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Abstract: Brain and spinal cord traumas include blunt and penetrating trauma, disease, and 

required surgery. Such traumas trigger events such as inflammation, infiltration of inflammatory 

and other cells, oxidative stress, acidification, excitotoxicity, ischemia, and the loss of calcium 

homeostasis, all of which cause neurotoxicity and neuron death. To prevent trauma-induced 

neurological deficits and death, each of the many neurotoxic events that occur in parallel or 

sequentially must be minimized or prevented. Although neuroprotective techniques have been 

developed that block single neurotoxic events, most provide only limited neuroprotection and are 

only applied singly. However, because many neurotoxicity triggers arise from common events, 

an approach for invoking more effective neuroprotection is to apply multiple neuroprotective 

methods simultaneously before the many neurotoxic triggers and cascades are initiated and 

become irreversible. This paper first discusses some triggers of neurotoxicity and neuroprotec-

tive mechanisms that block them, including hypothermia, alkalinization, and the administration 

of adenosine. It then examines how the simultaneous application of these techniques provides 

significantly greater neuroprotection than is provided by any technique alone. The paper also 

stresses the importance of determining whether the neuroprotection provided by these techniques 

can be further enhanced by combining them with additional techniques, such as the systemic 

administration of glucocorticoids. Finally, the paper stresses the absolute critical importance of 

applying these techniques within the “golden hour” following trauma, before the many neurotoxic 

events and cascades are manifest and before the neurotoxic cascades become irreversible.
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Introduction
Brain and spinal cord traumas leading to neurotoxicity and neurological deficits include 

blunt and penetrating wounds, infections, and required surgeries that cause prolonged 

ischemia. Each of these insults triggers a complex cascade of secondary processes 

in the injured tissue, which results in a greatly enlarged secondary loss of tissue.1 

Secondary causes of neurotoxicity include ischemia,2 the immediate result of disrupted 

blood flow,3 lipid peroxidation,4 oxidative stress,5 acidification,6 and inflammation.3 

In addition, a multitude of cellular and gene events take place as a consequence of 

trauma, each of which has to be survived to provide neuroprotection.

Even small changes in the pH (predominantly decreases in pH) result in dramatic 

changes in membrane properties that damage and kill neurons.7 Thus, acidifica-

tion caused by ischemia leads to more extensive acidification due to the excessive 

release of excitatory amino acids (EAAs),8 which accumulate in the extracellular 

space, causing further extracellular acidification and inducing both necrotic and 
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apoptotic neuron loss.8 Because certain neurons contain 

and release the EAAs glutamate and aspartate and have 

receptors for glutamate, the neurotoxic effect of the released 

glutamate is exacerbated because glutamate stimulates its 

own release in a positive feedback loop by its interaction 

with non-N-methyl-D-aspartic acid (NMDA) receptor 

subtypes.8 This in turn opens calcium ion channels, which 

allows a massive influx of extracellular calcium9 and causes 

a disruption in neurons’ calcium homeostasis,10–12 leading 

to neuron death. Finally, calcium-induced calcium release 

and the further influx of calcium through voltage-gated 

calcium channels after glutamate-induced depolarization 

contribute to glutamate toxicity. Thus, a multitude of events 

and cascades are triggered, which lead to an ever-increasing 

neurotoxic environment and result in neurological losses and, 

eventually, death.

Trauma associated with even small physiologically relevant 

increases in temperature (2°C) causes neuron death.13–15 The 

neurotoxicity is due to the release by microglia-like and 

astrocytic cells of monocyte chemotactic protein-1 and the 

generation of reactive oxygen intermediates.14

Brain and spinal cord insults also trigger additional 

cascades of events that cause neurotoxicity by slightly differ-

ent mechanisms, such as through an inflammatory response,16 

in which neutrophils and some lymphocytes are recruited 

into the injured cat, rat, and mouse spinal cord.17 Activated 

macrophages/microglia are also recruited.18 In stroke, the 

resulting hypoxia triggers the production microglia to 

release interleukin-1 and tumor necrosis factor-α,19 which 

kill neurons through an apoptotic mechanism.20 Within an 

injured area of the spinal cord, trauma also triggers the rapid 

expression of proinflammatory cytokines by endothelial 

cells and resident microglia.21 However, it remains unclear 

whether in addition to their beneficial functions neutrophils 

and microglia may also have harmful toxic effects for the 

surrounding healthy spinal cord tissue.

Inflammation is one of the early events triggered by trauma 

and includes the infiltration of the trauma site by monocytes 

that release molecules that are both neurotoxic and inhibit 

axon regeneration.22 Therefore, currently, the most favored 

early intervention following central nervous system (CNS) 

injury is to antagonize or control the post injury inflammatory 

process using pharmaceutical agents. Among those holding 

promise in improving patient outcomes following brain and 

spinal cord injuries are broad-spectrum immunosuppressive 

drugs (eg, minocycline), growth factors (eg, erythropoietin), 

dual anti-inflammatory and antivasospasm drugs such as 

Rho and ROCK kinase inhibitors, and broad-spectrum 

anti-inflammatory drugs such as PDE4 inhibitors.23 However, 

the current gold standard of acute care for spinal cord injury 

is the administration of high doses of glucocorticoids such 

as methylprednisolone and pregabalin within 8  hours of 

injury.24 Their administration more than 8 hours post trauma 

may be without effect or may be detrimental to the outcome 

of the patient.23

New neurotoxic pathways and mechanisms by which 

to block them are constantly being discovered. For 

example, oxidative stress-induced neurotoxicity can be 

blocked with cinnamophilin, a potent antioxidant and 

free-radical scavenger with anti-inflammatory actions, 

which reduces acute ischemic brain damage when given 

up to 6 hours post ischemic insult.25 In addition, blocking 

microglial activation-induced neurotoxicity with urocortin, 

a member of the corticotropin-releasing hormone family of 

neuropeptides, regulates stress responses, thus providing 

neuroprotection.26

By knowing the identity of the many cellular and 

molecular triggers that cause trauma-induced neurotoxic 

cascades, different techniques can be applied one by one to 

block each of the triggers as it occurs. However, a simpler 

approach, and one that would provide even more enhanced 

neuroprotection, is to apply several broad-based neuroprotec-

tive techniques (hypothermia, alkalinization, administration 

of adenosine) simultaneously as soon as possible following 

trauma, when they can block the causes to the multiple 

neurotoxic cascades before they are triggered or at least 

before they become irreversible.

This review first examines specific causes and mechanisms 

of trauma-induced neurotoxicity and then looks at differ-

ent techniques that block each trigger of neurotoxicity. It 

concludes by examining several methods that individually 

provide good neuroprotection but which when combined pro-

vide significantly greater neuroprotection by acting to prevent 

multiple neurotoxic triggers with overlapping mechanisms.

Neurotoxicity
Ischemia
Cerebral ischemia and head trauma lead to excitotoxicity and 

oxidative stress, which are major triggers of neurotoxicity. 

Although their neurotoxicity is initiated differently, most of 

their neurotoxic mechanisms are the same. Excitotoxic- and 

oxidative stress-induced neurotoxicity are linked because 

both are associated with neuron exposure to excess glutamate, 

which in turn causes a large increase in extracellular 

glutamate and intracellular calcium, acidosis, elevated potas-

sium, activation of proteases, synthesis of nitric oxide (NO), 
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and production of reactive oxygen species (ROS), which 

contribute to neurotoxicity.27

Excitotoxicity
Excitotoxicity involves two mechanisms related to the 

cytotoxic effects of glutamate: (1) intense stimulation of 

NMDA receptors, which can be generated by only 5 minutes of 

exposure to glutamate, causing death within 12–24 hours;28 and 

(2) non-NMDA receptor-mediated excitotoxicity, which takes 

more than 1 hour of exposure to induce a lethal stimulus.

Ischemia-induced excitotoxicity is neurotoxicity triggered 

by (1) excess release and extracellular accumulation of EAAs 

and excitotoxins such as glutamate and aspartate, which 

many neurons contain and release29 and for which they have 

receptors;30 (2) lipid peroxidation;4 and (3) trauma-induced 

inflammation.3 The extent of the increased extracellular 

glutamate concentration is related to the severity of the 

trauma, which in turn is directly related to the severity of 

the neurotoxicity and neuron death.31 Neuron exposure to an 

excessive concentration of extracellular EAAs leads to the 

excessive stimulation of their NMDA subtype of glutamate 

receptors and the development of a neurotoxic level of extra-

cellular acidification (pH 7.3–6.5), with the extent of neuron 

death being related to the degree and duration of acidosis.32

Excessive glutamate release stimulates further glutamate 

release in a positive feedback loop by interacting with 

non-NMDA receptor subtypes32 and causing receptor 

activation. The acidif ication caused by the glutamate 

leads to the opening of receptor-coupled N-type voltage-

sensitive calcium channels, which allow further excessive 

entry of extracellular calcium into neurons.9 This elevated 

calcium then causes the loss of calcium homeostasis, which 

disrupts mitochondrial function and electron transport chain 

dysfunction and causes neuron death.33

Glutamate receptor antagonists such as the noncompetitive 

NMDA receptor antagonist dextrophan or the competitive 

antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic 

acid block a portion of the triggered neuronal toxicity and 

death. These data suggest that glutamate neurotoxicity and the 

subsequent degenerative processes are predominantly medi-

ated by the activation of the NMDA subclass of glutamate 

receptors, occurring both directly during exposure to exog-

enous compounds and indirectly via the subsequent release 

of endogenous NMDA agonists.34

Oxidative stress
Oxidative stress is the result of the production of ROS such 

as superoxide anion, hydroxyl radical, and hydrogen peroxide 

(H
2
O

2
), which are produced during the process of neuronal 

death.35 Oxidative stress represents an imbalance between 

the production and manifestation of ROS and a biological 

system’s ability to detoxify the reactive intermediates or to 

repair the resulting damage they cause.

Oxidative stress is exemplified by the actions of potassium 

cyanide, which initiates neurotoxicity as a rapidly acting 

mitochondrial poison that inhibits cellular respiration and 

energy metabolism (glycolysis), and also by causing extra-

cellular acidification and the loss of calcium homeostasis.36 

This leads to histotoxic hypoxia, a significant depletion of 

mitochondrial glutathione (diminished cellular antioxidant 

system),37 increased H
2
O

2
 generation,38 which is accompanied 

by lipid peroxidation, and generation of ROS and reactive 

nitrogen species, which damage all components of the cell, 

including proteins, lipids, and DNA. The effect of oxidative 

stress depends upon the magnitude of these changes, but cell 

death is initiated by apoptosis39 and necrosis.40

At excitotoxic concentrations, glutamate rapidly produces 

ROS by a process involving NMDA receptor activation and 

calcium entry through the NMDA receptors.41 This suggests 

that ROS production is an early event in glutamate-induced 

neuronal injury. This toxicity can be blocked by the 

mitochondrial proton ionophore carbonyl cyanide ptrifluo

romethoxyphenylhydrazone, suggesting that ROS produc-

tion also occurs due to calcium uptake into mitochondria41 

and intracellular acidification.41 These studies suggest that 

mitochondria play a critical role in the production of ROS 

in association with glutamate excitotoxicity.

The application of antioxidants such as the 21-aminosteroid 

tirilizad can partially protect cultured neurons from NMDA 

receptor-mediated cell injury.42 Techniques that offer neuro-

protection against excitotoxicity can be protective against 

oxidative stress and vice versa.

Acidosis
Acidosis is a universal tissue response to ischemia-induced 

oxidative stress and is caused by cyanide triggering a calcium-

dependent massive release of EAA transmitters. The acidosis 

induced by the extracellular accumulation of EAAs is linked to 

the worsening of cerebral infarction, in part from the restoration 

of oxidative metabolism following the oxidative stress and from 

neurotoxicity via EAA activation of NMDA receptors.43

Increased intracellular calcium and loss  
of calcium homeostasis
Cyanide causes a sustained increase in intracellular calcium, 

which leads to apoptosis,44 with the extent of neuron death 
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increasing with time of exposure. Cyanide-induced calcium 

increases are greater than those induced by glutamate 

because cyanide also induces the release of calcium from 

intracellular pools.45 However, cyanide neurotoxicity is not as 

extensive as that of glutamate, which indicates that a general 

elevation in cytoplasmic calcium does not necessarily predict 

neurodegeneration.45 The finding that cyanide induces a 32% 

increase in brain mitochondrial calcium levels supports the 

hypothesis that calcium plays an important role in cyanide-

mediated neurotoxicity, although the magnitude of the initial 

intracellular calcium concentration change does not predict 

the toxicity of an agonist on NMDA receptors.46,47

Neuroprotection
Single techniques acting alone
Hypothermia
Hyperthermia leads to neurotoxicity, in part by causing 

neuroinflammation.14 Hypothermia provides neuroprotection 

by preventing the development of hyperthermia.

Clinically, whole-body and whole or localized brain 

hypothermia provide neuroprotection against infarct-induced 

oxidative stress.48 It also provides neuroprotection against 

compromised blood flow and reperfusion.49 Whole-body 

hypothermia provides only limited neuroprotection, probably 

because it requires interactions with additional environmental 

factors. Localized hypothermia (32°C) provides good 

neuroprotection during periods of compromised cerebral blood 

flow and oxygen delivery.49 Different studies show that the tem-

perature that provides best neuroprotection varies considerably 

from mild (33°C–35°C)50 to moderate (30°C–32°C),51 severe 

(27°C–29°C),51 and extreme (20°C).52

The first phase of neuroprotection by hypothermia is 

by reducing excitatory synaptic activity, which reduces the 

release and accumulation of excessive EAAs, reduces toxic 

extracellular acidification,53 and induces the expression of 

heat shock proteins.54 Hypothermia to 33°C reduces NMDA 

channel activation,50 thereby reducing NMDA receptor-

mediated excitatory postsynaptic potential amplitude.55 

Simultaneously, the activated channel open time is shortened, 

thereby reducing calcium influx and preventing the disruption 

of calcium homeostasis. The neuroprotection provided by 

hypothermia is enhanced when combined with the simul-

taneous infusion of NMDA receptor antagonists,56 and the 

neuroprotection provided by hypothermia is increased 23-fold 

when combined with alkalinization.57

Mild hypothermia causes a 50-fold reduction in H
2
O

2
 

production, which allows neurons to retain their normal 

cell morphology and viability.58 Whole-brain hypothermia  

(below 35°C) impairs brain tissue oxygenation but provides 

neuroprotection by reducing the metabolic rate of neurons 

and thus their oxygen requirement59 while maintaining 

slightly better energy levels.60 Thus, the toxicity of oxidative 

stress is reduced by hypothermia by reducing adenosine 

triphosphate breakdown more than its synthesis, leading 

to improved neuron survival, which means that secondary 

failures in energy requirements are prevented.61 Hypothermia 

also causes ischemic neurons to significantly increase 

their expression of the antiapoptotic protein bcl-2.62 Thus, 

hypothermia lowers the risk of oxidative stress-induced 

cellular damage and programmed cell death by increasing 

the activity of glutathione-peroxidase due to the induced 

expression of the antiapoptotic protein bcl-2.62

Hypothermia during and after a period of oxygen-glucose 

deprivation and brief exposure to a high concentration of the 

NMDA or glutamate provide neuroprotection by reducing the 

release of glutamate and other EAAs into the extracellular 

space, thus reducing their excessive accumulation and 

the development of extracellular acidification, inhibiting 

excessive NMDA receptor activation, and shortening the 

NMDA receptor open channel time.50 These actions also 

minimize calcium influx through the open channel, thus 

preventing the disruption of calcium homeostasis.63

Hypothermia to 10°C improves the long-term survival 

of rats following hemorrhagic shock by decreasing tissue 

oxygen consumption and by altering the expression profiles 

of key genes, with an overall upregulation of prosurvival 

pathways and a downregulation of metabolic pathways.64

One concern about the clinical use of severe hypothermia 

(cooling to below 30°C) is that it may be harmful to neurons, 

their circuits, or support cells. However, experiments on the 

spinal cord of large mammals (rabbits and pigs) show that 

reducing the temperature of the spinal cord to 4°C for more 

than 30 minutes during complete ischemia does not cause 

the loss of neurons or their viable neuronal circuits, which 

would otherwise undergo massive loss if the spinal cord was 

maintained at higher temperatures.49

Alkalinization
Alkalinization provides neuroprotection against ischemia-

induced acidification caused by the excessive release and 

accumulation of EAAs and excessive NMDA receptor activa-

tion.65,66 Alkalinization to pH 8.2 protects adult rat CNS neurons 

against ischemic effects of infarct,67 and mouse neocortical 

neurons in primary culture from azide-induced chemical 

anoxia.68 Further, alkalinization of adult human dorsal root 

ganglion (DRG) neurons provides neuroprotection against 
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glutamate and acidification, with neuroprotection increasing 

as pH increases from 7.6 to 9.3.69

Oxidative stress-induced ischemia leads to rapid intracellular 

acidification,70 with the extent of neuron death being related to 

the degree and duration of extracellular acidosis.32 Extracellular 

pH changes result in similar intracellular pH shifts in DRG 

neurons.71 Oxidative stress-induced acidosis and death of 

cultured primary mouse neocortical neurons is prevented by 

alkalinization to pH 8.2.68 Alkalinization of adult rat CNS 

and adult human DRG neurons also provides neuroprotection 

against prolonged ischemia,6 with alkalinization to pH 8.2 

preventing the development of acidosis-induced neurotoxicity 

against azide-induced chemical anoxia.68 However, it is not 

known whether alkalinization acts by preventing EAA-induced 

acidosis or blocking the actions of glutamate.66

Alkalinization provides neuroprotection against increased 

intracellular calcium by changing the relative concentration 

of soluble extracellular calcium, which is pH dependent. 

Calcium requires a pH of ,6 to enter solution, whereas at 

physiological pH 7.6, calcium solubility is 160 mg/L and 

increases to 6390 mg/L at pH 7.0. However, its solubility 

decreases 40-fold to 10.1 gm/L at pH 8.4.72 Thus, although 

decreasing intracellular pH leads to increased calcium solu-

bility and neurotoxicity, alkalinization provides neuroprotec-

tion against cyanide toxicity by causing calcium precipitation 

into calcium bicarbonate, thus reducing the concentration 

of soluble extracellular calcium available to enter neurons.73 

Similarly, removing intracellular calcium by chelation with 

1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid 

partially reduces cyanide-induced neurotoxicity.74

NMDA receptors are pH sensitive with acidification 

resulting in (1) excessive calcium entry75 and neurotoxic 

increases in intracellular calcium,68 (2) the release of calcium 

from intracellular stores,76 and (3) the loss of calcium 

homeostasis.69 However, alkalinization from pH 7.6 to pH 

8.7 provides neuroprotection by reducing NMDA receptor 

activation and excess accumulation of neurotoxic intracellular 

calcium.75

Ischemia and cyanide induce the generation of neurotoxic 

NO free radicals. Free-radical formation can be prevented by 

intracellular alkalinization to pH 7.4 during the initial 30 minutes 

of NO exposure.77 Therefore, extracellular alkalinization, which 

induces intracellular alkalinization, provides neuroprotection by 

reducing the production of oxygen free radicals.

Adenosine
Adenosine is a nucleoside rapidly formed in large amounts by 

neurons and glial cells during ischemia due to the intracellular 

breakdown of adenosine triphosphate. The adenosine is 

transported into the extracellular space, where it provides 

endogenous neuroprotection by counteracting the generation 

of the neurotoxic increases in the extracellular calcium con-

centration.78 Administration of the adenosine A2A agonists 

during prolonged spinal cord ischemia exerts neuroprotec-

tion,79 and this neuroprotection is increased when combined 

with hypothermia.80

Adenosine provides neuroprotection by suppressing the 

neurotoxic gamma-aminobutyric acid (GABA)-activated 

current in a majority of the neurons (77%).81 Similarly, 

regional hypothermia together with the simultaneous infusion 

of an NMDA receptor antagonist enhances the neuroprotec-

tion provided by hypothermia.56 When hypothermia and 

alkalinization are applied simultaneously, they provide 

greater neuroprotection to ischemic adult rat DRG neurons 

than either one alone.82

Neuroprotection by adenosine agonists results 

from ischemia inducing the upregulation of adenosine 

A2A receptors (A2A-R).79 If adenosine A2A-R induction 

is blocked, perfusion with adenosine A2A agonists does 

not provide neuroprotection, reduce reperfusion-associated 

inflammation, reduce paralysis, or reduce neuronal apoptosis.79 

Thus, A2A-R agonists exert their neuroprotective effects by 

activating the induced neuronal A2A-R upregulated during 

spinal cord reperfusion.79 However, the earlier the perfusion 

with the A2A receptor agonist is initiated after the start of 

ischemia, the greater the neuroprotection that is provided.83

Adenosine A1 receptor agonists or inhibitors of cellular 

reuptake and inactivation of adenosine provide neuroprotec-

tion against glutamate-induced excitotoxicity by blocking cal-

cium influx mediated by the NMDA receptor and preventing 

the loss of intracellular calcium homeostasis.84 A1 adenosine 

receptor activation suppresses neural activity by a predomi-

nantly presynaptic action,85 probably by directly stabilizing 

the neuronal membrane potential by increasing the conduc-

tance for potassium and chloride ions. This blocks glutamate 

induction of an uncontrolled membrane depolarization via ion 

channel-linked glutamate receptors of the NMDA type.86 This 

blocks voltage-sensitive potassium currents, increases NMDA 

receptor-mediated calcium influx, and impairs glutamate 

uptake by astrocytes.87 Adenosine appears to provide neuro-

protection by suppressing the neurotoxic GABA-activated 

current in a majority of the neurons (77%).81

Neurotrophic factors
The neurotrophic factors nerve growth factor88,89 and brain-

derived neurotrophic factor90 facilitate brain tissue repair 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

189

Neuroprotection: where do we stand?

www.dovepress.com
www.dovepress.com
www.dovepress.com


Therapeutics and Clinical Risk Management 2012:8

following experimental traumatic brain injury such as 

ischemia by stimulating increases in neuronal metabolism, 

cell size, and process outgrowth.91

Neuropeptides
A number of neuropeptides provide neuroprotection. 

Cortistatin, a neuropeptide with endocrine activities 

in humans, provides neuroprotection against bacterial 

infection.92 Neuropeptide Y provides dopaminergic cell 

neuroprotection against 6-hydroxydopamine-induced toxic-

ity in vitro and in animal models of Parkinson’s disease.93 

Neuronal damage caused by excess activation of NMDA 

is blocked by the neuropeptide apelin via its activation of 

G-protein-coupled receptors by modulating neuronal pro-

survival pathways and/or NMDA receptor signaling.94 The 

neuropeptide galanin, which is upregulated in the brain of 

patients with Alzheimer’s disease, provides neuroprotection 

against amyloid-ß toxicity and other excitotoxic injuries, by 

activating the second galanin receptor subtype.95

Plasticity
Biological organisms evolved to be able to respond to 

stress with plasticity that promotes neuroprotection and cell 

survival. One example of plasticity to stress is the plasticity 

of astrocytes, which following injury can produce glial scar 

tissue that inhibits axon regeneration but can also release 

factors that at the same injury site provide neuroprotection 

and support axonal regeneration.96 Another example is the 

amyloid precursor protein (APP), which, under stress, such 

as Alzheimer’s disease, is not cleaved, leading to its triggering 

neurodegeneration. However, under physiological conditions, 

APP is processed by the nonamyloidogenic pathway, lead-

ing to secreted N-terminal APP fragment, which provides 

neuroprotection, synaptic plasticity, neurite outgrowth, and 

synaptogenesis.97 Finally, aging is associated with low-grade 

neuroinflammation, including microglia activation, which 

appears to contribute to deficits in neural plasticity and cogni-

tive function. However, mice subjected to stress in the form 

of exercise by wheel running show a decrease in microglia 

activation but an increase in microglia-expressing insulin-like 

growth factor-1, which provides neuroprotection.98

Precondition
Preconditioning neurons to various compounds causes a 

reprogramming of mitochondrial biology to those noxious 

stress stimuli, which leads to both increased mitochondrial 

and neuronal tolerance against neurodegenerative events.99,100 

Hypoxic preconditioning provides neuroprotection against 

subsequent hypoxia, in part by inhibiting neuronal 

apoptosis.101 The neuroprotection is caused by the precon-

ditioning hypoxia, leading to an increased production of the 

delta opioids receptor (DOR) and the DOR ligand L-ENK. 

DOR activation following hypoxic preconditioning is 

responsible for providing enhanced neuroprotection against 

subsequent ischemia.101 Hypoxia-induced neuroprotection 

is also associated with hypoxia-inducible factor-1-α, which 

regulates astrocyte iron metabolism and transport, and by 

hypoxia preconditioning changing the expression of iron 

metabolism proteins.102

Erythropoietin
Beyond their hematopoietic functions, blood progenitor 

cells release the growth factors erythropoietin, granulocyte 

colony-stimulating factor, and thrombopoietin, which provide 

neuroprotection while also promoting neuronal growth.103–105

Stem cells
Implantation of stem cells provides neuroprotection. 

Following an optic nerve crush, many axotomized retinal 

ganglion cells die due to a lack of target-derived neurotrophic 

factors. But the delivery of bone-marrow mononuclear 

cells provides neuroprotection and increases both retinal 

ganglion cell survival and axon outgrowth.106 Similarly, 

mesenchymal stem cells transplanted into the rat brain reduce 

ischemia-induced brain damage in rats by inducing a marked 

increase in the synthesis of neurotrophic factors such as vas-

cular endothelial growth factor, epidermal growth factor, and 

basic fibroblast growth factor in the host brain.107 Another 

example is the implantation of human umbilical cord blood 

cells, which provide neuroprotection against neurological 

deficits in both in vitro and in vivo models of ischemic brain 

injuries, potentially by reducing inflammation and trophic 

actions and enhancing angiogenesis.108

Cell lines
The transplantation of HMO6, a human microglial cell line, 

provides neuroprotection following ischemia by reduc-

ing gliosis and neuroinflammation, and by enhancing the 

production of neurotrophic factors from endogenous and 

transplanted cells.109

Multiple techniques acting simultaneously
As discussed previously, hypothermia, alkalinization, and 

adenosine each applied singly provides neuroprotection 

against the consequences of trauma. However, additional 

evidence shows that the simultaneous application of these 
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techniques enhances the neuroprotection they provide in both 

clinical and animal model studies.

Hypothermia plus alkalinization
The neuroprotection against prolonged ischemia provided by 

hypothermia (20°C) and alkalinization (pH 9.3) combined 

is by approximately three-fold greater than when they are 

applied singly.82

Hypothermia and NMDA receptor antagonists
Regional hypothermia together with the simultaneous 

infusion of an NMDA receptor antagonist enhances the 

neuroprotection provided by hypothermia.56

Hypothermia and adenosine A2A receptor agonists
The neuroprotection provided by localized hypothermia against 

45 minutes of ischemia is increased by the simultaneous local 

infusion with adenosine.80 However, neuroprotection is even 

greater when the local perfusion of the ischemic spinal cord 

with hypothermic saline is combined with the systemic infu-

sion of an adenosine A2A receptor agonist.110

Conclusion
Traumas trigger neurotoxicity by different mechanisms, 

among which are the massive release of EAAs, acidifica-

tion, excessive activation of NMDA receptors, the massive 

intracellular increase in calcium, loss of calcium homeosta-

sis, oxidative stress, and lipid peroxidation, each causing 

neurotoxicity by separate mechanisms. Although different 

techniques singly provide neuroprotection against each of 

these neurotoxic triggers, no one method provides neuro-

protection against all the other neurotoxic events that occur 

simultaneously as well as sequentially. Strong evidence sug-

gests that hypothermia, alkalinization, and adenosine provide 

greater neuroprotection than that produced by any alterna-

tive neuroprotective techniques. However, the simultaneous 

application of these three techniques provides significantly 

greater neuroprotection than that of any one alone. Further 

evidence suggests that their neuroprotection can be even 

further enhanced when they are combined with additional 

methods, such as administration of glucocorticoids. Finally, 

it must be stressed that to be optimally effective these neu-

roprotective techniques must be applied within the “golden 

hour” of a trauma, before the different neurotoxic cascades 

are triggered and become irreversible.
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