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Abstract 
Introduction: Brain image segmentation is one of the most important clinical tools used in radiology and 
radiotherapy. But accurate segmentation is a very difficult task because these images mostly contain noise, 
inhomogeneities, and sometimes aberrations. The purpose of this study was to introduce a novel, locally 
statistical active contour model (ACM) for magnetic resonance image segmentation in the presence of intense 
inhomogeneity with the ability to determine the position of contour and energy diagram.  
Methods: A Gaussian distribution model with different means and variances was used for inhomogeneity, and a 
moving window was used to map the original image into another domain in which the intensity distributions of 
inhomogeneous objects were still Gaussian but were better separated. The means of the Gaussian distributions in 
the transformed domain can be adaptively estimated by multiplying a bias field by the original signal within the 
window. Then, a statistical energy function is defined for each local region. Also, to evaluate the performance of 
our method, experiments were conducted on MR images of the brain for segment tumors or normal tissue as 
visualization and energy functions.  
Results: In the proposed method, we were able to determine the size and position of the initial contour and to 
count iterations to have a better segmentation. The energy function for 20 to 430 iterations was calculated. The 
energy function was reduced by about 5and 7% after 70 and 430 iterations, respectively. These results showed 
that, with increasing iterations, the energy function decreased, but it decreased faster during the early iterations, 
after which it decreased slowly. Also, this method enables us to stop the segmentation based on the threshold that 
we define for the energy equation. 
Conclusion: An active contour model based on the energy function is a useful tool for medical image 
segmentation. The proposed method combined the information about neighboring pixels that belonged to the 
same class, thereby making it strong to separate the desired objects from the background. 
Keywords: image segmentation; active contour model; intensity inhomogeneity; energy function; brain MRI 

 
1. Introduction 
Segmentation is a fundamental operation performed on images that divides the image into homogeneous segments 
or regions to facilitate the analysis of the images. It is the process of grouping pixels together, with each group 
having at least one or more features in common. The features may be brightness, color, motion, or texture (1). Brain 
image segmentation is quite complicated and challenging, but doing it accurately is very important for detecting 
tumors, edema, and necrotic tissues. Magnetic resonance imaging (MRI) is a popular and non-invasive procedure 
that can be used safely for brain imaging with high contrast. It is used to visualize detailed internal structures, and it 
gives high-quality, informative images about the inside structure of brain, making it easier to diagnose many 
diseases (2-5).  
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Many promising methods have been proposed for image segmentation, such as region merging-based methods (6-7), 
graph-based methods (8-11), and active contour model (ACM)-based methods (12, 13). A contour is a 
parameterized curve in an image domain, and the mathematical problem of segmentation involves minimizing an 
energy function the argument of which is an entire contour. The edge-based ACM methods are applicable to images 
with intensity inhomogeneity, but serious boundary leakage can occur for images with weak boundaries, and they 
can’t drive the contour to stop at the object’s boundary. While the region-based ACM method aims to drive the 
curve to evolve through some region-based descriptors, it is assumed that the image’s intensity is homogeneous, 
and, thus, the method is not suitable for images with intensity inhomogeneity (14-18).  
 
Intensity inhomogeneity often occurs in real-world images, and the main challenges in medical image segmentation 
are unknown and irregular noise, inhomogeneity, poor contrast, and weak boundaries, which can lead to serious 
misclassifications by intensity-based segmentation algorithms that assume a uniform intensity (15, 19). Intensity 
inhomogeneity is usually associated with a smooth and spatially varying field (bias field), multiplying the constant 
true signal of the same object in the measured image (17, 18). By searching the image’s local redundant information, 
a mapping from the original image domain to another domain is defined such that the intensity probability model is 
more robust to noise, and the overlapping of intensity is suppressed to some extent. Then, a statistical energy 
functional for the distribution of each local region in the transformed domain is devised (20, 21). The test image to 
be processed is loaded into MATLAB. 

 
2. Material and Methods  
2.1. Statistical active contours model 
In (22), Mumford and Shah formulated the following energy function:  
������ �� � � �� � ��� �� � � � ����� �� � �������� (1) 
 
Given an image I, find a contour C in Ω⊂R2, where |C| is the length of contour. The minimization of the above 
function results in an optimal contour C that segments the images and a piecewise smooth image u that 
approximates the original image u0 (u0: Ω→R). But due to the unknown contour C of the lower dimension, 
minimization of function (1) is difficult. Many methods have been proposed to simplify or modify the function (1) 
(18, 23). 
 
2.2. Statistical Model of Intensity Inhomogeneity  
Let Ω be the image domain, b(x): Ω→R be an unknown bias field, I(x): Ω→R be the given image, J(x): Ω→R be the 
true signal to be restored, and n(x): Ω→R be noise. We consider the following model of intensity inhomogeneity 
(17). 
���� � �������� � ���� (2) 
 
In the image domain Ω, the domain of the ith object is represented by Ωi. The true signal J(x) often is assumed to be a 
piecewise constant within each object domain. The bias field b is smooth in the image domain Ω. The noise n is 
assumed to be Gaussian-distributed with a zero mean and variance σn

2 (24). The distribution corresponding to the 
object domain Ωi with using multiple Gaussian probability distributions to model the image intensity is (25): 

���������� � �
�����

��� �� �������������
����

� (3) 

where µi(x) is the spatially varying mean, and σi is the standard deviation.  
 
Since b(x) varies slowly, it can be assumed to be a constant in a small window (17). Thus, we can assume that µi(x) 
≈ b(x)ci. We use θi = {ci, σi, b} and θ = { θi ,i = 1,…, N} in our following discussion. 
When I(x) falls into the tail of the Gaussian distribution, misclassification will occur. One approach to reduce the 
overlapping tail is to compress the profile of the distribution while keeping its mean fixed (15).  
 
2.3. Principle of the Proposed Method  
For each position x in the image domain, we denote by Οx a neighboring region center. Since there are N non-
overlapping objects in the image, with Ωi being the domain of the ith object, the whole image domain Ω can be 
represented as Ω = ∪i-1,…,NΩi with Ωi∩Ωj = ∅,∀i ≠ j. A mapping T: I (x| θi) → I (x| θi) from the original image 
intensity domain D(T) to another domain R(T) is defined as follows: 
������� � �

�����
� �������������� (4) 
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where mi(x) = ||Ωi∩Ox||. The intensity of pixel x is assumed to be distributed independently (15). Thus, 
∀I(x|θi)6R(T), whereby the corresponding probability density function (PDF) is still a Gaussian distribution (26). 
Since the intensity inhomogeneity demonstrates itself as a smooth intensity variation across an image (17), we can 
assume that I (y| θi) ≈I (x| θi), 2y6Ωi∩Ox. Because the product of Gaussian PDFs is still Gaussian (26), we have:  
∏ �����| !��*6�&∩89 	 �����| !��4&�;� ∝ = >�!, %&.

4&�;�
? (5) 

 
Therefore: 
��3��| !�� @ ∏ �����| !��*6�&∩89 (6) 
 
If we let A 	 B�3��| !��, � 6 Ω, D 	 1, … , =G, we have the following likelihood function for the ith object (26): 
��A| !� 	 ∏ ��3��| !��;H�  (7) 
 
We construct the following joint likelihood function (21): 
��A| � 	 ∏ ��A| !� 	 ∏ ∏ ��3��| !�� 	;H�I!J"I!J" ∏ K�3��| ��;H� 	 (8) 
where  	 B !, D 	 1,… ,=G and 
KL3��| !�M 	 ∏ ��3��| !��I!J" 	 ∏ ∏ �����| !��*6�&∩89

I!J"  (9) 
 
Substituting Eq. (4) into Eq. (8), the equation can be re-written as a Gaussian distribution, as follows:  
KL3��| !�M 	 ∏ ��3��| !�� ∝ =��, N�I!J" , (10) 
where: 

� 	 NOP!����!
Q!

R��N+" 	OP!���
Q!

I

!J"

I

!J"
	 �11� 

Obviously, the joint likelihood function in Eq. (8) of each pixel (voxel) is composed of multiple classes of 
intensities; thus, by using Eq. (10), our model can yield a soft classification. Moreover, as can be seen from Eq. (4), 
the intensity in the transformed domain exploits the information about neighboring pixels that belong to the same 
class, so its classification result is less sensitive to noise and can result in a smoother border of the object. The 
energy functional l(θ) as the log-likelihood function with respect to p(D| θ) in Eq.(8) is defined as: 

S� � ≜ �SUV��A| � 	 WU�XYR�Y �OZ Z log	������| !���
�&∩^9�

I

!J"
�� ��																																																			�12� 

Let Kρ(x,y) be the indicator function of region Ox:

`a��, �� 	 b1,			‖� � �‖ d e
	0,				'SX' 	 �13� 

Using Eqs. (1) and (13) and eliminating the trivial constant term, l(θ) can be re-written as:   

S� � 	OZ Z `a��, �� hlog�Q!� �
����� � ����W!�

2Q!
i

�&�

I

!J"
����																																																																			�14� 

2.4. Energy Functional Formulation using the Level Set Method  
One level set function φ can represent only two regions, i.e., inside and outside the contour C, as Ω+ = inside(C) = 
{φ > 0} and Ω− = outside(C) = {φ < 0}, respectively. This is called the Two-Phase model. 

klU�mRX': b o"�Φ� 	 q�r�
o�Φ� 	 1 � q�r�	 (15) 

 
Φ represents the set of the level set functions. Then, l(θ) can be re-written as:  

S� ,Φ� 	OZ �!���
�

I

!J"
o!LΦ���M��,																																																																																																																										�16� 

where:     �!��� ≜ 
 `a��, �� (log�Q!� � �)�*�+t�;�u&�.
%&.

/� ��, = 	 2. 
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2.5. Energy minimization and level set evolution formulations  
For minimization of energy functional (16) with respect to each variable in θ = {ci, b, σi, i = 1,…, N, N = 2} other 
variables should be fixed.  Minimization with respect to ci, denoted by ��� , is done as follows: 

��� � ���� � �������������
���� � �������������

� ���� 
where � denotes the convolution operator.  
 
Minimization with respect to b, denoted by ��, is as follows: 

����� �
� �� � ����������� � �����
����

� �� � ���������� � ��
�

���
����

���� 

Note that �� is actually the normalized convolution (27), which naturally leads to a smooth approximation of the bias 
field b. Minimization with respect to σi, denoted������, can be done as follows: 

��� � ������� ��������������� � ��������
������ �������������� ���� 

Minimizing the energy ����������������������������������� φ, we have the corresponding gradient descent 
formulation as follows:  
��
�� � ���������

�� � ���� � ��������� ���� 
where δ(φ) is the Dirac functional.  
 
For simplicity, after each iteration of level set evolution, the level set function using the following formulation is 
defined:    
���� � �� � ���� ���� ���� 
Φn+1 = K�φn, where K is either a Gaussian kernel (28) or a constant kernel (16), where φn represents the level set 
function yielded by Eq. (26) during the nth iteration, �2 represents the Laplacian operator, and ∆t2 represents the 
diffusion strength. The Laplacian operator �2φ is approximated by �2φ ≈ K�φ, where � is a convolution operator, 
and K is a kernel defined as:  

K=�
� � �
� �� �
� � �

� (29) 

 
3. Results 
In this section, we show that the proposed method can be applied to efficiently segment images. To evaluate the 
performance of our method, experiments were conducted on MR images with intensity inhomogeneity. Some results 
from these images are reported here. It is easy to choose the parameters in our model. We initialize  b = 1, σ = i, i = 
1, …, N, and then the initialization of� ���,i = 1, …, N, can be calculated by Eq. (17). We set the time step for level set 
evolution as ∆t = 1, the time step for the regularization as ∆t2 = 0.1, and ε = 1.  
 
Figure 1 shows that this method can be applied for four MR images with intensity inhomogeneity. At first, the 
contour is applied on the center of images, and the image is shown after some iterations. In the other images, we 
changed the position and size of the contour, and the segmentation results are shown. The ability to choose the 
position and size of the initial contour helps us to decrease the number of iterations and the calculations; therefore 
the program can be performed very much faster, and it determines the position of tumor with higher accuracy. In 
Figure 2, we compared the result of segmentations for two different sizes and positions of contour for the same 
picture and same iterations.The proposed model performs well and handles high non-uniformity without degrading 
the final segmentation results.  
 
As mentioned above, this program tries to minimize the amount of energy required. We define the threshold value 
equal to 0.0001 for energy equation. If the iterations reach 1000 or the ratio of energy for the last five iterations to 
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the five iterations before it becomes less than 0.0001, the program stops. However, this ratio can be changed by the 
operator. Figure 3 shows the diagram of energy for different iterations and different images. The DICOM images 
that contain inhomogeneity can be used.  
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(a) (b) (c) 
Figure 1. Segmentation with different size and different position of initial contour after 20, 40, 100, and 400 
iterations: (a) Center (W/2, H/2), Radius = 20; (b) Center (W/2, H/2), Radius =10; (c) Center (W/3, H/2), Radius = 
20 
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Figure 2. (a) Selecting a proper initial contour; (b) good segmentation; (c) an improper initial contour; (d) results 
fault segmentation 
 

(a) (b)  

 
(c) (d) 

Figure 3. Segmentation and energy function versus iterations: (a, b) 70 iterations; (c, d) 430 iterations for the same 
images 
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4. Discussion  
A large ρ (the radius of initial contour) will increase the computational load in each iteration, while the convergence 
rate can be increased because information from larger regions is used. Besides that, we can choose the position of 
the contour and the threshold for energy equation. This helps us to segment tumor and other section of MRI with 
high accuracy, and it takes less time and fewer iterations than choosing the contour at the center of images. One of 
the well-known models for modeling images with intensity inhomogeneity that assumes an image with piecewise 
smooth is the Mumford-Shah (MS) model (22). The set of contours C that this model uses for separating different 
regions for low dimension is unknown and the problem is non-convex (23), therefore minimizing the energy 
functional of the MS model is difficult. But this limitation has been removed in our model. There are other verified 
models of the MS model, such as the seminal Chan-Vese (CV) model (18) and the piecewise-smoothing (PS) model 
(23, 30). All of these methods represent the contour C; however, the CV model is not applicable to images with 
intensity inhomogeneity because it models images by means of the piecewise constant. The PS model can yield a 
desirable segmentation for images with intensity inhomogeneity. However, the iteration of two partial differential 
equations (PDE) is needed in the PS model to approximate the original image. However, these iterations are very 
time consuming, so the practical application of the PS model is limited. Recently, some local region-based ACMs 
have been presented for images with inhomogeneous intensity, such as the local region descriptors (LRD) method 
(31), the local region-based (LRB) method (14), the local binary fitting (LBF) model (32, 33), the local intensity 
clustering (LIC) method (17), and the local region model (LRM) (34). However, there are some drawbacks with 
these local region-based models. The LRD model requires adjusting balloon force parameters for images with 
strongly overlapping intensity distribution, but the degree of the overlap is not defined exactly (31). Therefore, it is 
difficult to select a proper balloon force. The LRB method has two drawbacks. First, the Dirac functional used there 
is restricted to a neighborhood around the zero level set, which makes the level set evolution act locally. Therefore, 
the evolution can be easily trapped in local minima (18).  
 
Second, the region descriptor in LRB is only based on the region mean information without considering the region 
variance, and this may lead to inaccurate segmentation. The second drawback of LRB also holds for the LBF model, 
because they use a similar energy functional. The LIC method can be considered as a locally weighted K-means 
clustering method (17). It does not consider the clustering variance, which may cause inaccurate segmentation; 
similar drawback exists for the K-means clustering based method in other research (35). The LRM method relates 
the local region statistics, i.e., local region means and variances, in interpreting the MS model. However, the local 
region means and variances are defined only empirically, rather than being derived from minimizing the MS energy. 
Comparing this method with the state-of-the-art LIC model (17) that is applicable for simultaneous segmentation 
and bias correction, it is apparent that, with an increase in noise level, the segmentation results by the LIC method 
will become very noisy; thus, the segmentation result using our method is much better. As shown in Figure 3, the 
energy function was reduced about 5 and 7% after 70 and 430 iterations, respectively. These results show that with 
increasing of iteration, the energy function decreased but in beginning iteration it decreased faster and then at large 
iteration the energy function decreased slowly and more iterations did not change the energy function significantly. 
Thus, it is possible to define a threshold for the energy function to stop the iterations. If differences between some 
sequence iterations are less than defined threshed, the energy function is almost constant. This property of the model 
makes it useful for automated segmentation that can be used in radiotherapy treatment planning systems that tumor 
and organ at risk organ must be segmented.   
 
As discussed above, our model has the ability to segment the images that have high inhomogeneity and to do so 
faster and more accurately than other models that have been proposed. In other models, the accuracy decreases as 
inhomogeneity increases, but this decrease is negligible in our model. In addition, we can easily change the 
parameters based on images that help us to segment given images more accurately and more easily, especially for 
medical images of the brain, while this is a limitation for other methods. 
 
5. Conclusions  
In this paper, we presented a locally statistical active contour model for segmenting images with intensity 
inhomogeneity that provides the ability to determine the size and position of initial contour that makes the 
segmentation faster and more accurate. Our method combines the information about neighboring pixels that belong 
to the same class, which makes it capable of separating the desired objects from the background. Level set function 
makes this model useful for MR images segmentation. In our study, the determination of position and size of the 
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contour and the threshold of the energy function are based on visual assessment. Finding a method for determining 
these objects is a suggestion for future work. 
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