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This study aimed to investigate anemia treatment and other potential e�ects of

two food-derived bioactive oligopeptide iron complexes on pregnant rats with

iron deficiency anemia (IDA) and their o�spring. Rats with IDA were established

with a low iron diet and then mated. There were one control group and seven

randomly assigned groups of pregnant rats with IDA: Control group [Control,

40 ppm ferrous sulfate (FeSO4)]; IDA model group (ID, 4 ppm FeSO4), three

high-iron groups (H-FeSO4, 400 ppm FeSO4; MCOP-Fe, 400 ppm marine fish

oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide

iron complex) and three low-iron groups (L-FeSO4, 40 ppm FeSO4; MOP-Fe,

40 ppmmarine fish oligopeptide iron complex; WOP-Fe, 40 ppmwhey protein

oligopeptide iron complex). Rats in each group were fed the corresponding

special diet during pregnancy until the day of delivery. After di�erent doses

of iron supplement, serum hemoglobin, iron, and ferritin levels in rats with

IDA were significantly increased to normal levels (P < 0.05). Serum iron levels

were significantly lower in two food-derived bioactive oligopeptide low-iron

complex groups than in the low FeSO4 group (P< 0.05). Livermalondialdehyde

levels were significantly increased in the three high-iron groups comparedwith

the other five groups (P < 0.05), and hemosiderin deposition was observed

in liver tissue, indicating that the iron dose was overloaded and aggravated

the peroxidative damage in pregnant rats. Liver inflammation was reduced in

the three low-iron groups. Tumor necrosis factor α secretion was significantly

decreased in all groups with supplemented oligopeptide (P < 0.05), with

the concentration of tumor necrosis factor α declining to normal levels in

the two whey protein oligopeptide iron complex groups. In the marine fish

oligopeptide iron complex groups, body length, tail length, and weight of

o�spring were significantly increased (P < 0.05) and reached normal levels.

Therefore, food-derived bioactive oligopeptide (derived from marine fish skin
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and milk) iron complexes may be an e�ective type of iron supplement for

pregnancy to improve anemia, as well as reduce the side e�ects of iron

overload, and improve the growth and nutritional status of o�spring.

KEYWORDS

food-derived bioactive oligopeptide iron complex, ferrous sulfate, iron deficiency

anemia, pregnant rats, o�spring development

Introduction

Anemia in pregnancy is a common global health problem

that is gaining attention and interest in the clinical medicine and

public health fields. The World Health Organization estimates

that 36.5 [34.0–39.1]% of pregnant women worldwide (aged

15–49) are anemic (1, 2). Although some degree of dilutional

anemia is part of normal physiology during gestation, maternal

iron deficiency anemia (IDA) can lead to adverse pregnancy and

newborn outcomes. These outcomes include severe maternal

morbidity (3), as well as cognitive defects, stillbirth, low birth

weight, and infant mortality (4–8). Physiological conditions of

pregnancy can promote IDA, with the maximum absorption

of iron from the diet less than the body’s requirements for

iron, resulting in the risk of iron deficiency (2). Inappropriate

iron supplements may provoke a series of side effects (9, 10),

and it remains challenging to find an optimal iron replacement

product for the treatment of IDA.

Oral iron supplements provide a treatment for most

individuals with iron deficiency, especially for those diagnosed

with anemia in the first trimester. Ferrous sulfate (FeSO4) is a

common oral iron treatment because it exhibits superior safety,

and is inexpensive and widely available. However, oral iron

supplements, especially traditional inorganic iron, may lead to

iron overload (9, 10) and toxic effects, such as inflammation,

oxidative stress, and intestinal damage (11–14). Therefore, new

formulations have been developed (2). Polysaccharide iron

complex or heme iron polypeptide have been investigated as

treatments, but their effects were not ideal (15, 16). Food-

derived bioactive peptides, as novel iron complex carriers, offer

high bioavailability in vivo (17, 18) and have attracted broad

Abbreviations: IDA, iron deficiency anemia; FeSO4, ferrous sulfate; Hb,

hemoglobin; SOD, superoxide dismutase; MDA, malondialdehyde; GSH,

reduced glutathione; TNF-α, tumor necrosis factor α; ID, iron deficiency

anemia model group (4 ppm FeSO4); H-FeSO4, 400 ppm FeSO4; L-

FeSO4, 40 ppm FeSO4; MCOP-Fe, 400 ppm marine fish oligopeptide

iron complex; MOP-Fe, 40 ppm marine fish oligopeptide iron complex;

WCOP-Fe, 400 ppm whey protein oligopeptide iron complex; WOP-Fe,

40 ppm whey protein oligopeptide iron complex; FE, serum iron; FER,

ferritin; TRF, transferrin; SD, standard deviation.

research interest (19). These peptides can form a stable structure

with iron, potentially decreasing the Fe pro-oxidant effect

that is responsible for damage of the gastrointestinal mucosa

(20). Furthermore, peptide-Fe complexes can exert an indirect

antioxidant capacity and neutralize lipid radicals (21–24).

However, data of these potential effects in vivo remains limited.

Although food-derived bioactive oligopeptide iron

complexes, like β-lactoglobulin hydrolysate-iron complex and

oat peptides-ferrous chelate, have been used as iron supplements

in many studies, the effects on pregnancy and newborn are

not clear. Therefore, we aimed to use the pregnant rat with

IDA model to explore the effects of food-derived bioactive

oligopeptide iron complexes (derived from marine fish skin and

milk) on (1) iron deficiency anemia, (2) side effects caused by

iron overload, and (3) offspring development.

Materials and methods

Materials

The AIN-93G improved (FeSO4 used instead of iron citrate)

and intervention diets were prepared by Beijing Keao Xieli

Feed Co., Ltd. The iron content was detected by Pony Testing

International Group (report number GNADPGZA1S1021938).

Hemoglobin (Hb), tissue iron, superoxide dismutase (SOD),

malondialdehyde (MDA), reduced glutathione (GSH), and total

protein commercial reagent kits were purchased from Nanjing

Jiancheng Bioengineering Inst. (Nanjing, Jiangsu, China). A

tumor necrosis factor α (TNF-α) ELISA kit was purchased from

Shanghai Yuyan Biotechnology Co., Ltd.

Preparation of food-derived bioactive
oligopeptide iron complexes

Two food-derived bioactive oligopeptide iron complexes

used in this study were prepared in the laboratory of the Beijing

Municipal Functional Peptide Engineering Research Center.

Oligopeptides were obtained from salmon skins and milk by

two-step enzymatic hydrolysis: 3,000 U/g protein (Alcalase), pH

8.5, at 60◦C for 2 h, then 2,500 U/g protein (papain), pH 7.0,
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at 60◦C for 2 h. Subsequently, the hydrolysate was heated at

100◦C for 10min to inactivate the enzymes, and supernatant was

obtained after cooling and centrifugation at 6,000× g for 15min.

The peptide solution (<1 kDa) in the hydrolysate was collected

with an ultra-filtration membrane (1 kDa), and oligopeptide dry

powder was obtained by spray drying. To prepare oligopeptide

iron complexes, 8 g oligopeptide dry powder was dissolved in

200mL distilled water, and 2 g ascorbic acid was added to

prevent oxidation of Fe2+. After the pH was adjusted to 5, 2 g

FeCl2·4H2O was added and the sample incubated using a water

bath at 50◦C for 60min. After cooling to room temperature, four

times the volume of anhydrous ethanol was added. The solution

was mixed then left to settle for 1 h. Finally, the precipitate was

collected by extraction filtration, and stored after drying.

Animals

Sprague Dawley female (50–60 g, newly weaned) and male

SPF rats (250–300 g) were purchased from Shanghai SLAC

Laboratory Animal Co., Ltd. [license no.: SCXK (Hu)2017-

0005]c. The animal study was reviewed and approved by the

Experimental Animal Ethics Committee of Zhejiang University

Medical College (ZJU20200055). The rats were reared in cages

at the Experimental Animal Center of Zhejiang University at

a regulated temperature of 20–24◦C, relative humidity of 50–

60%, and under 12 h/12 h light/dark cycles. Before the formal

experiment, female rats were adaptively fed with AIN-93G

improved feed and double distilled water (in order to prevent the

interference of minerals in the drinking water and better control

the quality) for 3 days, while male rats were fed with normal feed

and deionized water.

Establishment of pregnant rat model of
iron deficiency anemia

The rat model of IDA and intervention during pregnancy

are shown in Figure 1. Twenty-one female rats were purchased

at one time, and after adaptive feeding, 2–3 rats were randomly

selected as the Control group, which were fed the AIN-93G

improved diet containing 40 ppm iron. The other rats were

fed the low iron diet containing 4 ppm iron. On the 21st day

of modeling, all rats were weighed and blood was collected

from the tail vein to measure Hb. Rats with Hb <100 g/L were

considered to be IDA (25), then remaining rats that did not

meet the standard continued to be modeled. And in order to

ensure that there was not much difference with body weight at

the beginning of the intervention, we excluded rats that had still

not been successfully modeled for more than 4 weeks.

After modeling, the normal and IDA female rats were caged

with male rats 1:1, and day 0 of gestation was recorded when

a vaginal plug was observed (26). Except the Control group,

pregnant females were randomly divided into seven groups: IDA

model group (ID, 4 ppm FeSO4), three high-iron groups (400

ppm FeSO4, H-FeSO4; 400 ppm marine fish oligopeptide iron

complex, MCOP-Fe; 400 ppm whey protein oligopeptide iron

complex,WCOP-Fe) and three low-iron groups (40 ppm FeSO4,

FIGURE 1

Scheme of IDA model establishment and iron intervention. IDA, iron deficiency anemia; Hb, Hemoglobin; ID, iron deficiency anemia model

group (4 ppm FeSO4); H-FeSO4, 400 ppm FeSO4; L-FeSO4, 40 ppm FeSO4; MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe,

40 ppm marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron complex; WOP-Fe, 40 ppm whey protein

oligopeptide iron complex; G0, the day of pregnancy; G7, the Seventh day of pregnancy; G14, the 14th day of pregnancy; G19, the 19th day of

pregnancy; P0, the day of delivery; P2, the second day after delivery.
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L-FeSO4; 40 ppm marine fish oligopeptide iron complex, MOP-

Fe; 40 ppm whey protein oligopeptide iron complex, WOP-Fe).

Rats in each group were fed the corresponding special diet and

double distilled water during pregnancy until the second day

after delivery.

This operation was repeated until there were 6–9 females in

each group.

Sample collection

Rats were weighed and blood samples were collected from

the tail vein to measure Hb at day 0, 7, 14, and 19 of

gestation. After delivery, the female rats were fasted for 12 h

and drank freely. Then, on the second day after delivery when

the fasting was over, female rats were weighed and anesthetized

by intraperitoneal injection of 2% sodium pentobarbital (0.25

mL/100g body weight), and the blink reflex was tested by

cotton swab. After anesthesia, the incision was made along

the abdominal midline, and blood samples were taken from

the abdominal aorta of female rats. Then the plasma and

serum samples were frozen at −80◦C for further analysis after

centrifugation. Heart, liver, spleen, kidney, and intestinal tissues

were removed, rinsed with normal saline, weighed, and stored at

−80◦C for further analysis (27). In addition, male rats would be

euthanized after all the mating was over.

The total number of fetuses, live fetuses, dead fetuses, and

malformed fetuses were recorded. The body length (head and

hip length), tail length, and weight of rat offspring at birth

were recorded. All rat offspring were sacrificed and Hb content

was measured.

Analysis of hemoglobin and tissue iron

Hemoglobin levels and tissue iron levels of liver

homogenates were measured with assay kits according

to instructions of the manufacturer (Nanjing Jiancheng

Bioengineering Institute, Nanjing, China).

Analysis of serum biochemical indicators

Serum biochemistry analysis was performed on a fully

automatic biochemical analyzer (7180, Hitachi, Japan).

Measurements included serum iron (FE), ferritin (FER),

transferrin (TRF), unsaturated iron-bonding capacity, and cell

total iron-binding capacity levels.

Analysis of oxidative stress biomarkers
and TNF-α

Liver tissue was homogenized in normal saline to prepare

10% liver homogenate, and the supernatant was collected

after centrifugation. The protein concentration, levels of MDA

and GSH, and the activity of SOD in liver homogenates

were measured with assay kits according to instructions

of the manufacturer (28) (Nanjing Jiancheng Bioengineering

Institute, Nanjing, China). The values were normalized to

total protein content in liver tissue samples. Serum levels

of TNF-α were measured by ELISA kits according to the

manufacturer’s protocols (Shanghai Yuyan Biotechnology Co.,

Ltd., Shanghai, China).

Histomorphological analysis

At the time of sample collection, 10% formalin was used to

fix the liver, duodenum, ileum, and colon. Tissue sections were

then embedded in paraffin, stained with hematoxylin and eosin,

and analyzed under light microscopy (29) (×400, ×200, and

×100 magnification, Laboratory of Pathology analysis, Zhejiang

Provincial Center for Disease Control and Prevention).

Statistical analysis

The data were expressed as mean ± standard deviation

(SD). T-test and one-way ANOVA analyses were performed to

compare the difference between two or multiple groups, and

LSD analyses were used for comparison between groups. R 4.2.0

and GraphPad Prism 8 were used for statistical analysis and

plotting. P < 0.05 was regarded as a significant level.

Results

Composition of two food-derived
bioactive oligopeptide iron complexes

The compositions of two oligopeptide iron complexes are

shown in Tables 1, 2. The protein content was above 70%,

and the peptide content was above 50% of total weight.

Total amino acids in marine fish oligopeptide iron complexes

accounted for more than 80% of total weight, among which

glycine was the highest, followed by glutamate, alanine,

proline, arginine and aspartate. The total amino acids in whey

protein oligopeptide iron complexes were more than 70% of

total weight, among which the glutamate was the highest,

followed by leucine, aspartate, lysine, proline, and isoleucine.

According to the ideal protein conditions proposed by Food

and Agriculture Organization of the United Nations/World
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TABLE 1 Composition of food-derived bioactive oligopeptide iron complexes.

Protein content (wet base) Peptide content (wet base) Ash content (wet base) Moisture content

Detection method GB5009.5-2016 GB/T22729 GB5009.4-2016 GB5009.3-2016

MCOP-Fe 94.81 78.47 3.66 2.87

MOP- Fe 91.73 77.25 2.05 5.85

WCOP-Fe 77.06 57.08 4.08 4.22

WOP-Fe 75.39 54.73 2.98 4.56

The unit is %. MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe, 40 ppm marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron

complex; WOP-Fe, 40 ppm whey protein oligopeptide iron complex.

TABLE 2 Amino acid composition of food-derived bioactive

oligopeptide iron complexes.

MCOP-Fe MOP-Fe WCOP-Fe WOP-Fe

Amino acid (%)

Asp 6.235 6.685 6.950 7.874

Thr 2.560 2.666 4.620 5.135

Ser 4.494 5.076 2.883 3.308

Glu 9.337 10.287 10.989 13.291

Gly 16.487 16.684 1.655 1.509

Ala 8.423 8.247 4.115 4.171

Val 2.691 2.767 4.222 4.452

(Cys)2 1.361 1.544 2.585 3.200

Met 2.265 2.399 1.724 1.861

Ile 1.873 1.905 4.708 5.046

Leu 3.627 3.719 7.708 8.246

Tyr 0.650 0.944 1.970 2.245

Phe 1.908 2.014 2.504 2.446

His 1.056 1.065 1.190 1.238

Lys 4.266 4.421 6.258 6.696

NH4 1.211 1.221 1.504 1.335

Arg 7.227 7.226 1.554 1.623

Pro 7.707 7.500 4.980 5.279

Total 83.378 86.370 72.119 78.955

Removal of NH4 82.167 85.149 70.615 77.620

E/T(%) 24.640 24.611 46.639 45.246

E/N 0.327 0.326 0.874 0.827

MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe, 40 ppm marine

fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron

complex; WOP-Fe, 40 ppmwhey protein oligopeptide iron complex; E/T, essential amino

acids/total amino acids; E/N, essential amino acids/non-essential amino acids.

Health Organization, the essential amino acids/total amino

acids value of the protein should be about 40%, and the

essential amino acids/non-essential amino acids value should

be above 0.6. Amino acid composition detection showed that

the whey protein oligopeptide iron complexes met the ideal

protein conditions.

TABLE 3 Weight of pregnant rats under iron deficiency and iron

supplementation intervention (g).

Group N G0 G19 P2

Control 9 221.33± 20.22a 361.78± 22.19ab 268.67± 24.20a

ID 8 215.5± 18.31a 335.00± 17.50c 276.75± 12.89a

H- FeSO4 8 212.25± 14.63a 348.62± 18.65bc 275.25± 19.03a

L- FeSO4 7 205.43± 7.59a 361.43± 20.72abc 272.00± 18.10a

MCOP-Fe 6 219.00± 16.43a 380.00± 34.16a 285.83± 23.02a

MOP-Fe 9 209.33± 13.03a 368.89± 39.03ab 289.78± 23.85a

WCOP-Fe 7 222.57± 27.76a 377.71± 28.17a 288.00± 24.97a

WOP-Fe 7 208.00± 15.89a 363.29± 12.15ab 276.00± 16.34a

P 0.443 0.028 0.360

Values marked with different letters show significant differences. ID, iron deficiency

anemia model group (4 ppm FeSO4); H-FeSO4 , 400 ppm FeSO4 ; L-FeSO4 , 40 ppm

FeSO4 ; MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe, 40 ppm

marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide

iron complex; WOP-Fe, 40 ppm whey protein oligopeptide iron complex.

Weights of pregnant rats during
pregnancy and postpartum

As shown in Table 3, there were no significant differences

in body weights between all groups on the day of pregnancy,

or the second day after delivery (P > 0.05). However, on the

19th day of pregnancy, the weight of female rats in the ID group

was significantly decreased compared with that in the Control

group (P < 0.05), and after iron supplementation, the weight of

female rats in all intervention groups returned to normal levels

(P > 0.05).

Hemoglobin levels in pregnant rats with
IDA

On day of pregnancy, except for the Control group, the

Hb levels of pregnant rats in all groups were less than 100

g/L, and there were no statistical differences among the groups

(P > 0.05), indicating that modeling was successful. On the

second day after delivery, except for the ID group (P <

Frontiers inNutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2022.997006
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Pan et al. 10.3389/fnut.2022.997006

FIGURE 2

Hemoglobin in rats before and after intervention. Data are

presented as mean ± SD, P < 0.05 is regarded as significant

level, and values marked with di�erent letters show significant

di�erences. One-way ANOVA followed by LSD analyses was

used for comparison among 8 di�erent groups. ID, iron

deficiency anemia model group (4 ppm FeSO4); H-FeSO4, 400

ppm FeSO4; L-FeSO4, 40 ppm FeSO4; MCOP-Fe, 400 ppm

marine fish oligopeptide iron complex; MOP-Fe, 40 ppm marine

fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey

protein oligopeptide iron complex; WOP-Fe, 40 ppm whey

protein oligopeptide iron complex.

0.05), Hb levels in all iron intervention groups returned to

normal (P > 0.05), suggesting that these intervention diets

have similar effects on increasing Hb in rats during pregnancy

(Figure 2).

Organ index and iron-related indexes in
pregnant rats with IDA

The organ index and iron deficiency indexes of pregnant

rats with IDA are illustrated in Figure 3. The results showed

that the spleen and heart indexes were significantly increased

in the ID group compared with the Control group (P < 0.05),

while those of iron supplemented groups were normal. The

iron content in liver tissues in all three high-iron groups was

significantly higher than that in the other groups (P < 0.05).

Serum iron reflects the availability of iron in the body and

serum FER is the gold standard for iron storage in the body.

In the current study, FE content was significantly lower in

the ID group than that in the Control group (P < 0.05), and

FER content tended to be lower, indicating that iron deficiency

can consume iron storage in the body. After intervention with

iron supplementation, FE in all intervention groups returned to

normal levels, and FER levels also increased to varying degrees

(all P > 0.05 compared with the Control group). Serum levels

of TRF and unsaturated iron-binding ability were higher in

the ID group than those in the Control group (P < 0.05),

suggesting that iron deficiency affected iron circulation. After

the intervention, TRF and unsaturated iron-binding capacity

levels were decreased in all groups compared with the ID group

(P < 0.05). Although FER levels showed no statistical difference

in the three low-dose iron groups, FE was significantly lower in

the MOP-Fe and WOP-Fe groups than in the L-FeSO4 group

(P < 0.05), and levels of TRF were lowest in the WOP-Fe

group (P < 0.05). These results suggested that these two food-

derived bioactive oligopeptide iron complexes reduced free iron

levels. Overall, the intervention prevented iron deficiency in the

pregnant rats with IDA to some extent, and the oligopeptide iron

complex was no less effective than FeSO4, even with high and

low iron doses.

Serum TNF-α and liver tissue oxidative
stress biomarkers

Serum TNF-α is a multifunctional cytokine that plays

an important role in the inflammatory response. As shown

in Figure 4, the concentration of TNF-α in the ID group

was significantly increased (P < 0.05), indicating that iron

deficiency caused an inflammatory response in the body.

Supplementation with FeSO4 alone had no effect on TNF-α

production, while two oligopeptide iron complexes significantly

decreased TNF-α secretion (P < 0.05), with the WCOP-Fe

and WOP-Fe groups exhibits concentrations of TNF-α restored

to normal levels; showing that the whey protein oligopeptide

iron complex may have a positive anti-inflammatory effect.

In this experiment, MDA, GSH, and SOD were measured in

liver homogenate to reflect the oxidative stress status of tissues.

MDA is one of the most important products of membrane

lipid peroxidation, which can aggravate membrane damage.

GSH has antioxidant properties and helps maintain normal

immune system function. And SOD, as an antioxidant metal

enzyme, can reflect the ability of scavenging oxygen free radicals.

In the current study, liver MDA levels were significantly

increased in the three high-iron groups (P < 0.05) compared

with the other five groups, suggesting that the high iron dose

aggravated peroxidative damage in pregnant rats. No significant

differences were found in liver GSH and SOD levels between all

eight groups.

Histological changes

The morphology of stained liver and intestinal tissue

was observed under an optical microscope. There was

the obvious presence of extramedullary hematopoiesis,

fatty degeneration, and inflammatory reactions in liver

tissue sections of the ID group. After the intervention,

inflammatory responses were reduced in all three low-iron

groups, although hemosiderin deposition was observed in all

Frontiers inNutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.997006
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Pan et al. 10.3389/fnut.2022.997006

FIGURE 3

The organ index and iron related indexes of IDA pregnant rats after iron supplement treatment. The heatmap shows the relative content of the

organ index and iron related indexes after normalization. The change in the intensity is marked by di�erent colors, from blue to red as intensity

enhancement. Values marked with di�erent letters show significant di�erences. FE, Liver and serum iron; FER, serum ferritin; TRF, serum

transferrin; UIBC, unsaturated iron binding ability; TIBC, total iron binding force; ID, iron deficiency anemia model group (4 ppm FeSO4);

H-FeSO4, 400 ppm FeSO4; L-FeSO4, 40 ppm FeSO4; MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe, 40 ppm marine fish

oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron complex; WOP-Fe, 40 ppm whey protein oligopeptide iron

complex.

three high-iron groups (Supplementary Figure 1), suggesting

possible iron overload. In addition, there were obvious

inflammatory reactions in the H-FeSO4 and MCOP-Fe

groups after intervention, which may be related to the side

effects of iron overload. However, this phenomenon was not

found in the WCOP-Fe group with the same iron content,

indicating that it probably had anti-inflammatory properties

(Figure 5A).

In the intestinal tissue, mucosal erosions, atrophy, a reduced

number of intestinal glands, and edema of the mucosal

lamina propria were observed in the ileum of the ID group,

indicating that the low iron status mainly affected the ileal tissue

(Figure 5C). After the intervention, the intestinal damage in all

three low-iron groups was reduced, with the tissue structure

basically normal. Similarly, the H-FeSO4 group had obvious

colonic lymphoid follicular hyperplasia and mucosal erosion in

the ileum as well as colon, and the MCOP-Fe group had ileal

lymphoid follicular hyperplasia, while the intestinal tissue of

WCOP-Fe group was generally normal (almost consistent with

the liver tissue results) (Figures 5A–C).

Pregnancy outcome and development of
o�spring at birth

IDA caused the decrease of parturition rate, as shown in

Table 4, the parturition rate of the ID group was 75%, which

was higher after iron supplementation. The average number

of total pups born per litter and total pups born alive per

litter were significantly less in the ID group than those in the

Control group (P < 0.05), and iron supplementation improved

pregnancy outcomes. Body length, tail length, and weight of

offspring were significantly decreased in the ID group compared

with those in the Control group (P < 0.05), and the MCOP-

Fe/MOP-Fe group showed a better recovery, suggesting that the

marine fish oligopeptide iron complex may improve the growth

of offspring during pregnancy in rats with IDA. Moreover, Hb

levels of the ID group were decreased by nearly 50% compared

with that of the Control group (P < 0.05), indicating that IDA

in maternal rats had a great influence on offspring, and Hb in all

the intervention groups was significantly increased (P < 0.05)

(Figure 6).
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FIGURE 4

E�ect on oxidative stress biomarkers in liver tissue and TNF-α in serum of IDA pregnant rats. Values marked with di�erent letters show significant

di�erences. (A) E�ect on tumor necrosis factor α(TNF-α); (B–D) E�ect on the malondialdehyde (MDA), geduced glutathione (GSH) and

superoxide dismutase (SOD). ID, iron deficiency anemia model group (4 ppm FeSO4); H-FeSO4, 400 ppm FeSO4; L-FeSO4, 40 ppm FeSO4;

MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe, 40 ppm marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey

protein oligopeptide iron complex; WOP-Fe, 40 ppm whey protein oligopeptide iron complex.

Discussion

Pregnant women are susceptible to iron deficiency and the

resulting anemia, even in high-income countries (30). Iron

supplements have been in practice for the past few decades,

and food-derived iron fortification is a promising strategy

for reducing the prevalence of anemia (31). This study used

a stable pregnant rat model exhibiting IDA to explore the

potential effects of two specially prepared food-derived bioactive

oligopeptide iron complexes, in particular for the treatment

of anemia.

Studies have shown that bioactive peptides obtained

from different food sources have various biological functions,

including antioxidant and immune regulation (32). However,

evidence to date indicates that only a few active peptides

are suitable for human consumption and available on the

commercial market, with most of them derived from fish

and milk proteins (33); such as the oligopeptides chosen for

our experiment. Numerous food-derived peptides have the

metal chelating ability to form complexes with divalent metals

like calcium, zinc, and iron, and offer advantages of good

bioavailability, high absorption, excellent stability, and high

biosafety (33–35). In our experiment, Hb levels and iron-related

indexes were significantly improved in all intervention groups

compared with the ID group, with no significant differences

observed in these parameters between the Control and treated

groups. Two oligopeptide iron complexes had a good effect on

reducing anemia and supplementing iron in pregnant rats with

IDA, and these complexes were not inferior to the traditional

iron supplement FeSO4. Similar to a previous study of pregnant
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FIGURE 5

(Continued)

rats, the effects of both high and low doses of complex iron on

anemia in the current study were not significantly different from

that of FeSO4 through a longer intervention (27).

Although no differences were found between the high-

iron and low-iron groups in reducing anemia and iron-related

indicators, the present study found that the liver iron content

of the high-iron groups was significantly higher than the

other groups, suggesting that this iron dose (400 ppm) may

cause excessive deposition of liver iron. The liver is one of

the most important tissues for iron storage, and excessive

iron in the body is stored as ferritin and hemosiderin the

in liver, spleen, bone marrow, and other tissues. The current
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FIGURE 5

Hematoxylin-eosin staining results about liver and intestinal tissue sections of IDA pregnant rats. (A) Liver tissue sections of 8 groups. Black

arrow, extramedullary hematopoietic; red arrow, infiltration of inflammatory cells; blue arrow, lipid drop of cavitation; green arrow, hemosiderin

deposition. (B) Duodenum (C) Ileum (D) Colon tissue sections of 8 groups. Blue arrow, mucosal erosion; red arrow, lamina propria edema; black

arrow, lymphoid hyperplasia. ID, iron deficiency anemia model group (4 ppm FeSO4); H-FeSO4, 400 ppm FeSO4; L-FeSO4, 40 ppm FeSO4;

MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe, 40 ppm marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey

protein oligopeptide iron complex; WOP-Fe, 40 ppm whey protein oligopeptide iron complex.
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TABLE 4 Pregnancy outcome of maternal rats.

Control ID H-FeSO4 L-FeSO4 MCOP-Fe MOP-Fe WCOP-Fe WOP-Fe

No. of pregnancy 9 8 8 7 6 9 7 7

No. of delivery 9 6 8 7 6 9 7 7

Parturition rate (%) 100 75 100 100 100 100 100 100

ID, iron deficiency anemia model group (4 ppm FeSO4); H-FeSO4 , 400 ppm FeSO4 ; L-FeSO4 , 40 ppm FeSO4 ; MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe, 40

ppm marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron complex; WOP-Fe, 40 ppm whey protein oligopeptide iron complex.

FIGURE 6

The pregnancy outcome and development of o�spring at birth. The heatmap shows the pregnancy outcome and development of o�spring at

birth after normalization. Values marked with di�erent letters show significant di�erences. ID, iron deficiency anemia model group (4 ppm

FeSO4); H-FeSO4, 400 ppm FeSO4; L-FeSO4, 40 ppm FeSO4; MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; MOP-Fe, 40 ppm

marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron complex; WOP-Fe, 40 ppm whey protein

oligopeptide iron complex.

study found hemosiderin in liver tissue sections of the three

high-iron groups, consistent with previous work showing iron

overload (36). Iron is an essential nutrient for cell metabolism,

proliferation, and differentiation (37), however, excess iron

deposited in tissues can cause damage (38). In our study, liver

MDA levels were significantly increased in the three high-iron

groups, indicating that iron overload may aggravate hepatic

peroxidation damage in pregnant rats. Even though the two

food-derived bioactive oligopeptide iron complexes were not

very good at preventing oxidative stress from iron overload,

there were some interesting findings. Among the three high-

iron groups, group WCOP-Fe had normalized TNF-α levels

and reduced inflammatory responses in liver and intestinal

tissues, suggesting that the whey protein oligopeptide iron

complex may have a protective effect against inflammatory

reactions and intestinal damage caused by iron overload. The

potential reason may also be the anti-inflammatory activity of

whey protein oligopeptide itself. Previous studies have shown

that whey protein, as well as bovine whey protein extract,

can reduce inflammation (39, 40). In addition, the current

whey protein oligopeptide was rich in leucine, which can

reduce the expression of inflammatory genes in the liver, and

also attenuate TNF-α-induced endothelial inflammation by

normalizing the expression of TNF and endothelial nitric oxide

synthase genes (41).

The presence of IDA not only affects pregnant women,

but also the development of fetuses. Severe gestational iron

deficiency can significantly increase the risk of low birth

weight and growth restriction (42, 43), largely due to placental

enlargement, junction enlargement, and altered gene expression

in the placenta caused by maternal iron deficiency and anemia

(44). The present study found that the low iron status of

pregnant rats with IDA severely restricted the growth and

development of offspring, making them severely anemic after

birth, similar to the results of a previous study (27). However,

the addition of marine fish oligopeptide, even at a low iron dose,

can effectively restore the growth and development of offspring

and reduce their anemic state. We speculate that these positive
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effects of marine fish oligopeptide used in the intervention may

reflect the presence of arginine, which was about 4–5 times more

abundant than that found in whey protein oligopeptide. Studies

showed that supplementation of arginine nutrition can partially

improve embryonic survival and development in mammals,

including humans, pigs, sheep, and rats (45, 46). The specific

underlying mechanism of arginine actions remains unclear,

and to date, most of the biomedical applications of fish skin

peptides focus on wound healing, skin anti-aging, inflammation

reduction, and bone regeneration (47, 48). Therefore, the

protective effect on fetusesmay be an interesting andmeaningful

direction worthy of further exploration. Furthermore, marine

fish oligopeptides are mostly derived from fish by-products, so

effective utilization may greatly reduce discards (49).

However, there is also a limitation in our study. Strictly

speaking, the design of our experiment is not completely

independent, but more like a parallel experiment. One reason

for this is the limitation of the site, as pregnant rats needed to be

kept in a separate cage to prevent being startled (startled ratsmay

end pregnancy or eat the baby). Another reason is animal ethics,

male rats can be reused in parallel experiments to reduce the

number of males rats. Therefore, we finally developed present

research protocol used in our study.

In conclusion, IDA has adverse effects on pregnant

rats as well as their offspring, However, excessive oral

iron supplementation can also cause inflammation, oxidative

stress damage, and intestinal tissue destruction. Food-derived

bioactive oligopeptide (derived from marine fish skin and

milk) iron complexes may be an effective prenatal iron

supplement to reduce anemia and avoid some of the side

effects of iron overload, and to improve the growth and

nutritional status of offspring. Although the underlying

mechanisms require further investigation, similar dietary

oligopeptide iron supplements may be a promising option for

iron supplementation.
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