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Abstract: The human gut microbiota (HGM) have an impact on host health and disease. Amino acids
are building blocks of proteins and peptides, also serving as precursors of many essential metabolites
including nucleotides, cofactors, etc. Many HGM community members are unable to synthesize
some amino acids (auxotrophs), while other members possess complete biosynthetic pathways for
these nutrients (prototrophs). Metabolite exchange between auxotrophs and prototrophs affects
microbial community structure. Previous studies of amino acid biosynthetic phenotypes were
limited to model species or narrow taxonomic groups of bacteria. We analyzed over 2800 genomes
representing 823 cultured HGM species with the aim to reconstruct biosynthetic pathways for
proteinogenic amino acids. The genome context analysis of incomplete pathway variants allowed us
to identify new potential enzyme variants in amino acid biosynthetic pathways. We further classified
the studied organisms with respect to their pathway variants and inferred their prototrophic vs.
auxotrophic phenotypes. A cross-species comparison was applied to assess the extent of conservation
of the assigned phenotypes at distinct taxonomic levels. The obtained reference collection of binary
metabolic phenotypes was used for predictive metabolic profiling of HGM samples from several large
metagenomic datasets. The established approach for metabolic phenotype profiling will be useful
for prediction of overall metabolic properties, interactions, and responses of HGM microbiomes as a
function of dietary variations, dysbiosis and other perturbations.

Keywords: amino acid metabolism; metabolic reconstruction; non-orthologous displacements; phe-
notype; metagenomics; human gut microbiome

1. Introduction

The human gut microbiota (HGM) is a complex community of microorganisms, largely
composed of anaerobic and facultative anaerobic bacteria that have a huge impact on
human health and wellbeing [1–3]. The highest number of commensal bacteria is found
in the large intestine (colon), followed by the small intestine. The intestinal microbiota
participates in fermentation of dietary polysaccharides and proteins, synthesis of vitamins
and other essential metabolites such as short-chain fatty acids (SCFAs), and the enzymatic
transformation of endogenous metabolites such as bile acids [4]. Among other important
functions, HGM produce microbial metabolites that mediate crosstalk between HGM and the
immune system of the host, as well as playing an important role in the gut-brain axis [5–7].

Amino acids are major macronutrients in diets, serving as building blocks of proteins
and peptides, as well as precursors of many essential metabolites including nucleotides
and cofactors, both in the host and HGM metabolism [8]. Many HGM species have both
amino acid biosynthetic and biodegradative capabilities. The human colon is characterized
by a high abundance and diversity of protein degrading and amino acid utilizing microor-
ganisms [4]. Diet-derived amino acids can be also directly incorporated into bacterial
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cells as building blocks for their synthesis of proteins or transformed to other essential
metabolites. The unified catalog of HGM genes from over 200,000 metagenome-assembled
genomes (MAGs) is enriched with functional categories related to amino acid transport and
metabolism [9]. Many experimentally characterized HGM species possess complete biosyn-
thetic pathways for all proteinogenic amino acids (prototrophs). However, other HGM
species and strains lose the capability to synthesize de novo one or multiple essential amino
acids, and thus require these nutrients for growth (auxotrophs). Previous studies have
indicated that amino acid exchange between auxotrophs and prototrophs is an important
factor shaping microbial community structure [10,11].

Previous in silico and in vitro studies of amino acid auxotrophies were limited to a
handful of model microbial species or were conducted within a narrow taxonomic group
such as enterobacteria [12]. The number of isolated and sequenced HGM microorganisms
is rapidly growing [13–16]. Mapping of amino acid biosynthetic pathways and assignment
of prototrophic and auxotrophic phenotypes for HGM genomes are prerequisite steps for
predictive functional profiling of HGM communities. A subsystem-based comparative
genomics approach implemented in the SEED genomic database and analysis platform [17]
is widely used to capture, analyze, and extend biochemical pathways in diverse microor-
ganisms with sequenced genomes. This platform is a public repository of thousands of
microbial genomes automatically annotated using Rapid Annotation Subsystem Technol-
ogy (RAST) [18], frequently expanded by newly sequenced genomes and providing a suite
of expert tools for manual curation and metabolic reconstruction. This analysis includes
the use of genomic context for the identification of candidate “missing genes” to fill-in gaps
in known pathways [19] and the prediction of novel pathway variants and corresponding
phenotypes [20]. SEED subsystems allowed us and others to capture many aspects of
microbial metabolism including carbohydrate utilization [21,22], and the biosynthesis of
amino acids [23,24], vitamins and cofactors [20].

Recently, we applied the subsystem-based metabolic reconstruction to infer biosyn-
thetic and salvage pathways for eight B-vitamins and queuosine in a reference set of 2228
HGM genomes [25]. Based on these in silico reconstructions, we developed phenotype rules
and assigned simplified binary (“1” or “0”) phenotypes describing corresponding vitamin
prototrophy and auxotrophy in these reference genomes. The predicted vitamin binary phe-
notypes combined into a Binary Phenotype Matrix (BPM) were further used for predictive
phenotype profiling from 16S rRNA gene-based phylogenetic profiles representing a large
HGM dataset from the American Gut Project (AGP). As a result, for each metagenomic
sample and each phenotype, we computed a Community Phenotype Index (CPI) represent-
ing the expected fraction of cells possessing a particular phenotype. This in silico analyses
revealed common trends for certain vitamins, such as the highest mean CPI values for B2, B3,
B6 and B9 and lowest CPIs for B7 [25]. In a follow-up study, it was applied in conjunction
with in vitro co-culturing and experiments in HGM-colonized gnotobiotic mice to assess the
impact of dietary B-vitamins [26]. Predictive functional profiling combined with dietary vari-
ations and multi-omic measurements in colonized gnotobiotic mice was effectively applied
to the analyses of defined microbial consortia of 10–30 HGM strains representing different
stages of microbiota succession in infants displaying normal and pathological (resulting from
acute malnutrition) growth and development [27–30]; this was also shown to be useful for
microbiota-based diagnostics of medical conditions such as IBD [31].

Here, we applied the subsystem approach and predictive phenotype profiling to
analyze the distribution of amino acid metabolism genes in an expanded collection of
2856 bacterial genomes representing over 800 distinct HGM species. Using genomic-based
metabolic reconstruction, we systematically mapped 163 enzymatic and 47 transporter
components involved in the metabolism of 19 amino acids in this genomic collection. We
report non-orthologous replacements of genes encoding core enzymes in serine, arginine,
lysine, and threonine biosynthesis. The reconstructed pathways allowed us to classify
the studied organisms with respect to their biosynthetic and transport capabilities and
determine variability of the phenotypic profiles at different taxonomy levels. The obtained
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amino acid auxotrophy phenotypes were compared with published experimental data
on nutritional requirements of HGM bacteria. Finally, we investigated the cumulative
phenotypic properties of human stool samples using 16S rRNA gene sequencing and
shotgun metagenomic data from several major HGM studies.

2. Materials and Methods
2.1. HGM Genomic Collection

A set of genomes representing HGM bacteria was selected using the approach previ-
ously described in [25]. Mapping of the list of 823 selected HGM species to the PATRIC
genomic database [32] was conducted in April 2020. The obtained list of 2856 bacterial
strains was represented by either complete or high-quality draft genomes imported to the
SEED database for further annotation and metabolic reconstruction (Table S1). Phylogeny
analysis was held by generating a maximum likelihood phylogenetic tree based on con-
catenated multiple alignments of eleven ribosomal proteins extracted from the analyzed
set of genomes in the SEED database [18]. Multiple alignments of ribosomal proteins were
obtained using MUSCLE version 3.8.31 [33]. The phylogenetic tree was constructed by
RAxML version 8 [34] and visualized using the iTOL web server [35] with taxonomic
assignments obtained from the NCBI Taxonomy Database (Table S1). The selected refer-
ence set of genomes included 2578 genomes with taxonomic assignments to the species
level, while 241 and 28 genomes have taxonomy assigned up to the genus and family
levels, respectively.

2.2. Metabolic Reconstruction

For genomic reconstruction of amino acid biosynthetic pathways and metabolic phe-
notype prediction across the list of specified 2856 genomes, we used a subsystem-based
approach implemented in the SEED genomic platform [17,18]. This approach is based on
functional gene annotation and prediction using two comparative genomics techniques: (i)
homology-based methods and (ii) genome context analysis. Analyses of gene co-occurrence,
co-regulation and clustering on the bacterial chromosome were three main genome context
analysis techniques used for functional gene annotation and metabolic reconstruction [36].
The SEED subsystems are sets of functional roles that capture current pathway knowledge
across the analyzed genomes [37]. Each functional role corresponds to a set of homologous
genes that implement this role in a specific subset of organisms (Table S2). First, we scanned
the analyzed proteomes against the KEGG Orthology [38], TCDB [39], UniProtKB [40] and
SEED [17] databases to reveal proteins potentially involved in the amino acid metabolism
and transport, with additional functional annotations obtained by literature searches using
the PaperBLAST tool [41]. Then, we analyzed the genomic and functional contexts of gene
loci encoding the obtained proteins and reconstructed the respective metabolic pathways
and transcriptional regulons. For the comparative genomics-enabled pathway and regulon
inference, we used additional closely related bacterial genomes available in the SEED
database. Transcriptional regulons (sets of genes co-regulated via a shared transcription fac-
tor or shared RNA elements, riboswitches, responding to respective pathway metabolites)
were predicted and reconstructed using the comparative genomics approach [42] imple-
mented in the RegPrecise database [43]. This integrative subsystems-based approach was
previously used for the reconstruction of pathways and regulons involved in carbohydrate
utilization, amino acid biosynthesis and vitamin metabolism in the Shewanella, Bacteroides,
and other microbial lineages [21–23,25,44–46].

The final reconstructed metabolic pathways for all proteinogenic amino acids, except
alanine, contained 283 functional roles including 163 enzymes, 51 transporter components
and 11 transcriptional regulators (Table S3). These include alternative biochemical path-
ways involved in the synthesis of chorismate (a common metabolic precursor of aromatic
amino acids), glutamate, glutamine, asparagine, lysine, methionine, and glycine (Figure 1).
Moreover, 32 biochemical reactions (corresponding to 103 functional roles) were repre-
sented by two or more alternative isozymes encoded by non-orthologous genes. These
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non-orthologous gene displacements were predicted based on biochemical and functional
identity of gene candidates, their genomic co-localization, co-occurrence, and co-regulation
along with the reconstructed pathway context.
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2.3. Functional Profiling of 16S Metagenomics Datasets

For each analyzed metabolic pathway, we further classified genomes by patterns of
occurrence of signature pathway genes and assigned them pathway variants and growth
requirements (Table 1). Using phenotype rules, these pathway variants were translated to
either prototrophic or auxotrophic phenotypes, expressed as binary phenotypes, “1” and
“0”, respectively. The obtained phenotypes in a binary form comprise a binary phenotype
matrix (BPM), which was further used for the quantitative analysis and predictive profiling
of amino acid biosynthetic capabilities in HGM metagenomic samples as previously de-
scribed [25,47]. Briefly, raw 16S rRNA gene sequencing data from two large metagenomic
studies of urban HGM of western cohorts, the AGP (including 2868 samples) [48] and the
UK twins (UKT, 3288 samples) [49], were quality-filtered and dereplicated into amplicon
sequence variants (ASVs) using the QIIME2 pipeline [50]. For the taxonomic classification
of ASVs we used the Multi-Taxonomic Assignment (MTA) approach [47] and the union
of the NCBI 16S and RDP databases. We used the same approach to analyze 16S samples
from the Hadza dataset representing 333 HGM samples collected from a rural community
of the Hadza hunter-gatherer people from northern Tanzania [51].
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Table 1. In silico reconstruction and phenotype prediction for amino acid biosynthesis in HGM
reference genomes.

Amino Acid Pathway Signature and Biosynthetic a.a.
Dependencies 1 PV 2 BP 3 No. Gen. 4 Growth

Requirements 5

Proline
ProA, ProB P 1 2275 --

- A 0 581 Pro

Threonine
Hom, ThrB, ThrC P 1 2483 --

Hom, ThrC P* 1 50 (missing ThrB)
- A 0 323 Thr

Glycine

[GlyA/SgaA + Serine] or [GlyB +Threonine] P 1 2182 --
- A 0 58 Gly

GlyA/SgaA (no Serine) P1 1 395 Ser, Gly
GlyB (no Threonine) P2 1 25 Thr, Gly

[GlyA/SgaA (no Serine)] and [GlyB +(no Threonine)] P3 1 23 Thr, Ser, Gly

Serine
SerA, SerC, SerB P 1 1863 --

SerA, SerC P* 1 450 (missing SerB)
- A 0 543 Ser

Leucine &
Isoleucine &

Valine

IlvA, IlvG, (IlvM), IlvC, IlvD, (IlvE), LeuA, LeuB,
LeuC, LeuD P1 1 1912 --

CimA, IlvG, (IlvM), IlvC, IlvD, (IlvE), LeuA, LeuB,
LeuC, LeuD P2 1 317 --

IlvG, (IlvM), IlvC, IlvD, (IlvE), LeuA, LeuB, LeuC,
LeuD P* 1 17 (missing IlvA/CimA)

IlvA, IlvG, (IlvM), IlvC, IlvD, (IlvE) P3 1/0 60 Leu
LeuA, LeuB, LeuC, LeuD, IlvE A* 0 20 Ile, Val

- A 0 699 Leu, Ile, Val

Cysteine
CysE, CysK + Serine P 1 1919 --

- A 0 526 Cys
CysE, CysK (no Serine) P1 1 411 Ser, Cys

Methionine

Hom, MetA, [CTBL, CTGS]/MetY, [MetH/MetE],
(MetF), MetK P 1 2252 --

[MetH/MetE], (MetF), MetK A1 0 83 Met
Hom, MetA, [CTBL, CTGS]/MetY, MetK A2 0 25 Met (missing MetH/E)

MetK A 0 496 Met

Lysine

LysC, Asd, DapA, DapB, DapH, (PatA), DapeL,
DapF, LysA P1 1 860 --

LysC, Asd, DapA, DapB, DapD, (DapC), DapE, DapF,
LysA P2 1 1051 --

LysC, Asd, DapA, DapB, DapL, DapF, LysA P3 1 546 --
LysC, Asd, DapA, DapB, Ddh, LysA P4 1 643 --
LysC, Asd, DapA, DapB, DapF, LysA P* 1 38 (no amination pathway)

LysA A1 0 14 Lys, DAP
- A 0 248 Lys

Histidine
HisG, (HisZ), (HisE), HisI, HisA, HisH, HisF, HisB,

HisD, (HisN), (HisC) P 1 2097 --

- A 0 759 His

Tyrosine &
Phenylalanine

PheA, TyrA/TyrC, (AroH), (TyrB) FY 1 2257 --
PheA, (AroH), (TyrB) FA 1/0 40 Tyr

TyrA/TyrC, (AroH), (TyrB) AY 0/1 179 Phe
- AA 0 380 Tyr, Phe
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Table 1. Cont.

Amino Acid Pathway Signature and Biosynthetic a.a.
Dependencies 1 PV 2 BP 3 No. Gen. 4 Growth

Requirements 5

Tryptophan

TrpA, TrpB, TrpC, (TrpD), TrpF, TrpEG P 1 1810 --
TrpA, TrpB, TrpC, (TrpD), TrpF, TrpEG (no Serine) P1 1 140 Ser

TrpA, TrpB A1 0 14 Trp, indole precursors
TrpA, TrpB, TrpC A2 0 88 Trp, indole precursors

TrpA, TrpB, TrpC, TrpD, TrpF A3 0 38 Trp, anthranilate
- A 0 766 Trp

Arginine

(ArgA/ArgJ), (ArgB), ArgC, ArgD, ArgF, (ArgE),
ArgG, ArgH P 1 2061 --

ArgG, ArgH A1 0 251 Arg, citrulline
ArgA, ArgB, ArgC, ArgD, (ArgF), (ArgE) A2 0 5 Arg

- A 0 539 Arg

Chorismate

[AroG, AroB]/[AroA-II, AroB-II], AroD, AroE, AroK,
AroA, AroC P 1 2525 --

AroD, AroE, AroK, AroA, AroC P1 1 14 (missing AroG/AroB)
AroG, AroB, AroD, AroE, AroK, (AroC) P2 1 37 (missing AroA)
AroG, AroB, AroD, AroE, AroA, AroC P3 1 69 (missing AroK)
AroG, AroB, AroD, AroK, AroA, AroC P4 1 30 (missing AroE)

AroK, AroA, AroC As 0 13 Chorismate, shikimate
- A 0 169 Chorismate

Aspartate &
Asparagine

AspC, AsnA/AsnB, (GatABC) DN 1 1852 --
AspC, GatABC DAG ˆ 1 899 --

AspC DA 1/0 28 Asn
(AsnB/AsnA), (GatABC) AA 0 77 Asp, Asn

Glutamate &
Glutamine

GltBD/Gdh, GlnA, (GatABC) EQ 1 2663 --
GltBD/Gdh, GatABC EAG ˆ 1 17 --

GltBD/Gdh EA 1/0 20 Gln
(GlnA), (GatABC) AA 0 156 Gln, Glu

1 Special characters used in pathway signatures: Parenthesis denote functional roles that are not required to be
present corresponding to enzymes that were not detected in all prototrophs. ‘/’ denotes alternative enzymes
with the same functional role (at least one of these is required to be present). Biosynthetic dependencies on
other amino acids (biochemical precursors) are shown in red, where parenthesis denote a respective amino acid
growth requirement. 2 Pathway Variants: Asterisk denotes incomplete pathways with one or two essential
enzymes missing. ‘ˆ’ denote the presence of GatABC amidotransferase (see text). 3 Binary Phenotypes: ‘0’ and ‘1’
correspond to auxotrophs and prototrophs, respectively. 4 Number of genomes possessing a pathway variant. 5 ‘--’
denotes no growth requirement in predicted prototrophs; comments in parenthesis describe missing biosynthetic
enzymes or pathways. DAP, meso-2,6-diaminopimelate.

To assess the amino acid biosynthesis potential of the selected HGM metagenomic
samples, we used a development version of the Phenobiome Profiler tool provided by
PhenoBiome Inc. (Walnut Creek, CA, USA). The pipeline consists of several steps, first
of which establishes a map between the analyzed ASVs and the reference organisms in
the BPM based on the 16S rRNA nucleotide identity (for details see [47]). ASVs with high
nucleotide identity (greater than 0.9) were considered “mapped”, while the other ASVs
were considered as “non-mapped” and discarded. Samples with less than 75% abundance
coverage (i.e., the abundance of “mapped” ASVs) were discarded, resulting in 2130 (AGP),
2679 (UKT), and 145 (Hadza) samples retained for further analysis. Next, this map was
used to assign Phenotype Indices (PI), i.e., probabilistic estimates (on the scale from 0 to
1) for a given ASV to be a particular phenotype carrier (e.g., an amino acid prototroph).
Finally, a cumulative characteristic CPI was calculated as an abundance-weighted average
PI for each amino acid. Additionally, we used the Faith alpha-diversity metric to evaluate
Phenotype Alpha Diversity (PAD) for each phenotype [47]. Thus, PAD_1 and PAD_0
correspond to the alpha diversities for the sub-communities of phenotype carriers and
non-carriers, respectively.
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2.4. Comparison of Predicted Functional Profiles with the State-of-the-Art PICRUSt2 Approach

To compare the CPI-based phenotype profiling approach with a state of the art predic-
tive metabolic pathway abundance approach [52], we used ASV sequences and abundance
tables obtained for the AGP dataset and run PICRUSt2 with default parameters [53]. The
default use case for PICRUSt2 allows one to predict: (i) the abundance of KEGG ortholog
(KO) families, and (ii) the abundance of known metabolic pathways from the MetaCyc
database [54] using KO functional annotations and the Minimal Set of Pathways (MinPath)
algorithm [55]. The predicted abundances of selected amino acid synthesis pathways in
MetaCyc were normalized by read numbers in each sample. We further used the PICRUSt2
algorithm to predict the abundances of binary metabolic phenotypes in the AGP datasets
using the obtained BPM for amino acid production in 2856 reference genomes. First, we
mapped genomes from the PICRUSt2 reference tree to the BPM genomes using their NCBI
TaxIDs and, thus, prepared a custom traits table for 2607 leaves. Then, we used this BPM-
based trait table with the PICRUSt2 pipeline to calculate cumulative phenotype abundances
in 16S samples and, finally, normalize them by read number to get the relative phenotype
abundance (RPA) values.

2.5. Functional Profiling of Shotgun Metagenomes

We analyzed whole genome shotgun sequencing (WGS) metagenomic samples from
the Integrative Human Microbiome Project (iHMP) on functional dysbiosis in the gut
microbiome during Inflammatory Bowel Disease (IBD) activity [56]. The analyzed 384
WGS fastq files were filtered to remove host-specific reads using Bowtie2 [57], and the
hg38 human genome assembly. We further performed quality filtering of WGS reads using
the KneadData package (KneadData—The Huttenhower Lab) to enable adapter removal,
trimming and filtering by quality. To obtain taxonomic profiles of the WGS samples we used
Kraken 2 and Bracken [58] and our custom genomic database containing 2856 reference
HGM bacteria with taxonomic assignments according to the NCBI Taxonomy Database.
To assess the metabolic potential for amino acid production in the WGS samples, we used
the Phenotype Profiler tool with the relative taxonomy abundance profiles provided as an
input and a taxonomy-based approach to map the respective taxonomic assignments to the
reference BPM organisms (for details, see [47]). The WGS entries with taxonomic similarity
to the BPM worse than on a family level were marked as “non-mapped” and discarded,
with the respective relative abundances of “mapped” entries renormalized to sum to 1. As
a result, the predicted metabolic phenotype profiles included CPI values calculated for each
WGS sample and each analyzed amino acid phenotype.

For the gene-based functional profiling of trimmed and filtered WGS data files we
implemented a pipeline including the following public domain tools: a metagenome as-
sembly with MEGAHIT [59]; gene prediction with Prokka (v1.14, metagenomic mode) [60];
functional annotation by a protein similarity search with DIAMOND [61]; and mapping
of WGS reads to the functionally annotated genes using Bowtie2 [57]. For functional an-
notation we used complete proteomes of 2856 reference HGM genomes that include both
functionally annotated proteins from the reconstructed metabolic pathways and represen-
tative sequences of all other proteins from these genomes. Finally, we sum up the number
of mapped reads for genes with the same functional role from the reconstructed metabolic
pathways using bedtools [62]. At the final step, we performed gene count normalization
using the Trimmed Mean of M-values (TMM) approach [63] implemented in the edgeR
package [64]. For TMM-normalization, we used a core gene set that is a set of universal
single-copy genes that are present in all genomes in our reference database. The gene count
matrix included only genes that either belong to a set of the functionally annotated genes
from the studied amino acid biosynthetic pathways or genes from the core gene set. As a re-
sult, the predicted functional gene profiles included the TMM-normalized total abundances
of genes encoding pathway-specific reactions in each amino acid production pathway.
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3. Results
3.1. Genomic Reconstruction of Amino Acid Biosynthetic Pathways

In order to reconstruct amino acid metabolism in HGM communities, we first com-
piled the list of 2856 representative bacterial genomes using the MetaHIT consortium [65],
the Human Microbiome Project (HMP) [66], and literature [13], and further mapped the ob-
tained HGM species onto the PATRIC genomic database [32]. The obtained HGM genomic
collection was represented by 823 taxonomic species, 296 genera, 104 families, 42 orders,
23 classes and 11 phyla (Table S1). The majority of the analyzed genomes belong to the
Firmicutes (47%), Proteobacteria (22%), Actinobacteria (18%) and Bacteroides (11%) phyla.
The Bifidobacterium and Streptococcus genera included over 200 genomes, while each of
the Bacillus, Bacteroides, Enterococcus, Escherichia, Lactobacillus, Prevotella, and Staphylococcus
genera were represented by 100–200 genomes.

For reconstruction of the metabolic pathways of amino acid biosynthesis and the
identification of uptake transporters we applied the metabolic subsystem approach imple-
mented in the SEED genomic platform and database [18] using the comparative genomics
workflow described in our previous analysis of vitamin metabolic pathways [25]. For ev-
ery proteinogenic amino acid, we created a metabolic subsystem table populated by the
occurrence of specific functional roles in the analyzed set of bacterial genomes (Table S2).
Alanine was excluded from this analysis as it is ubiquitously produced by bacteria in a
single biochemical step of pyruvate transamination, and therefore does not imply a bio-
chemical pathway. Moreover, we reconstructed a biosynthetic pathway for chorismate,
which is a common precursor of three aromatic amino acids (Trp, Tyr, Phe). Three branched
chain amino acids (Ile, Leu, Val), two aromatic amino acids (Phe, Tyr), as well as the two
pairs of related amino acids, Asn and Asp, and Gln and Glu, were combined together into
the respective subsystems (Table 1 and Figure 1). The developed subsystems included the
functional roles of previously known enzymes and transporters from literature, reference
metabolic pathway databases including KEGG [38] and MetaCyc [54], and also 7 novel
enzymes predicted to be involved in amino acid metabolism as non-orthologous gene
displacements (see below).

As a result, 15 metabolic subsystems were populated by 213 functional roles including
155 enzymes catalysing 99 distinct biochemical reactions (each corresponds to a unque
Enzyme Commission (EC) number), 47 components of 23 amino acid uptake transporters
and 3 transcriptional regulators for amino acid metabolism (Table S3). The reconstructed
amino acids biosynthetic pathways included several alternative pathways variants (Table 1
and Figure 1) including: (i) two variants for branched chain amino acids that have the
same core pathway and differ in the upstream source of 2-oxobutanoate; (ii) four variants
of the lysine biosynthesis pathway that differ by the intermediate route of conversion of
tetrahydrodipicolinate to meso-2,6-diaminopimelate; (iii) two methionine synthesis path-
way variants that differ by the source of sulfur (cysteine or hydrogen sulfide); (iv) two
routes for glycine biosynthesis (staring from threonine or serine); (v) two alternative up-
stream pathways in the chorismate biosynthesis; (vii) two alterantive enzymes for synthesis
of glutamate from oxoglutarate (glutamate synthase GltBD and glutamate dehydrogenase
Gdh), and asparagine from aspartate (aspartate–ammonia ligase AsnA and asparagine
synthetase AsnB). Furthermore, in the glutamine metabolic subsystem, we included an
alternative route represented by glutamyl-tRNA amidotransferase (GatABC), which pro-
vides a means of producing correctly charged Gln-tRNA(Gln) through the transamidation
of mis-acylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase [67].
The same GatABC amidotransferase was also added to the asparagine subsystem, since it
was shown that this enzyme is equally efficient in the transamidation of Asp-tRNA(Asn)
and Glu-tRNA(Gln), thus it can compensate for the absence of AsnA/AsnB in Helicobacter
pylori, Acinetobacter baumannii, Bifidobacterium longum, Staphylococcus aureus and many other
microorganisms [68] (Table 1).
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3.2. Non-Orthologous Gene Displacements in Biosynthetic Pathways

The reconstructed amino acid biosynthetic pathways include 103 functional roles
for enzymes represented by non-orthologous gene displacements (NODs) that catalyze
33 biochemical reactions in total (Table S3). These include seven new NOD enzymes from
the arginine, serine, lysine, and threonine biosynthetic pathways (Table 2). Functional and
comparative genomic analysis of these novel NODs in the amino acid biosynthesis of HGM
species is described below.

Table 2. Novel amino acid biosynthesis enzymes predicted as non-orthologous gene displacements
in HGM genomes.

Pathway Enzyme Predicted Functional Role Occurrence 1 Evidence 2 Example ID 3

Arginine ArgA2 N-succinylglutamate synthase (EC 2.3.1.-) 7.4% CO, CL, CR, CF Q8A1A5
ArgA3 N-acetylglutamate synthase (EC 2.3.1.1) 0.8% CO, CL W3Y6L2

Serine
SerC2 Phosphoserine aminotransferase (EC 2.6.1.52) 4.0% CO, CF, CL Q2FXK2
SerC3 Phosphoserine aminotransferase (EC 2.6.1.52) 6.1% CF, CL A5I0W7
SerB2 Phosphoserine phosphatase (EC 3.1.3.3) 3.6% CO, CF C4IFQ5

Threonine ThrB2 Homoserine kinase (EC 2.7.1.39) 10.6% CO, CL Q5LHR7

Lysine DapF2 Diaminopimelate epimerase (EC 5.1.1.7) 4.4% CO, CL, CR W1W731
1 Percentage of HGM genomes possessing a non-orthologous enzyme. 2 Genome context evidence: CO, co-
occurrence; CL, co-localization; CR, co-regulation; CF, common functional class. 3 Uniprot protein ID.

In the arginine biosynthetic pathway, we identified two novel NODs for N-acetylglutamate
synthase ArgA, which catalyzes the first step in the pathway, the conversion of L-glutamate
to N-acetyl-L-glutamate (Figure 1). ArgA is missing in 228 genomes of HGM bacteria
possessing an incomplete pathway variant. The majority of these species belong to the Bac-
teroidetes phylum (194 genomes). In all these genomes, we identified a novel candidate en-
zyme (named ArgA2) previously annotated as a putative GNAT-family N-acetyltransferase
in bacteria from the Bacteroides, Prevotella, Alistipes, and other genera, which is encoded by a
gene located within their arginine operons (Figure 2). An alternative arginine biosynthetic
pathway involving succinyl derivatives was previously characterized in Bacteroides frag-
ilis [69], where a novel N-succinyl-L-ornithine carbamoyltransferase (ArgF3) replaces the
classic ArgF enzyme (e.g., from E. coli), which is specific for N-acetyl-L-ornithine [70]. It
was also shown that the second step of arginine biosynthesis in B. fragilis is catalyzed by
N-succinyl-L-glutamate kinase [69], which is an ortholog of ArgB, thus suggesting the use
of succinylated intermediates for arginine synthesis. Interestingly, the ArgF3 proteins from
Bacteroides spp. showed low sequence similarity to the E. coli ArgF protein (~26% iden-
tity) and revealed a characteristic for ArgF3 proline-rich loop, which is absent from ArgF
proteins. We revealed a co-occurrence of ArgF3 and ArgA2 in 190 Bacteroidetes genomes,
moreover, the argA2 genes are colocalized with argF3 in 23 of these genomes. Thus, we
proposed N-succinyl-L-glutamate synthase function to ArgA2 in the Bacteroidetes phylum.
This hypothesis on involvement of ArgA2 in arginine biosynthesis was recently confirmed
by large-scale genetic data in B. thetaiotaomicron, which shows that the ArgA2-encoding
gene BT3761 is critical for growth on minimal media without amino acids, and its fitness
defect was rescued through the addition of arginine [71]. Finally, we detected another NOD
for a missing ArgA enzyme in 12 Vellionela and Dialister genomes, named ArgA3, which is
homologous to N-acetylcysteine deacetylase from Bacillus subtilis (Uniprot ID P54955, 39%
identity). The genomic context of argA3, namely its co-occurrence and colocalization with
other arg genes, confirms its functional involvement in arginine biosynthesis (Figure 2).
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The serine biosynthetic pathway contains three NODs for two major enzymes, SerC
and SerB, that catalyze the transamination of phosphohydroxypyruvate to phosphoserine
and its subsequent dephosphorylation to serine, respectively (Figure 1). The previously
known type of phosphoserine aminotransferase (SerC1) was absent in 217 HGM genomes
possessing two other serine biosynthetic enzymes, SerB and SerA. Among these genomes,
we identified a novel NOD of aminotransferase, named SerC2, which form the same operon
with SerA and SerB in 113 genomes from the Staphylococcus genus. Another potential
phosphoserine aminotransferase isozyme, named SerC3, was identified in 173 genomes
including 120 genomes that lack both serC1 and serC2 genes. The genome context analysis
suggests that serC3 is located within the same putative operon with serA in 65 genomes
including the Clostridium, Akkermansia spp., and Brevibacillus spp., while Brachyspira pilosicoli
has all three serine biosynthesis genes organized into a single serC3-serA-serB1 operon
(Figure 2). Both SerC2 and SerC3 belong to the same family of aminotransferases (Pfam ID
PF00266) as SerC1 and are similar to a recently characterized 3-phosphoserine transaminase
from Synechocystis sp. (Uniprot ID P74281) [72], thus supporting the predicted biochemical
function of these NODs.

The last step of serine biosynthesis is catalysed by phosphoserine phosphatase SerB,
named SerB1 in our study, which was characterized in E. coli [73] and many other bacterial
species [74]. SerB1 is absent in 660 HGM genomes encoding two other serine pathway
enzymes, SerA and SerC. Alternative YseA enzyme with phosphoserine phosphatase
activity (termed SerB3 here) was identified in Bacillus subtilis by screening against a large
library of phosphorylated compounds [74]. Here, we tentatively identified two other
phosphoserine phosphatase NODs: (i) SerB2 in 58 genomes; and (ii) SerB4 in 120 genomes
(Figure 2). The SerB2 isozyme belongs to the histidine phosphatase superfamily (Pfam ID
PF00300), while SerB4 is a putative phosphatase from the HAD superfamily, which has
an additional N-terminal domain annotated as the haloacid dehalogenase-like hydrolase
(Pfam ID PF00702). SerB2 shows 32% identity to recently characterized phosphoserine
phosphatase from Hydrogenobacter thermophilus [75]. Genomic co-localizations of the serB2
and serA genes in Peptoniphilus spp., as well as serB4 with the serC3 and serA genes in
Brevibacillus spp., Bacillus fordii, and Staphylococcus spp. suggest an involvement of these
novel phosphatases in the serine biosynthesis pathway.
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The threonine biosynthetic pathway requires two specifc enzymes, homoserine kinase
ThrB and threonine synthase ThrC, and also involves homoserine dehydrogenase Hom,
which is shared with the methionine biosynthesis pathway (Figure 1). ThrB is absent in 328
out of 2533 predicted threonine prototrophs among the analyzed HGM genomes. A novel
predicted functional analog of homoserine kinase, named ThrB2, was identified in 300 HGM
genomes, two thirds of which are members of the Bacteroidetes phylum, while the remain-
ing genomes belong to the Firmicutes phylum. These include 278 genomes with missing
thrB gene, thus thrB and thrB2 demonstrate complementary genomic occurrence profiles.
In the majority of Bacteroidetes species, the thrB2 gene is a part of a three-gene operon
encoding ThrC and Asd-Hom, a bifunctional enzyme involved in homoserine synthesis
(Figure 2). We also identified a few other Bacteroidetes species (e.g., B. propionicifaciens and
B. coprosuis) that possess similar threonine biosynthesis operon, where thrB2 is substituted
with thrB, suggesting these two genes encode interchangeable enzymes. Among Firmicutes,
thrB2 is co-localized with the asd and hom genes in nearly 50 out of 100 HGM genomes,
including Blautia, Clostridium, Eubacterium, and Roseburia spp. Many of the identified thrB2
genes are currently annotated as a putative phosphoglycerate mutase because their protein
products are ~35% identical to 2,3-bisphosphoglycerate-independent phosphoglycerate
mutase (PGM) from Archaea (Uniprot ID O57742), which has a metalloenzyme domain
fused to the PGM catalytic domain and is dependent on the presence of metal cations [76].
Interestingly, a large-scale chemical-genetics screening of genes recently identified the
ThrB2-encoding BT2402 gene as a potential replacement of ThrB in B. thetaiotaomicron as it
was required for growth in minimal medium, while the addition of threonine has rescued
this growth deficiency [77]. In summary, we conclude that ThrB2 is a promising candidate
for NOD of a traditional homoserine kinase in many HGM species.

Lysine biosynthesis is represented by four pathway variants, eleven biochemical reactions
and sixteen dedicated enzymes including three alternative forms of L,L-diaminopimelate
aminotransferase (DapL), two isozymes of N-succinyl-L,L-diaminopimelate aminotrans-
ferase (DapC), and two variants of diaminopimelate epimerase (DapF), which synthesizes
meso-2,6-diaminopimelate from LL-2,6-diaminopimelate (Figure 1, Table S3). A novel
diaminopimelate epimerase isozyme, named DapF2, belongs to the family of pyridoxal
phosphate dependent isomerases, specifically those racemases and epimerases acting on
amino acids and derivatives. DapF2 is homologous to alanine racemase from Corynebac-
terium glutamicum (Uniprot ID Q8RSU9, 29% similarity) and lysine racemase from Oeno-
coccus oeni (Uniprot ID Q04HB7 27% similarity). The dapF2 gene was found in 125 HGM
genomes possessing the incomplete lysine biosynthetic pathway with missing dapF. The
majority of DapF2-encoding genomes are from the Staphylococcus genus, namely S. aureus,
S. epidermidis, S. hominis, etc. (114 genomes), and also include a small group of Gemella sp.
(6 genomes) and Peptostreptococcus sp. (5 genomes). Based on this gene occurrence pattern,
genomic co-localization of dapF2 with other lysine biosynthetic genes including lysA, dapB,
dapA, and dapH (Figure 2) and their co-regulation by the lysisne riboswitch [24], we propose
that DapF2 is a NOD for a traditional form of diaminopimelate epimerase DapF.

3.3. Incomplete Pathway Variants and Salvage of Amino Acid Precursors

Metabolic reconstruction of amino acid biosynthesis in 2856 microbial genomes re-
vealed the presence of incomplete pathways (Table 1). First, along with the canonical
biosynthetic pathway variants (denoted as P, P1, P2, etc.), we introduced P* variants with
missing enzymes that are potentially substituted by yet unknown alternative enzymes. The
threonine synthesis pathway is incomplete in 50 bacterial genomes (mostly Clostridia) that
lack both homoserine kinase isozymes (ThrB and ThrB2). The serine pathway lacks all four
alternative phosphoserine phosphatases in 450 genomes representing diverse Firmicutes
species. The branched-chain amino acid (BCAA) biosynthetic pathway in 17 genomes
(mostly Actinobacteria) lacks both alternative forms for the first enzymatic step, namely thre-
onine dehydratase (IlvA) and citramalate synthase (CimA). In the lysine biosynthetic path-
way, there are 38 genomes mostly from the Alistipes and Capnocytophaga genera with missing
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amination pathway enzymes converting tetrahydrodipicolinate to LL-2,6-diaminopimelate
but, at the same time, that possess all other enzymes essential for lysine formation, namely
DapA, DapB, DapF, and LysA (Figure 1). We hypothesized that all of the above-described
P* variants correspond to respective amino acid prototrophic phenotypes and that future
studies will help to identify missing biosynthetic enzymes or metabolic routes.

On the other hand, we also identified incomplete pathway variants with missing key
biosynthetic enzymes, and the corresponding genomes were assigned amino acid aux-
otrophic phenotypes (denoted as A*, A1, A2, A3, etc.). For example, the arginine pathway
in 251 genomes is represented by only 2 out of 8 enzymatic steps, namely argininosuccinate
synthase (ArgG) and argininosuccinate lyase (ArgH), that are involved in the formation
of arginine from citruline (variant A1). On the contrary, we also identified five arginine
auxotrophs that are capable of synthesizing citrulline but lack ArgG and ArgH (variant A2),
suggesting that citrulline could be involved in metabolic exchange in HGM communities.
The BCAA biosynthetic pathways are incomplete in 20 HGM genomes (such as Lactobacillus
and Sutterella spp.), possessing only the leucine biosynthetic genes with apparently missing
upstream pathways for isoleucine and valine biosynthesis (variant A*). In the methionine
pathway, the upstream part of the pathway leading to homocysteine from homoserine is
absent in 83 HGM genomes (variant A1), while both methionine synthase isozymes (MetH
and MetE) are missing in 25 genomes (variant A2). The lysine pathway in 14 genomes
lacks all enzymes leading to meso-2,6-diaminopimelate formation (variant A1), while the
presence of the last enzymatic step (LysA) in these HGM species suggests their potential
capability to salvage the diaminopimelate precursor of lysine. Three incomplete pathway
variants were found for tryptophan biosynthesis. The A1 variant assigned to 14 HGM
strains includes a single enzyme, tryptophan synthase (TrpAB), that catalizes the final
step of the pathway—condensation of indole and serine to tryptophan. The A2 variant
identified in 82 Propionibacterium acnes strains, three Clostridium and two Streptoccocus spp.
genomes contains one additional enzyme, TrpC, catalyzing an upstream reaction leading to
the formation of 3-indoyl-glycerolphosphate. The remaining group of predicted tryptophan
auxotrophs (A3 variant, 38 genomes) are not able to synthesize anthranilate due to the
absence of TrpEG; however, they possess all of the downstream enzymes for tryptophan
synthessis from anthranilate. Finally, we identified a group of eleven Lactobacillus and
two Anaerotruncus strains that have an incomplete pathway of chorismate biosynthesis
represented by AroK, AroA, and AroC enzymes (Figure 1), allowing these auxotrophic
species to use shikimate for chorismate synthesis (variant As). In general, the conducted
analysis of incomplete amino acid biosynthesis pathways identified potential metabolic
crosstalks among HMG species.

3.4. Predicted Amino Acid Synthesis Phenotypes and Growth Requirements

Based on the obtained distribution of amino acid biosynthetic enzymes and pathways
among 2856 HGM genomes, we assigned prototrophic and auxotrophic pathway vari-
ants and predicted their growth requirements (Table 1). Since biosynthetic pathways for
several amino acids are mutually dependent on other amino acids that serve as essential
metabolic precursors (Figure 1), we analyzed pathway dependencies characterized by a
combination of auxotrophic and prototrophic phenotypes for metabolically interconnected
amino acids in more detail. For cysteine and tryptophan, both amino acid biosynthetic
pathways require serine as a precursor, we identified their dependencies on serine in 411
and 140 genomes, respectively. These include many Streptococcus and Veillonella strains
that are predicted serine auxotrophs with complete pathways for cysteine and tryptophan.
Glycine is synthesized from either serine or threonine by single-step pathways; we thus
identified 395 genomes possessing the serine to glycine pathway (GlyA or SgaA) but lack-
ing serine biosynthesis, suggesting their growth requirement for either glycine, or serine
(P1 phenotype). In contrast, only 25 genomes with predicted threonine auxotrophy possess
the threonine to glycine pathway (GlyB) as the only glycine biosynthetic pathway (P2
phenotype). Another 23 genomes possess both glycine biosynthetic pathways but lack both
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threonine and serine biosynthesis, suggesting their growth requirement for either threonine,
serine, or glycine (P3 phenotype). Biosynthesis of all three aromatic amino acids (Phe, Trp,
Tyr) requires a common metabolic precursor, chorismate, which is also used for synthesis
of the folate precursor para-aminobenzoate. Among the analyzed HGM genomes, we
identified 15 chorismate auxotrophic strains that possess at least one downstream pathway
for aromatic amino acid synthesis, including five Lactobacillus fermentum and three Dialister
invisus strains. The BCAA biosynthetic pathway that utilizes threonine as a precursor
(signature enzyme IlvA) was identified in 20 threonine auxotrophic strains including all six
Akkermansia genomes. Glutamate serves as a precursor for arginine, proline, and aspartate
biosynthesis. In our genomic collection, we found 14, 36 and 113 genomes that lack gluta-
mate synthesis but possess pathways for the biosynthesis of arginine, proline, and aspartate,
respectively. Finally, we found 19 Asp-auxotrophic strains (e.g., Helicobacter pylori) that
require Asp for their lysine biosynthesis. Overall, the predicted mutual dependencies
of amino acid biosynthetic pathways suggest an expanded role of metabolite exchange
between auxotrophic and prototrophic HGM strains.

To validate the predicted amino acid synthesis phenotypes, we searched published
experimental data on amino acid auxotrophies for each of 800 analyzed HGM species.
Analysis of amino acid growth requirements in 33 bacterial species revealed that 117
out of 135 experimentally determined amino acid requirement phenotypes (87%) agreed
with the predicted amino acid auxotrophies (Table S4A). For instance, cysteine growth
requirement was previously established for a large number of Bifidobacterium species
and strains including 11 Bifidobacterium species analyzed in this work that all lack the
cysteine biosynthetic pathway, with only the exception of B. scardovii, which was capable
of growing slowly in the Cys-deficient medium [78]. A few cases of inconsistency for Cys
and Met phenotypes in Lactobacillus and Listeria spp. could be explained by the absence
of enzymes and/or transporters providing hydrogen sulfide, an essential precursor for
both sulfur-containing amino acids. The remaining inconsistencies could possibly occur
due to alternative biosynthetic enzymes (for Glu, Asp in Lactobacillus spp.), or explained by
strain-specific phenotype variations, when the experimentally assessed strain may have
phenotypes distinct from the reference strains analyzed in this work (such as the Pro
and Ser auxotrophies in Clostridium sporogenes). We further analyzed the experimentally
characterized amino acid production capabilities of HGM species and found a perfect
correlation of these phenotypes with those predicted from current genomic analyses amino
acid prototrophic phenotypes (Table S4B). In summary, the examined experimental data on
amino acid requirements and production corresponds well to our in silico reconstruction
and prediction of amino acid biosynthesis phenotypes.

3.5. Phylogenetic Variability of Binary Amino Acid Synthesis Phenotypes

The obtained pathway variants for amino acid prototrophs and auxotrophs were
translated to binary (“1” and “0”) phenotypes (Table 1). Next, we calculated the averaged
amino acid prototrophic phenotype values at the level of species, genus, family, order, class,
and phylum (Table S5). Phylogenetic distribution of the obtained averaged phenotype
values demonstrates that the majority of HGM genera from Actinobacteria, Bacteroidetes,
Firmicutes and Proteobacteria phyla are prototrophs for most amino acids (Figure 3). For
instance, among Actinobacteria, all 242 analyzed genomes of Bifidobacterium spp. can
synthesize all amino acids except cysteine, while 84 Cutibacterium spp. are auxotrophs
for methionine, phenylalanine, tryptophan and BCAA. Most Fusobacteria are auxotrophs
for all amino acids except asparagine, aspartate, glutamine, glutamate, while the Teneri-
cutes phylum mostly includes auxotrophic strains for all amino acids. The Lentisphaerae
and Planctomycetes phyla, each represented by a single genome, are prototrophic for all
amino acids, except auxotrophy for serine and cysteine in Victivallis vadensis. Spirochaetes
(2 genomes) are auxotrophic for arginine, histidine, and tryptophan, while 3 analyzed
strains of Synergistetes show mixed patterns of prototrophy for 10 amino acids. Finally, the
Verrucomicrobia strains are prototrophic for all amino acids except threonine (Figure 3B).
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To enable the accurate phylogeny-based projection of amino acid synthesis phenotypes
from reference HGM genomes to phylotypes from metagenomic samples we assessed
binary phenotype variations at various taxonomic levels using two metrics: (i) number of
variable phenotypes (NVP), and (ii) overall phenotype variability score (OPVS), which was
calculated as a sum of variances for each amino acid phenotype, as previously described [25]
(Table S5). For nineteen amino acid synthesis phenotypes, the cumulative OPVS metric
ranges between 0 and 9.5. Among 830 analyzed HGM species, 330 species are represented
by two or more strains, including 213 species containing three or more strains (Table S5A).
Of the latter group, 55 species have at least one variable amino acid phenotype (NVP > 0).
Five Lactobacillus spp., Campylobacter jejuni, Clostridium botulinum, Fusobacterium nucletum,
Kytococcus sedentarius, and Sutterella wadsworthensis showed the highest NVP and OPVS
values at the species level. Lactobacillus brevis, represented by three analyzed HGM genomes,
shows the highest variability of the amino acid synthesis phenotypes (NVP = 15, OPVS = 5),
suggesting that one of these strains could be incorrectly classified. Indeed, L. brevis subsp.
gravesensis ATCC 27305, which is a predicted prototroph for all amino acids except cysteine,
while two other L. brevis strains are auxotrophs for all but three amino acids, was recently
re-classified as Lactobacillus hilgardii strain.

At the genus level, 163 out of 296 analyzed genera are represented by more than one
species or strain, and 95 of them (58%) showed various degrees of amino acid synthesis
phenotype variability (Table S5B). The highest levels of variability (NVP > 5; OPVS > 2) were
noted for the Anaerococcus, Anaerotruncus, Coprococcus, Dialister, Lactobacillus, Lactococcus,
Streptococcus, and Clostridium genera from the Firmicutes phylum, a few genera from the
Actinobacteria phylum, as well as the Fusobacterium, Helicobacter, Prevotella and Sutterella
genera from other HGM phyla (Figure S1). At higher taxonomic ranks, the variability
of amino acid synthesis phenotypes gradually increased, with the corresponding HGM
families, namely Lactobacillales, Tissierellales, Bacteroidales and Actinomycetales, showing
the highest OPVS values (Table S5C–E). Finally, we calculated the cumulative amino acid-
specific variability scores across all analyzed taxa. Tryptophan biosynthesis appears to
be the most variable amino acid synthesis phenotype at all taxonomic levels, followed by
histidine, lysine and leucine biosynthesis that were also highly variable at the genus level.

3.6. Profiling of Amino Acid Metabolic Potential of the Human Gut Microbiome

To assess the ability of HGM bacterial communities to produce amino acids, we
analyzed public metagenomic datasets using the previously developed phenotype profiling
approach [25] and the obtained in this work Binary Phenotype Matrix (BPM) describing
the predicted amino acid synthesis capabilities of reference HGM genomes. We calculated
the CPIs for three large 16S rRNA datasets of fecal samples representing the human
gut microbiome from the AGP [48], UKT [49], and the Tanzanian community of hunter-
gatherers (Hadza) [51] (Table S6). CPI values represent the expected fractions of respective
amino acid synthesis phenotype carriers in the community. Their distributions across
samples from each of the three datasets and for each amino acid synthesis phenotype
demonstrate a similar pattern (Figure 4).
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We further analyzed PAD metrics of HGM samples, namely PAD_1 and PAD_0,
that describe diversity for the sub-communities of phenotype carriers and non-carriers,
respectively [47]. We computed the PAD_1 and PAD_0 values for samples from three
analyzed 16S rRNA datasets and investigated their mutual dependence and link to CPI
values (Table S6). Amino acid synthesis phenotypes with the highest median CPI, such
as chorismate, aspartate, glutamine, glycine, etc., reveal the largest PAD_1 and smallest
PAD_0 values in each metagenomic dataset. To facilitate the comparison of metrics between
distinct amino acid phenotypes, we analyzed the distributions of the relative CPI (rCPI) and
the relative PAD (rPAD) values across samples in each dataset (Figure S2). For each amino
acid, the rCPI was calculated as the ratio of the (1-CPI) value (community auxotrophy index)
and CPI (community prototrophy index), while rPAD was defined as the ratio of PAD_0
(diversity of auxotrophs) and PAD_1 (diversity of prototrophs) for a given amino acid.
The median rCPI and median rPAD values calculated for each amino acid phenotype and
each dataset demonstrated mutual dependence (r2 = 0.81–0.91), where the highest rPAD
and rCPI values correspond to tryptophan (Figure 5). This observation implies metabolic
dependence between the abundance of bacterial prototrophs and community richness
across the analyzed samples. Typically, rPAD values are 2–4 times larger than rCPI, which
indicates that auxotrophs have greater diversity per unit of abundance. For most amino
acids, the median values of rCPI and rPAD do not follow any particular pattern across
datasets. However, the rPAD metric for tryptophan demonstrates consistency across three
datasets, which probably puts an upper limit for the value of alpha diversity of tryptophan
auxotrophs in the human gut microbiome. Finally, despite the great variation of rCPI and
rPAD values, the western microbiome cohorts (AGP and UKT) have a greater similarity in
distribution of median values for both metrics compared to the rural microbiome cohort of
the Hadza, which demonstrates higher rPAD values for all amino acids except tryptophan
(Figure S2B).
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3.7. Comparison of Amino Acid Production Phenotypes and Pathway Abundances

To assess the phenotype-based functional profiling approach, we compared the ob-
tained CPI profiles with predicted abundances of amino acid synthesis pathways in the
AGP dataset obtained using PICRUSt2, a popular functional prediction tool for 16S rRNA
metagenomic data [53]. First, we used the obtained in this work BPM describing amino acid
synthesis as a custom input of functional traits in PICRUSt2, resulting in the calculation of
relative phenotype abundances (RPA) for each amino acid in each AGP sample (Table S7).
The obtained PICRUSt2-based RPA values demonstrate high correlation coefficients with
the CPI values for corresponding amino acids (Table 3). We further compared the PICRUSt2-
predicted RPA profiles with relative abundance of major amino acid synthesis pathways in
MetaCyc obtained using the default PICRUSt2 pipeline (Table S7). For many amino acid
biosynthesis pathways, the MetaCyc database [54] includes multiple alternative pathway
variants (Table 3). For example, lysine biosynthesis is represented by four alternative Meta-
Cyc pathways, two of which show high correlations with predicted RPA values for lysine,
while two other pathway variants did not correlate with RPA. The highest correlation coeffi-
cients between RPA and relative pathway abundances were observed for the longest amino
acid synthesis pathways, namely histidine and tryptophan, suggesting that an RPA-based
approach for predictive functional profiling is preferable for short metabolic pathways.
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Table 3. Pearson’s correlation coefficient for comparison of CPIs, relative phenotype abundance
(RPA) and relative pathway abundance (MetaCyc) for amino acid synthesis pathways obtained by
PICRUST2 pipeline on HGM samples from the AGP dataset.

RPA vs. CPI RPA vs. MetaCyc MetCyc Pathway Name and Annotation

0.86

0.54 ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle)
0.59 ARGSYN-PWY: L-arginine biosynthesis I (via L-ornithine)
0.31 PWY-5154: L-arginine biosynthesis III (via N-acetyl-L-citrulline)
0.60 PWY-7400: L-arginine biosynthesis IV (archaebacteria)

0.81 0.92 HISTSYN-PWY: L-histidine biosynthesis

0.60

0.64 ILEUSYN-PWY: L-isoleucine biosynthesis I (from threonine)
0.71 PWY-5101: L-isoleucine biosynthesis II
0.69 PWY-5103: L-isoleucine biosynthesis III
0.56 PWY-5104: L-isoleucine biosynthesis IV

0.67 0.70 LEUSYN-PWY: L-leucine biosynthesis

0.69

0.27 DAPLYSINESYN-PWY: L-lysine biosynthesis I
−0.05 PWY-2941: L-lysine biosynthesis II
0.71 PWY-2942: L-lysine biosynthesis III
0.72 PWY-5097: L-lysine biosynthesis VI

0.71
−0.16 HOMOSER-METSYN-PWY: L-methionine biosynthesis I
−0.17 HSERMETANA-PWY: L-methionine biosynthesis III

0.74 0.86 TRPSYN-PWY: L-tryptophan biosynthesis
0.60 0.64 VALSYN-PWY: L-valine biosynthesis

Finally, we analyzed the distribution of genes encoding amino acid biosynthetic en-
zymes in WGS metagenomic samples from the IBD study [56]. The TMM-normalized
cumulative gene abundances for functional roles from seven analyzed biosynthetic path-
ways demonstrated uneven distribution across 384 WGS samples (Table S8). For each
analyzed pathway, we further selected two signature functional roles, corresponding to
genes that are present in a single copy across the majority of amino acid prototrophic
species in the reference HGM genomic collection (Table S2). As a result, the abundance of
each amino acid pathway was estimated as a sum of gene abundances for corresponding
selected signature functional roles (Figure 6). Interestingly, the highest mean pathway
abundances were observed for arginine, leucine, and cysteine, while histidine and other
amino acids demonstrate lower mean pathway abundance values. We further obtained
taxonomic profiles for WGS samples from the IBD dataset using the established Kraken
2/Bracken approach. The obtained NCBI taxonomies were mapped to the reference collec-
tion of 2856 HGM genomes to calculate the CPI indices for predicted relative abundances
of amino acid producers in each sample (Table S8). The CPI indices were compared with
the calculated abundances of each respective amino acid synthesis pathway (based on a
total abundance of genes from two selected signature functional roles). Fairly high Pearson
correlation coefficients were obtained for tryptophan (0.66), followed by histidine (0.5)
and arginine (0.49), while other amino acids demonstrated weak correlation coefficients
(0.25–0.36) that can be explained by their high mean CPI values (>0.95) and by generally
shorter metabolic pathways.
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4. Discussion

Microbial communities in the human gut are capable of producing a large number of
biologically relevant metabolites including amino acids and their derivatives. Concentra-
tions of proteinogenic amino acids in the large intestine are dependent on the following
major processes: (i) de novo amino acid biosynthesis by HGM bacteria; (ii) dietary protein
degradation by host proteases; (iii) the fermentation and transformation of free amino
acids by HGM-expressed catabolic pathways and amino acid-active enzymes (e.g., gen-
eration of bioactive compounds from tryptophan); and (iv) host absorption [1,4,11,79].
HGM vary taxonomically and functionally from person to person, and also with time,
being dependent on environmental (diet, exposure to pathogens, antibiotics, etc.), lifestyle
(exercises, stress, tobacco and alcohol), and personal (genetics) factors [80]. Bioinformatics
approaches for predictive functional profiling are important for the analysis of changes
in metabolic function between various HGM samples. Previously, we developed a new
approach of metabolic phenotype profiling to quantify the fractional representation of
predicted metabolic features (phenotypes) and applied it for the analysis of B vitamin
requirements in HGM metagenomic samples [25,26]. Here, we expanded this approach
toward predictive functional profiling of amino acid requirements in HGM.

The subsystem approach to genome annotation and metabolic reconstruction tech-
niques allow one to map known enzymes to biochemical pathways in model species,
propagate the experimentally confirmed functional annotations to other genomes, and iden-
tify candidates for missing genes in pathway gaps [17,19,37]. Substantial phylogenetic and
metabolic diversity of bacteria inhabiting the large intestine is a main factor contributing to
numerous gaps in our understanding of amino acid biosynthesis in HGM species beyond
model organisms such as E. coli and a few others [81]. In this study, we performed the
subsystem-based metabolic reconstruction to predict the amino acid biosynthetic potential
of 2856 reference HGM genomes. The reconstructed pathways include several alternative
pathway variants (see Figure 1 and Table 1) and over 100 alternative enzymes represented
by non-orthologous gene displacements and catalyzing 33 biochemical reactions (Table S3).
A few novel alternative enzymes allowed us to close the gaps in the analyzed biosynthetic
pathway for the serine, arginine, threonine, and lysine pathways in a large number of HGM
genomes (Table 2). Despite our efforts, a few metabolic pathways are still incomplete in
many HGM genomes (see P* variants in Table 1). The most notable incomplete pathway
variants are due to the absence of (i) phosphoserine phosphatase SerB in 450 genomes,
and (ii) homoserine kinase ThrB in 50 genomes. Based on the identification of multiple
alternative enzymes for each of these steps, and the presence of all other essential enzymes
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in the serine and threonine biosynthetic pathways of corresponding genomes, we tenta-
tively assigned them prototrophic phenotypes for serine and threonine, respectively. We
also identified the subsets of amino acid auxotrophs encoding partially truncated biosyn-
thetic pathway variants and proposed that corresponding species not only have specific
amino acid growth requirements but are also potentially capable of salvaging amino acid
precursors such as citrulline (for Arg), meso-2,6-diaminopimelate (for Lys), shikimate (for
chorismate), and anthranilate (for Trp). In silico predicted amino acid prototrophic and
auxotrophic phenotypes were supported by published experimental data on nutritional
requirements and production capabilities for amino acids (Table S4).

To apply the predicted amino acid prototrophic and auxotrophic phenotypes for
quantitative analysis of community-wide amino acid production, we have converted them
to a simple BPM (1/0) populated by 2856 reference HGM genomes. The obtained BPM
contains a large number of prototrophic species that are capable of synthesizing most of
the essential amino acids, while auxotrophic phenotypes were attributed to a small subset
of phylogenetically diverse HGM species (Figure 3). To determine the potential limitations
of phylotype-to-phenotype mapping used for the functional profiling of 16S metagenomic
samples, we determined the level of intra- and interspecies variation of binary amino acid
phenotypes in the reference set of HGM genomes. The observed variability of amino acid
phenotypes can be explained by strain-level variations in the presence of corresponding
amino acid biosynthetic genes, which are often organized into operons and can be subject
to horizontal gene transfer or strain-specific gene loss events. As a result, we confirmed
that most of the amino acid synthesis phenotypes are conserved between strains of the
same species, while a small subset of species demonstrates a few variations in the presence
of biosynthetic pathways for several amino acids, most notably Trp, Tyr, Lys, Ser, and Pro.
We concluded that our current phylogeny-based phenotype mapping approach is robust
for amino acid synthesis phenotypes with mean CPI prediction uncertainty values below
5%, thus enabling reliable predictive functional profiling for HGM metagenomic samples.

We further conducted metabolic phenotype profiling of 16S rRNA samples from
various HGM metagenomic studies, including two large cohorts from the USA (AGP)
and UK (UKT). To describe the metabolic capabilities of 16S samples, we utilized two
previously introduced by us metrics: (i) CPI, which represents the expected fraction of
phenotype carriers, i.e., bacterial cells with a particular metabolic capability (e.g., amino
acid prototrophy); and (ii) PAD, which reflects the diversity of phenotype carriers (and
non-carriers) in a microbiome sample. The distributions of CPI values for three analyzed
datasets demonstrate a high degree of similarity and likely depict the optimal proportions
between prototrophs and auxotrophs in the community for each amino acid. The highest
mean CPI values corresponding to ~100% of prototrophs were observed for chorismate,
glycine, glutamate, glutamine, and aspartate, while the lowest mean CPI was detected
for tryptophan (0.65–0.80), more resembling the average frequency of phenotypes for
the synthesis of many B-vitamins previously determined for the AGP dataset [25]. The
remaining amino acids demonstrated somewhat high mean CPI values (0.90–0.97). The
observed minor differences can be attributed to the dietary habits and other factors such
as usage of antibiotics, probiotics, etc., which directly affect the species abundance of the
luminal microbiota. A substantial level of tryptophan auxotrophy is a characteristic feature
of all analyzed HGM samples that can be attributed to the following peculiarities about
this amino acid: (i) tryptophan is encoded by a single UGG triplet, it has a rare protein
occurrence and the highest molecular weight [82]; (ii) tryptophan is the most energetically
expensive amino acid (its average biosynthetic cost is nearly 2–3 fold higher compare to
all other amino acids except phenylalanine and tyrosine) [83]; (iii) tryptophan serves as a
precursor for the synthesis of a range of neurological active metabolites including indoles,
serotonin, kynurenine and tryptamine [84].

While CPI represents a fraction of phenotype carriers, such as a particular amino
acid prototroph, the (1 − CPI) value describes the corresponding fraction of non-carriers
(e.g., amino acid auxotrophs), and these two fractions sum up to 1. Unfortunately, PAD
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does not possess this additive property, namely, PAD_1 and PAD_0 do not sum up to total
alpha diversity. To make a meaningful comparison between quantitative and qualitative
characteristics for the sub-communities of each amino acid prototrophs and auxotrophs, we
consider the corresponding ratios, i.e., rCPI = (1 − CPI)/CPI and rPAD = PAD_0/PAD_1.
The scattered plot for medians of these two relative metrics calculated for all samples in
each HGM dataset (Figure 5) demonstrates that the median rPAD is 2–4 higher than the
median rCPI (depending on dataset and phenotype). This observation demonstrates that
sub-communities of amino acid auxotrophs have a larger diversity per unit of abundance
(diversity-driven) than the corresponding sub-communities of prototrophs (abundance-
driven). For the majority of amino acids, the median values of rCPI and rPAD do not follow
any particular pattern across datasets. However, for tryptophan, we observe that the rPAD
metric demonstrates consistency across three datasets, which probably puts an upper limit
for the value of alpha diversity of tryptophan auxotrophs in HGM samples.

The phenotype-based functional profiling approach was also applied to WGS metage-
nomic samples from the IBD study, for which the metagenomic-based taxonomies were
mapped to the reference genomes from BPM, in order to calculate their CPI profiles.
Using our reference collection of reconstructed metabolic pathways, we calculated TMM-
normalized gene abundances for each functional role in amino acid biosynthetic pathways.
Comparison of the CPI profiles with the corresponding pathway gene abundance profiles in
WGS samples revealed a generally good agreement for amino acid biosynthetic pathways
with relatively high levels of auxotrophs, such as tryptophan. Finally, by using the existing
predictive functional profiling approach, PICRUSt2, we compared the relative phenotype
abundances determined using the amino acid synthesis BPM with the relative abundance
of corresponding pathways in the MetaCyc database and reported a good agreement for
many (but not all) amino acid synthesis pathways.

In conclusion, the subsystem-based approach combined with the comparative ge-
nomics analysis allowed us to reconstruct metabolic pathways and assign binary metabolic
phenotypes for amino acid biosynthesis in the reference collection of HGM genomes. The
obtained in this work BPM for amino acid production, as well as the previously reported
BPM for the production of B-group vitamins [25,26], are useful reference datasets enabling
the predictive functional profiling of microbial communities. In the near future, we plan a
two-way expansion of these reference datasets to ensure: (i) a deeper coverage of HGM by
propagation of the predicted binary phenotypes to a large number of HGM genomes and
metagenome-assembled genomes (MAGs); and (ii) the inclusion of additional metabolic
phenotypes to describe various nutrient utilization and fermentative end-product formation
capabilities of HGM reference genomes. Application of our metabolic phenotype-based
functional profiling approach to HGM metagenomic samples with rich metadata will have
many practical applications in the diagnostics of various conditions and the development
of personalized nutrition, as well as in a variety of in vivo and in vitro growth experiments
with gut microbiota.
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from three HGM datasets. Table S7. Comparison of BPM-based predicted phenotype abundances
with MetaCyc-based predicted amino acid synthesis pathway abundances obtained using PICRUSt2
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pathway genes in WGS metagenomics samples from IBD dataset.
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