of becoming infected via
fomites from shared support services was based on the force-of-
infection within the flow. The daily probability of a farm becoming
infected via within-flow transmission was defined as:

=P farm becomesinfected β I
N

( )j c
c

c

Where βc is the transmission coefficient for within-flow spread, and Nc

and Ic are the total number and number of infected farms in each flow.

2.2.2. Model simulation and calibration
Because most of the parameter values controlling the likelihood of

each type of transmission are unknown, we conducted a multivariate
calibration exercise on uncertain parameters (μ, FA, FB, pcon.feed, ϕ, ϕ7,βf,
βm, βc) using Latin Hypercube Sampling (LHS) and random forest ana-
lyses (see Table 1 for definitions of symbols). This approach has often
been used for global sensitivity analyses in disease models and agent-
based models (Blower and Dowlatabadi, 1994; Legrand et al., 2008;
White et al., 2017; Wu et al., 2013). We generated 1000 parameter sets
through sampling a Latin Hypercube, which is expected to efficiently
cover the parameter space. Simulation results from an initial ex-
ploratory model calibration (e.m.c.) revealed that large portions of
parameter space yielded unrealistic models with very low fitness. Thus,
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calibration was repeated with a new Latin Hypercube generated from
parameter value ranges refined from the initial exploratory calibration
(see Table 1 for minimum and maximum values for each parameter).
The infection was always seeded in the farm that was the observed
index case for this system.

Model outputs included the day on which each farm became in-
fected and the mechanism by which they became infected. From this,
we compared the simulated to observed PEDv dynamics by a) calcu-
lating the Spearman’s rank correlation, ρ, in the order in which sow
farms became infected, and b) the percent deviation, Devt, in the day in
which sow farms became infected. For the latter, this was calculated as:

∑=
−

Dev
n

abs Time Inf Time inf
T

1 ( . . )
t

i

s i o i
1

, ,

Where Time.InfS,i and Time.Info,i represent the time point (in days) in
which sow farm i became infected in the simulated and observed da-
tasets, respectively. T represents the total number of days in which the
model ran (151 days), and n indicates the total number of sow farms.
We then calculated the “fitness” of each parameter set as ρ − Devt. A
higher fitness value indicates that a simulation produced dynamics that
were more similar to the observed dynamics, with high correlations in
the order in which sow farms were infected and low deviation in the
day they became infected. The average fitness was calculated for each
parameter set. Two hundred simulations were conducted per parameter
set, yielding 200,000 simulations. Two hundred was based on an as-
sessment of the number of simulations required to stabilize the coeffi-
cient of variation in fitness values (standard deviation/mean fitness).

2.2.3. Sensitivity analysis
We conducted a sensitivity analysis utilizing a random forest ap-

proach, a commonly used approach for global sensitivity analysis in
epidemiological and ecological models that is particularly useful when
the relationship between the outcome and parameters is non-linear
(Harper et al., 2011; Hultquist et al., 2014; Wang et al., 2016; White
et al., 2017). In this analysis, the outcome was the average fitness va-
lues from the simulation sets and parameter values were used as ex-
planatory variables (White et al., 2017). Random forest is an ensemble
machine learning method used for classification and regression which is
based on the consensus of hundreds of randomized decision trees built
using the explanatory variables (Criminisi et al., 2011). Unlike regres-
sion approaches, random forests can handle more complex data with
numerous interacting and multicollinear variables with non-linear ef-
fects on the outcome (Hultquist et al., 2014; Wang et al., 2016), making
them a highly suitable approach for understanding the marginal con-
tribution of variation in each parameter on the overall fitness after
controlling for the effects of all other parameters.

Briefly, the parameter sets were randomly divided into training
(75%) and testing (25%) datasets, as recommended by (Kuhn and

Johnson, 2013). The random forest was built using the training dataset
with 250 trees and the number of variables considered per split set to
three. In this analysis, a randomly selected 66% of observations were
used to build each tree, and the remaining 33% were considered “out-
of-bag” (OOB) and used to evaluate the importance of each predictor
variable in that tree. Variable importance was assessed by calculating
the percent increase in mean squared error (MSE) of predictions made
for OOB observations relative the MSE of predictions when the variable
is permuted. A greater increase would indicate that the variable is
important for predicting fitness because randomizing the predictor
variable results in greater prediction error (Breiman, 2001; Culter et al.,
2007). To assess the overall performance of the model, the overall
percent of variance in fitness explained by the random forest was cal-
culated. The trained random forest was used to predict fitness values for
the testing dataset, and the mean squared error was used to evaluate
model performance. Partial dependence plots were constructed to as-
sess the marginal effect of model parameters on model outputs after
accounting for the effects of all other parameters.

2.2.4. Best-performing models
We selected five parameter sets as the best-performing models.

Parameter sets were first ranked by their mean fitness in decreasing
order, and the two parameter sets with the highest fitness values were
included in the best-performing sets. In addition, from a visual assess-
ment of the relationship between rank and fitness (Supplementary Fig.
S1), there was a sudden drop in fitness values for models that ranked
below 30. Given that there were potentially multiple combinations of
parameters that produced high fitness models, we performed a k-means
analysis on the top 30 sets to identify clusters of parameter sets that
were similar to one another. All parameter values were centered and re-
scaled for k-means analysis. Defining three clusters produced results
with good separation among clusters, as shown by a classical dis-
criminant coordinate plot (Supplementary Fig. S2). The mean para-
meter values for each of the three clusters were used as best-performing
sets, for a total of five best parameter sets (Table 2).

One thousand simulations were run using parameters from each of
the five best scenarios. For each scenario, the number of infected farms
and infected sow farms was tabulated over time, and the overall pro-
portion of transmission events due to each mechanism was recorded. In
addition, we examined the proportion of “high consequence” trans-
mission events were due to each mechanism, where high consequence
events were defined as the first introduction of PEDv into new geo-
graphic areas that were previously spatially isolated from the epidemic
(Region I and II, Fig. 2).

All modeling and analysis was performed in R version 3.3 (Team,
2013).

Table 1
Parameter definitions and minimum and maximum values in which parameter values were sampled from in the Latin Hypercube Sampling (LHS) analysis. Some
parameter ranges were based on published research. Where literature values were unavailable, parameter ranges were based an initial exploratory model calibration
(e.m.c.).

Symbol Definition [units] Where used Min (LHS) Max (LHS) Citation

bij batch size [number pigs] Animal movements transmission – – (observed)
μ P(a pig moved from an infected herd is infected) Animal movements transmission 0.5 1.0 (e.m.c.)
Φ Spatial transmission coefficient Airborne spatial spread 0.001 0.02 (e.m.c.)
Φ7 Multiplier on local spread during first week post-infection Airborne spatial spread 1 12 Alvarez et al. (2016)
dij Distance between infected farm and farmj [km] Airborne spatial spread – – (observed)
βf Transmission coefficient – fomites – feed-trucks Feed trucks 0 0.01 (e.m.c.)
βm Transmission coefficient – fomites – market trucks Market trucks

(finishers)
0 0.01 (e.m.c.)

βc Transmission coefficient – fomites – within-flow Within-flow force of infection 0 0.01 (e.m.c.)
FA P(Feed contamination event in Mill A) Feed-borne transmission 0/1 on day 10 (observed/e.m.c.)
FB P(Feed contamination event in Mill B) Feed-borne transmission 0/1 on day 38 (observed/e.m.c.)
pfeed.con P(Farmi infected | Feed contamination) Feed-borne transmission 0 0.82 (observed/e.m.c.)
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3. Results

During the first five months (May through September 2013) of the
observed PEDv epidemic in the studied production system, 30 of 47 sow
farms were infected. The epidemic began slowly with just a few sow
farms infected, followed by a sudden increase in infection in mid-June,
which was associated with the introduction and spread of the virus in
Region I (Fig. 2). No new sow farms were infected between July 3 until
October 30, 2013, which is beyond the time period of our model.

3.1. Model calibration and sensitivity analysis

Fitness for each model run was calculated based on comparing the
simulated and observed data in terms of the deviation in the day and
rank correlation in the order in which sow farms become infected. The
overall fitness of the model ranged from −0.39 to 0.25, with a median
value of −0.02. Rank correlations in the order in which sow farms
became infected in the observed versus simulated data ranged from
0.09 to 0.45, with a median of 0.28. Reported as a proportion, the
percent deviation in the day on which sow farms became infected, Devt,
ranged from 0.19 to 0.48, with a median of 0.29. Overall, the random
forest explained 91.1% of the variance in fitness in the training data set,
and validation with the testing dataset showed strong performance
(mean squared error= 0.0013). The parameters that were most im-
portant for determining how well the PEDv model matched the ob-
served data (i.e., models with higher fitness) were whether or not a feed
contamination event occurred in feed mill B (FB), values controlling the
probability of local spatial spread (ϕ, ϕ7), followed by the proportion of
farms affected by a feed contamination event (pcon.feed Supplementary
Fig. S4). Model outputs, as measured by fitness, were less sensitive to
the remaining parameters (μ, FA, βf, βm, βc)

After controlling for the effects of other parameters, the fitness of
the PEDv model increased at lower values of βc and βm(Supplementary
Fig. S5), indicating that models that simulated the observed epidemic
tended to have low rates of within-flow and market truck-related
transmission. Fitness also increased with higher values of ϕ, ϕ7, βf, and
pcon.feed, indicating that more realistic models tended to have high rates
of local spatial spread and feed truck-related transmission as well as a
high numbers of farms affected by feed contamination events. Fitness
was higher when a contamination event occurred in Mill B, but was not
affected by Mill A. Similarly, the five best parameter sets that produced
PEDv dynamics most resembling observed data all included a feed
contamination event for Mill B and not for Mill A (Table 2). The model
was not sensitive to the animal-level probability that an individual pig
was infected in a batch of shipped (μ), most likely because the large
batch sizes (median batch size of 284 head) meant that even a low
animal-level infection probability translated into an almost certain
probability of moving at least one infected pig.

3.2. Analysis of best-performing models

Simulations using the best-performing parameter sets generally
showed a good match to the observed epidemiological curve (Fig. 3),
with the number of sow farms infected slightly underestimated at the
start of the outbreak and slightly overestimated at the end of the out-
break. In general, our model matched the observed data, showing a

Table 2
Parameter values for five best-perfoming parameter sets.

Parameter set μ ϕ ϕ7 βc βm βf pcon.feed FA FB Selection method Rank correlation (ρ) Devt Fitness

A 0.593 0.008 8.685 ∼0.000 0.002 0.001 0.347 0 1 Top rank 0.43 0.20 0.23
B 0.506 0.017 1.902 ∼0.000 0.003 0.001 0.496 0 1 Top rank 0.45 0.20 0.25
C 0.812 0.011 6.730 0.002 0.002 0.004 0.513 0 1 k-means 0.39 0.23 0.17
D 0.651 0.007 8.033 0.002 0.001 0.001 0.556 0 1 k-means 0.40 0.21 0.19
E 0.637 0.016 3.344 0.002 0.004 0.003 0.529 0 1 k-means 0.40 0.23 0.17

Fig. 2. Map of sow farms and dates of infection or “break”.

Fig. 3. Observed (circles) and simulated epidemic curves of the number of sow
farms infected over time for the five best-performing models. The median, in-
terquartile range, and 95% prediction interval of model simulations are re-
presented by the blue line, shaded area, and dotted lines respectively. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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slow initial rise in the number of infected farms (mainly non-sow
farms), followed by a fairly sudden jump during June, which was re-
lated to the occurrence of the feed contamination event in Mill B (Fig. 3,
Supplementary Fig. S6 for non-sow farms). Parameter sets A and D
matched the data particularly well, with nearly all observed points
falling within the 95% prediction interval of the model. However, it was
difficult to match the exact order and time in which sow farms became
infected. When comparing the interquartile range of predicted infection
dates for every sow farm (Supplementary Fig. S3), the predicted in-
terval encapsulates the observed dates most often for sets A and D. In
addition, there is a general correspondence between the observed and
predicted infection dates, with farms predicted to be infected in the
middle or later in the study period also having observed dates that fell
in middle or later for sets A and D. Mismatches occurred in the early
study period, which lowered ρ. The model struggled to capture which
specific farms should be infected early, but performance improved after
the early period. For all five scenarios, the model predicted that over
65% of all farms (sow farms and other production types) were infected
by October.

Across all best-performing models, the majority of between-farm
transmission events were due to local spatial spread and the movement
of pigs (Fig. 4, Supplementary Table S4-S6). When considering the
mechanism of infection in all types of farms (Fig. 4a), pig movement
was responsible for approximately one quarter to one third of trans-
mission events, whereas this proportion was nearly half when con-
sidering only transmission to sow farms (Fig. 4b). Local spread was
responsible for half of transmission events when considering all types of
farms, and closer to one third when considering sow farms only
(Fig. 4b). Thus, it appears that animal movements were relatively more
important for the infection of sow farms whereas local spatial spread
was relatively more important for non-sow farms, which could be re-
lated to the fact that many non-sow farms were located in areas with
higher farm density (Fig. 1). Contaminated feed was responsible for a
greater proportion of sow farm infections compared to the proportion
attributed to this mechanism for all farms. The remaining transmission
mechanisms accounted for a relatively low percentage of events, re-
gardless of whether we are examining the responsible mechanisms for
the infection of sow farms or all farms (Fig. 4). Transmission me-
chanism for non-sow farms only were very similar to those of all farms
(Supplementary Table S6 and Fig. S7).

The initial introduction of PEDv into region I was attributable to a
contaminated feed event in 69.4% of simulations and to movement in
20.7% of simulations (Table 3). However, the model predicted that this

introduction would occur after day 34 in 75% of simulations, whereas
the observed date of introduction to region I was day 22. Thus, we
restricted the summary of transmission mechanisms to only those si-
mulations (n= 827) where introduction occurred prior to day 22 and
evaluated the transmission mechanism responsible for the initial in-
troduction. In this case, animal movement and feed trucks were re-
sponsible for 72.9% and 20%, respectively, of the initial transmission of
PEDv to Region I. Potentially, there could have been multiple in-
troductions into region I beginning, with the earlier introduction prior
to day 22 followed by a contaminated feed event. Thus, our results do
not rule out a possible role of contaminated feed in long-distance
transmission events. Introduction of PEDv to region II was attributable
to market trucks and within-flow transmission in 59.2% and 21.8% of
simulations where region II was infected, respectively (Table 3).

4. Discussion

Here, we developed a mechanistic model to simulate the rapid
spread of PEDv within a swine production system to better understand
the drivers of between-farm viral transmission during the emergence of
PEDv in the U.S. swine industry. Prior to 2013, PEDv did not occur in
the United States. As a result of the rapid spread and production impact
of this formerly exotic disease, PEDv is considered an industry game-
changer and highlights the vulnerability of the U.S. swine industry to
foreign pathogens. However, mechanisms driving between-farm spread
are still poorly understood. By calibrating our PEDv spread model such
that simulated data matched observed epidemiological dynamics, we
demonstrated that while all hypothesized mechanisms for direct and
indirect transmission between-farms likely occurred to some extent,
most transmission events were attributable to movement of infected

Fig. 4. Proportion of transmission events attributed to each mechanism for infection of a) all farms and b) sow farms.

Table 3
Proportion of introductions to new geographic areas due to each transmission
mode.

Region I Region I< 22 days Region II

Distance from infected area (mi) 280 280 160
Contaminated feed 0.694 0.000 0.000
Feed trucks 0.063 0.200 0.055
Within-flow 0.000 0.000 0.218
Local 0.011 0.029 0.016
Market trucks 0.024 0.042 0.592
Movement 0.207 0.729 0.051
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animals (direct transmission) and local spatial spread (indirect trans-
mission). However, other indirect transmission mechanisms, such as
fomites related to feed trucks, market trucks, and shared support ser-
vices within flows, became more important for high consequence, long
distance transmission events.

Overall, our model provided adequate but not outstanding match to
the observed data. The slight under- and over-estimate of the number of
sow farms infected during the early and later parts of the epidemic,
respectively (Fig. 3), potentially indicate that our model did not capture
some of the underlying changes in how PEDv was managed at the farm-
level. During the early part of the epidemic, there was a delay in
identifying the infectious agent, and PEDv was novel to swine veter-
inarians and producers. However, the industry adapted to PEDv and
became better at mitigating between-farm spread through enhanced
biosecurity, and this may explain why our model overestimates the
number of infected farms in the latter stage of the modeled period.

Alternatively, even in the best-performing parameter sets, such as A
and D, our model struggled to capture which sow farms should be in-
fected early in the epidemic. This suggests that the model did a poorer
of capturing epidemiological processes at the beginning of the epi-
demic, though model performance improved in the middle to late
portions of the study period. This contributed to the moderate rank
correlation values (ρ ∼ 0.39–0.49) and model fitness. It may have been
easier to match the model to generalized patterns of infection dates
(i.e., early, middle, late) rather than the exact order of infection.

Another source of discrepancy between the simulated and observed
epidemics is the infection of Region II. Region II contains most of the
genetic stock (i.e., high value breeding stock) for this company, and
thus these farms are subject to enhanced biosecurity measures.
Although Region II eventually became infected in the observed epi-
demic, Region II did not become infected during the first five months. In
contrast, the model predicted that Region II would become infected,
and this discrepancy may be due to a failure to account for enhanced
biosecurity measures utilized for genetic stock. Despite this dis-
crepancy, it is still useful to track the mechanisms by which Region II
became infected as this may highlight potential vulnerabilities in bio-
security measures. Region II usually became infected by either market
trucks or within-flow transmission, which emphasizes the importance
of decontaminating market trucks and preventing mechanical vectors
or fomites associated with shared support services within flows. Also,
our model’s structure likely overestimated the role market truck
transmission to Region II, given that all animals going to slaughter from
Region II passed through transfer stations (market trucks did not di-
rectly visit Region II farms).

More generally, we did not account for other variabilities in biose-
curity measures at the farm-level. For example, sow farms typically
have higher biosecurity than nurseries and finishers, which may de-
crease their likelihood of becoming infected via local spatial spread or
fomite-related mechanisms. Similarly, biosecurity and mitigation
measures employed by infected farms may lead to fluctuating in-
fectiousness over time, which we did not allow for beyond the first
week. This could lead to an overestimation of how long farms were able
to transmit the virus. Our assumptions about the length of the infectious
period of all farms were also based on data from sow farms, as those
were the only data that were available.

Our generalized approach to fomite-related spread was based on the
force-of-infection amongst farms that had indirect connections via feed
trucks, market trucks, or shared within-flow support services. In reality,
the likelihood of infection by any of these routes would not be shared
equally among farms; companies carefully manage the order in which
farms are visited in the course of a week such that high-priority farms
(i.e., farms where it is more important to prevent infection, such as sow
farms) are visited early in the week, thus minimizing the likelihood of
fomite contamination of personnel, vehicles, and equipment. In addi-
tion, there is often down-time between visits to “clean” and “dirty”
farms (in terms of infection) to decrease the likelihood of transporting

fomites between farms. These factors were not accounted for in our
model, and may have resulted in sow farms becoming infected too
easily. Our model also predicted that few transmission events were due
to fomite-related mechanisms. However, it is possible that the roles of
fomite-related mechanisms were underestimated given that groups of
farms that share the same mill or flow tend to be spatially clustered.
This means that it is possible that local spatial spread soaked up at least
some of the transmission that could have actually been mediated by
fomites, and that our model could not distinguish between fomite
transmission and local spatial spread. That being said, many of the
flows and mills had farms that were highly dispersed and/or overlapped
with other flows/mills, suggesting that indirect transmission via feed
trucks or within flows and local spatial spread were not analogous.

Results of our analysis indicated that feed contamination played a
minor but substantial role in the rapid spread of PEDv, accounting for
∼11% and 20% of transmission events in non-sow and sow farms re-
spectively. Further, long-distances jumps of PEDv in simulated out-
breaks were often attributed to this mechanism (Table 3). However, our
results are specific to transmission within one production system.
Contaminated feed may have played a larger role in the initial in-
troduction of the virus to production systems, which is not addressed
here, and more generally to the introduction of PEDv to the United
States. In addition, our approach for modeling contaminated feed and
feed milling were very generalized, and we did not account for the
nuances of various feed ingredients that may be more or less likely to
harbor live virus (Dee et al., 2015).

Our work should be interpreted in the context in which the model
was calibrated, and care should be taken in extrapolating these results
to other regions of the country or to the other time periods. For ex-
ample, the landscape in the Great Plains is markedly more windy and
open than in other swine dense regions of the United States, which may
have facilitated windborne transmission. In addition, this model fo-
cused on the initial spread of PEDv, and between-farm transmission
dynamics during the emerging phase of the epidemic may differ from
the current endemic situation.

5. Conclusions

During the early phase of the PEDv epidemic in U.S. swine, results of
our model indicate that between-farm transmission was primarily
driven by direct mechanisms via the movement of animals and indirect
mechanisms related to local area spread based on geographic proximity
between farms. However, other forms of indirect contact among farms
were responsible for high consequence transmission events resulting in
the introduction of the virus into new geographic areas. Lessons learnt
from the PEDv epidemic in regards to how best represent the com-
plexity of the U.S. swine industry in epidemiological models are valu-
able to monitoring other emerging swine pathogens. Our model is a
more realistic representation to the realities of the swine industry than
other between-farm modeling approaches given its ability to account
for management practices and patterns of direct and indirect contact
among farms unique to the vertically integrated nature of the swine
industry and it could be readily adapted to model the spread of other
foreign and endemic pathogens of swine in the US. Thus, this work
provides insights into the spread of an exotic pathogen in US swine and
provides a foundation for future infectious disease modeling efforts,
highlighting the potential explosive nature of an epidemic in a pro-
duction system with high levels of both direct and indirect connectivity
among farms.
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