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Abstract: Neurotrauma, stroke, and subarachnoid hemorrhage (SAH) are symptomatically
diverse and etiologically complex central nervous system pathologies. Despite numerous
therapeutic modalities that are available to minimize neurologic damage and secondary
injury, the prognosis can still be dismal and unpredictable. Nanoparticle (NP) technology
allows for deliberate, modular, and minimally invasive drug delivery. This literature
review encompasses pertinent information on the impact and versatility of nanoparticle
therapeutics when treating neurotrauma, stroke, and SAH. Currently, notable treatments
such as Perfluorooctyl-Bromide (PFOB), PLGA nanoparticles, and ischemic relief-based
NPs are promising new techniques for the management of these complex pathologies.
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1. Introduction
Due to their size and multifunctionality, nanoparticles (NPs) have emerged as a promis-

ing new method for targeted drug delivery. Nanoparticles convey several advantages,
including their ability to carry drug payloads, deliberate drug release, and modification
of the overall pharmacokinetics of drugs [1]. Conveniently, they can be administered by a
variety of routes, including consumption and inhalation [2]. In the realm of neurosurgery,
the highly restrictive nature of the blood–brain barrier (BBB) presents significant challenges
in optimal drug delivery [3]. However, the lipophilicity and size of nanoparticles promote
the passage of pharmaceuticals across the BBB, effectively allowing for the delivery of
targeted drugs that were once unable to enter the brain. Nanoparticles additionally can
increase the concentration of drugs adjacent to the BBB, thereby increasing the probability
that a drug will cross the BBB.

There exists a variety of NPs, including lipid-based NPs, solid lipid NPs (SLNs), and
polymeric NPs. Liposomes are vesicular bilayers composed of amphiphilic lipids. Notably,
liposomes were the first NPs tested for drug delivery [4]. SLNs exhibit a solid hydrophobic
core in which the drug can be dissolved. Importantly, SLNs are usually able to cross the
tight endothelial cells of the BBB [5,6]. Polymeric NPs are composed of a core polymer
matrix in which drugs are embedded [7]. These polymers have been designed for medi-
cal applications and frequently include polylactides (PLAs), polyglycolides (PGAs), and
poly(lactide-co-glycolides) (PLGAs). Herein, we evaluate the diverse range of NPs cur-
rently being examined for their efficacy as therapeutic agents in circulation, their deliberate
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release to target sites, their enhancement of BBB permeability, and their obviation of the
reticuloendothelial system while still maintaining positive patient outcomes (Figure 1).
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min can suppress the actions of VEGF and MMP-9. PFOB has a high oxygen-carrying capacity and 
has been proposed to work by supplying oxygen to tissues in need and removing excess carbon 
dioxide from the site of the lesion. TBI: PLGA is a biodegradable and biocompatible polymer that 
can be used to construct nanoparticles that contain compounds used for the treatment of TBI. IMPs 
can be encapsulated in PGLA to remove hematogenous monocytes by binding to macrophage re-
ceptors following TBI. Leukocyte-based biomimetic nanoparticles mimic leukocytes and target leu-
kocyte-specific inflammation. TN-APNPs transport the Tat-NR2b9c peptide, which targets NMDA-
induced neurotoxicity. Stroke: Nanoparticles for stroke have largely been studied as a delivery sys-
tem for anti-inflammatory compounds and an agent to enhance neuroimaging. Chitosan nanopar-
ticles work by inhibiting caspase-3, a pro-inflammatory compound related to stroke pathogenesis. 
Ferumoxytol is an iron oxide nanoparticle that can be used to improve sensitivity and contrast en-
hancement in MRI scans. 
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Figure 1. Overview of nanoparticle therapies for SAH, TBI, and stroke. SAH: The mechanism of
action of cerium oxide is similar to that of superoxide dismutase due to its primary action of ROS
scavenging. Astaxanthin also reduces ROS but mainly through the inhibition of apoptosis. Curcumin
can suppress the actions of VEGF and MMP-9. PFOB has a high oxygen-carrying capacity and has
been proposed to work by supplying oxygen to tissues in need and removing excess carbon dioxide
from the site of the lesion. TBI: PLGA is a biodegradable and biocompatible polymer that can be
used to construct nanoparticles that contain compounds used for the treatment of TBI. IMPs can be
encapsulated in PGLA to remove hematogenous monocytes by binding to macrophage receptors
following TBI. Leukocyte-based biomimetic nanoparticles mimic leukocytes and target leukocyte-
specific inflammation. TN-APNPs transport the Tat-NR2b9c peptide, which targets NMDA-induced
neurotoxicity. Stroke: Nanoparticles for stroke have largely been studied as a delivery system for
anti-inflammatory compounds and an agent to enhance neuroimaging. Chitosan nanoparticles work
by inhibiting caspase-3, a pro-inflammatory compound related to stroke pathogenesis. Ferumoxytol
is an iron oxide nanoparticle that can be used to improve sensitivity and contrast enhancement in
MRI scans.

2. Subarachnoid Hemorrhage
Subarachnoid hemorrhage (SAH) is a medical emergency characterized by acute

bleeding in the subarachnoid space [8]. The onset of intracranial aneurysm rupture leads to
early brain injury (EBI), and if left untreated, patients may experience increased intracranial
pressure, cerebral ischemia, BBB disruption, and sudden neuronal apoptosis within 72 h [9].
SAH conveys significant morbidity and mortality rates worldwide and, as such, highlights
the necessity to develop novel therapeutic strategies [10]. Nanoparticle use for SAH remains
largely in the preclinical stage, although recent evidence suggests that targeting the specific
mechanisms of EBI could be an effective treatment [9,11].
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2.1. Cerium Oxide Nanoparticles in the Scavenging of Reactive Oxygenated Species

Following aneurysmal SAH, cerebral ischemia and free-radical formation are known
sequelae [12]. Extracellular hemoglobin from blood leakage undergoes increased autoxida-
tion and subsequently forms reactive oxygenated species (ROS) [10]. The presence of ROS
following SAH results in significant neuroinflammation. Specifically, pathological changes
in vasculature morphology and increased levels of pro-inflammatory cytokines—including
IL-1, IL-6, and TNF-a—recruit neutrophils, monocytes, and lymphocytes to the site of
neurologic injury, which exacerbate inflammation [13]. As such, preventing the formation
of ROS and subsequent inflammation can help in the amelioration of SAH.

Cerium oxide nanoparticles (CeNPs) can switch between +2 and +3 oxidation states
and cause an autocatalytic, positive feedback loop to scavenge ROS [14]. Cerium oxide
displays antioxidant properties similar to those of superoxide dismutase, a key enzyme in
human metabolism responsible for reakdown of ROS [15]. The antioxidant properties of
CeNPs have led to the investigation of their applications in Alzheimer’s disease, Parkinson’s
disease, multiple sclerosis, ischemic stroke, and amyotrophic lateral sclerosis [16]. In a
murine model of cerebral ischemia, CeNPs have been shown to reduce ischemic cell
death by approximately 50% [17]. Later work by Kim et al. [18] demonstrated significant
neuroprotective effects against ROS-induced cell death in mice treated with CeNPs. More
recently, CeNPs have been shown to significantly reduce neuronal death, macrophage
infiltration, and brain edema in a murine model of SAH [19]. Here, CeNP-injected rats
demonstrated significantly increased survival rates of 88.2% compared to controls.

Similarly, nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is upregulated fol-
lowing SAH in rats and plays a role in reducing edema, apoptosis of nerve cells, and
destruction of the BBB [20,21]. Nrf2 is a transcription factor widely expressed in the central
nervous system that upregulates the expression of genes responsible for the generation
of antioxidants [22]. Molecules such as melatonin, curcumin, and erythropoietin work to
activate Nrf2 and, as such, have the potential to improve neuroinflammation through ROS
scavenging following SAH. Superoxide dismutase, glutathione peroxidase, and catalase
work to scavenge ROS in the central nervous system and are significantly reduced following
SAH [22].

Currently, there exist no reports in the literature regarding the use of CeNPs, Nrf2,
superoxide dismutase, glutathione, peroxidase, or catalase NPs for SAH in humans. How-
ever, given the survival benefits and reduction in neuroinflammation seen in rodent models
of ROS, it can be hypothesized that CeNPs have the potential to elicit similar effects in
human subjects. Careful consideration and significant research efforts are necessary to
determine optimal formulations, dosages, and delivery methods to determine potential
drug interactions and avoid acute and chronic toxicity such as cytokine storm, immune
dysregulation, and organ damage.

2.2. Antioxidant and Anti-Inflammatory Properties of Astaxanthin

The astaxanthin (ATX) nanoparticle is a common yet powerful carotenoid antioxi-
dant [12]. ATX has been shown to suppress ischemic brain injuries by the mitigation of
ROS-induced apoptosis [19,23]. One drawback to the clinical use of ATX is its low solubility
with intravenous and oral administration [19,24]. This presents a significant challenge to
clinicians, as drugs are frequently administered orally or intravenously. However, You et al.
developed a strategy to load ATX onto Fe3O4 (transferrin) in a polyethylene glycol layer to
reach a specific BBB receptor target, thereby avoiding solubility and instability concerns [25].
Here, Fe3O4-bound ATX loaded in polyethylene glycol was shown to significantly reduce
cellular apoptosis [25]. It is important to note that contradictory reports exist in the litera-
ture surrounding the efficacy of ATX in vivo. Cai et al. demonstrated that Fe3O4-bound
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ATX demonstrates incomplete effectiveness due to the insufficient release of ATX from the
polyethylene glycol protective layer [25]. The challenge of ATX release presents a barrier
to clinical use, as ATX must be released from the polyethylene glycol to have beneficial
effects on the body. Strategies to improve polyethylene glycol release include modifying
the concentration, pH, hydrophilic/hydrophobic balance, and temperature sensitivity of
polyethylene glycol. Other researchers have utilized direct ultrasound focusing to deliver
ATX directly to the central nervous system [26]. Cai et al. [27] investigated this strategy by
injecting SAH mice with ATX NPs divided into three activation groups: general release,
pH response release, and ultrasound-triggered release. Ultrasound-focused ATX release
was found to have good biosafety and improved overall survival rates when compared
with control [27]. However, the use of ATX NPs for SAH is fairly novel and remains largely
in the preclinical phase. Additionally, animal studies are necessary to optimize ATX dosing
and delivery methods before human clinical trials to ensure patient safety.

2.3. Neuroprotective Effects of Curcumin After BBB Disruption

Curcumin nanoparticles (C-NPs), much like ATX and CeNPs, have strong antioxidant,
anti-inflammatory, and anti-apoptosis characteristics [24]. C-NPs demonstrate minuscule
circulation in the body and can easily pass through the BBB [28]. C-NPs injected intraperi-
toneally have been shown to suppress vascular endothelial growth factor (VEGF) activity
in rats, effectively disrupting the BBB and preventing disruption through the survival of
key tight junction proteins [27]. The retention of C-NPs in the circulatory system and brain
can be extended by PLGA encapsulation [28]. Furthermore, MMP-9 expression has been
proven to cause EBI after SAH with its role in the formation of cerebral edemas [29]. C-NPs
have been shown to preserve the BBB through MMP-9 suppression [30,31]. The extent of
C-NP remains largely in the preclinical stages as of now.

2.4. Early Brain Injury Mitigation Effects of Perfluorooctyl-Bromide (PFOB)

PFOB is a type of perfluorocarbon (PFC) that carries oxygen through emulsifica-
tion [32]. When used in combination with Fe3O4 nanoparticles, PFOB can be used as a
contrast agent in US, CT, and MR imaging. Using PFOB for multimodality imaging may
allow physicians to increase the accuracy of their diagnoses [33]. PFOB exhibits a high
oxygen-carrying capacity and an ability to rapidly act on lesions, thereby providing a
neuroprotective effect to mitigate an SAH-induced EBI [34]. Two distinct mechanisms of
protection have been proposed: (1) the high oxygen-carrying capacity of PFOB can resupply
oxygen to tissues in need, and (2) PFOB can remove excess carbon dioxide to decrease
viscosity and increase blood flow. Additionally, these mechanisms contribute to reduced
free-radical formation to protect against further neuronal apoptosis and increased EBI [14].
It has been proposed that Hypoxia-Inducible Factor-1 alpha (HIF-1α) may play a role in
this biological pathway [35]. In the context of hypoxia, HIF-1α expression downregulates
transcriptions of genes that maintain ATP production [32]. It has been proposed that the
inhibition of HIF-1α inhibits downstream genes activated during EBI, which promote
neuronal apoptosis; however, the PFOB mechanisms of EBI amelioration are not specific
to HIF-1α regulation [32]. The lack of supportive literature on the use and action of PFOB
nanoparticles suggests that this is still an area of early investigation.

While there is evidence of PFC as a protective agent in other ischemic injuries [36], the
literature on its use in SAH is sparse. To our knowledge, no studies testing drug conjugation
to PFOBs for the treatment of SAH have been conducted. However, the utilization of
PFOBs as a drug delivery system to the site of an acute hemorrhage could prove invaluable,
just as other PFC NPs have been conjugated to specific drugs such as urokinase and
fumagillin to promote thrombolysis and antiangiogenesis, respectively [37]. Future studies
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regarding BBB penetration, effects on neurons, and overall metabolic interactions should
be investigated to determine the potential efficacy and safety of this therapy for SAH.

3. Neurotrauma
Traumatic brain injury (TBI) is a leading cause of death globally [33]. The initial injury,

referred to as the primary injury, results from a mechanical force directed to the brain.
This force causes damage by shearing, tearing, or stretching neurons, axons, glia, and
blood vessels, often those that comprise the BBB [38]. The downstream effects of the initial
injury promote neuroinflammation, excitotoxicity, and further BBB disruption, which is
known as the secondary injury [39,40]. This occurs as a result of the production of toxic and
pro-inflammatory molecules such as prostaglandins and oxidative metabolites [38], which
allows for the extravasation of plasma proteins, monocytes, macrophages, and leukocytes
across the BBB as well as further neurotoxicity [41–43]. Neuroinflammation also involves
the release of inflammatory cytokines and the activation of microglia [44]. Ultimately, the
treatment of TBI must repair neurofunction by addressing both the primary injury and
reducing the impact of the neuroinflammation-induced secondary injury [38]. The BBB has
been shown to be disrupted within the first twenty-four hours following a TBI, providing
a potential therapeutic window for nanoparticle technology, as several tested NPs have
successfully reached the brain following this injury [45]. In this discussion, we examine the
various types of NPs, their surface coatings, and their therapeutic effects on TBI.

3.1. PLGA Nanoparticles

Some researchers have formulated PLGA nanoparticles using poly(lactic-co-glycolic
acid), a biocompatible and biodegradable polymer [46,47]. One study utilized PLGA
nanoparticles containing fluorescent quantum dots (QD-PLGA), which were observed
through live cell imaging after injection into mice via the lateral tail vein. These QD-PLGA
nanoparticles did not cross the BBB in the healthy brain of mice but were able to enter the
CNS through regions of the BBB that were disrupted [48]. However, NPs that were modi-
fied and coated with polysorbate 80 and GSH showed signs of BBB penetration. Research
observing PLGAs with S-80 injected into mice showed the highest permeation of BBB and
neural uptake of coatings tested. Fluorescence microscopy images demonstrate the accu-
mulation of PS-80 NPs in mice cortices. Historically, the cortex has been a therapeutic target
for TBI treatment [49]. PS-80-coated NPs have displayed high efficacy if apolipoprotein
E (similar to LDL) is absorbed [50]. Like LDLs, PS-80 NPs coupled with apolipoprotein
E are actively taken up by endothelial cells through receptor-mediated endocytosis [51].
These PLGA NPs are also modified by adding polyethylene glycol (PEG) conjugated to
1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) [52]. Functionalizing the sur-
face with PEG-DSPE has been shown to minimize opsonization through steric hindrance,
charge shielding, and prolonging the blood circulation time of the NPs while maintaining
stability [53,54]. Additionally, adding glutathione to PEG-DSPE forms glutathione (GSH).
GSH has shown promising results because of its transportability in vivo into the BBB via
a sodium-dependent transporter [55]. PLGA NPs can be engineered to contain different
types of therapeutic molecules to help treat TBI, such as SiRNA and Rolipram. Researchers
experimented using an established mouse model of weight-drop-induced TBI [56]. Their
results showed that NPs optimally delivered siRNA to the brain early during injuries when
the BBB was physically breached and later when the BBB had been self-repaired. These
negatively charged siRNA are unable to cross the anionic cell membrane themselves and
rely on these NPs to enter and help treat the injury.
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3.2. Immunomodulatory Nanoparticles

Immunomodulatory nanoparticles (IMPs) can also be used to treat TBI by removing
hematogenous monocytes, thereby reducing secondary damage and preserving anatomic
and neurologic function. IMPs are negatively charged particles composed of 500 nm
biodegradable carboxylated PLGAs. In a previous experiment, these IMPs were infused
into wild-type mice that had controlled cortical impact or closed head injury [57]. Once
inside, these IMPs bind to the macrophage receptor found on monocytes. These monocytes
when bound are no longer sources of inflammation [58]. In both controlled cortical impact
and closed head injury, the IMP treatment reduced the number of immune cells that entered
the brain, mitigated the inflammation caused by the infiltrating cells, improved long-term
motor behavior, and reduced lesion volumes based on anatomic examination.

3.3. Leukocyte-Based Biomimetic Nanoparticles

Leukocyte-based biomimetic nanoparticles have also been found to help treat TBI. This
nanoparticle was designed to mimic the composition of the cell membrane of leukocytes,
including both their lipid and protein components [59]. These NPs were set to target
leukocyte inflammation and had the necessary leukocyte membrane protein markers:
CD11b, CD19, CD45, and CD47. Cd11b and CD18 are subunits of the CD11 receptor, which
is found in monocytes, macrophages, activated microglia, and other immune cells; thus,
these protein markers help enhance the targeting of cells that cause neuroinflammation [60].
The CD45 and CD47 markers protect the NPs and avoid mononuclear phagocytic system
uptake [61]. These NPs were found to only reach the brain when the BBB was breached
after TBI. A previous experiment examined the impact of these NPs on the quantity of
F4/80 membrane proteins, which are found in abundance on macrophages that infiltrate
the injured cortex after TBI [62]. NPs showed a decrease in F4/80 positive cells and had a
lesion volume reduction of about 28.6%.

3.4. TN-APNPs Carrying Tat-NR2b9c

TN-APNPs have recently emerged in the field of treating TBIs to transport the promis-
ing peptide Tat-NR2b9c. The ionotropic glutamate receptor N-methyl-D-aspartate (NMDA)
plays an important role in the normal function of the central nervous system [63]. PSD-95
organizing proteins can bind and connect these receptors to neurotoxic signaling molecules
downstream [64]. The Tat-NR2b9c peptide was shown to help reduce NMDA-mediated
excitotoxicity by disrupting the interaction of NMDARs with PSD-95 in non-human pri-
mates [49]. This interruption prevents NMDARs from contributing to downstream neu-
rotoxic signaling while also preventing the disruption of synaptic activity or calcium
influx. TN-APNPs that carry these peptides can further be engineered for targeted delivery
through surface conjugation of CAQK, a four-amino-acid peptide that has a high affinity
for the extracellular matrix at the injury site [65]. The areas of the brain injured from TBI
are known to have elevated amounts of thrombin, which is also the enzyme that cleaves
these TN-APNPs open, releasing the peptide. A research study was done in which mice
were given TBI through controlled cortical impact. Using an Elevated Plus Maze test, mice
injected intravenously with TN-APNPs carrying Tat-NR2b9c compared to the control had
lower levels of anxiety, dysphoria, and aggression, which are symptoms of TBI [66].

4. Stroke
4.1. Current Management

Stroke is the leading cause of long-term disability and the fifth leading cause of death
in the US, with ischemic strokes accounting for approximately 87% of all strokes in the
country [67]. Following an ischemic stroke, the brain can lose as many neurons as it typ-
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ically would over 36 years of aging [68]. Tissue plasminogen activator is often used as a
treatment for acute ischemic stroke but is limited by its selective efficacy, short window of
therapeutic use, and ensuing hemorrhagic complications [69]. No effective palliative or pre-
ventative treatments beyond secondary stroke prevention have been designed as of yet [70].
Moreover, most existing approaches to treating neurological conditions like ischemic stroke
are invasive and contribute to post-surgical complications [71], underscoring the need
to produce a safe, non-invasive, and effective treatment for strokes. Present studies are
focused on designing NPs that can provide diagnostic support in stroke detection and
function as a drug delivery system (DDS) to the CNS and ischemic brain.

4.2. Nanoparticles as a Drug Delivery System

Ischemic strokes induce inflammation, oxidative damage from elevated levels of ROS,
ionic imbalances, apoptosis, and reperfusion injuries, resulting in irreversible damage
to neuronal function as well as neuronal death [72,73]. The BBB obstructs the entry of
98% of tested drugs and significantly limits the passage of therapeutic drugs into sites
of ischemia in the post-stroke brain [68,74–76]. As a result, ongoing studies are directed
toward utilizing NPs for the delivery of therapeutic agents such as ROS scavengers to the
ischemic brain via penetration of the BBB to alleviate neuroinflammation and oxidative
damage [77], given their high lipid solubility, nanoscale size, and their ability to covalently
bind, adsorb, or encase, then deliver, therapeutic drugs that cannot normally cross the
BBB [78,79] in a specific and timely manner [80]. Most strategies involve conjugating
NPs with various macromolecules such as surfactants or ligands to instill them with a
physical or chemical property of choice [81]. This facilitates the NP penetration into the BBB
via adsorptive-mediated transcytosis [75,78,82] or receptor-mediated transport, enabling
targeted delivery to specific ischemic tissues while mitigating off-target side effects [83].

4.3. Nanoparticles as Agents of Neurotherapy and Enhanced Imaging

NPs as nanocarriers have been shown to traverse the BBB, decrease infarct volume,
and reduce neurological deficits by encasing or binding therapeutic drugs, increasing their
circulation time in the blood, and promoting their temporally and spatially controlled
release at the ischemic site, following IV injection in MCAO mice models [78]. In one
study by Karatas, Hulya et al., the authors designed and injected chitosan nanoparticles
containing N-benzyloxycarbonylAsp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone
(Z-DEVD-FMK), a caspase-3 inhibitor, intravenously in MCAO mice models. Two hours
pre- or post-treatment, NPs loaded with Z-DEVD-FMK successfully crossed the BBB and
resulted in decreased infarct volume, neurological deficit, and ischemia-induced caspase-3
activity [79]. NPs used for stroke treatment can be derived from artificial or organic sources
such as micelles, nanotubular particles, inelastic spherical shells, liposomes, gold NPs,
platinum NPs, or polymers [80,81]. NPs with biomimetic properties [75], or modifiers such
as ligands and membrane derivations [82,83], have been shown to act as effective ROS
scavengers [4,41,69] and agents of inflammation resolution [4,84] while decreasing infarct
volume [85], reducing blood loss [86], reducing nerve deficit and edema [64], reducing
oxidative stress [79], enhancing thrombolysis [4,82,87], and speeding up the recovery of
neurological function in vivo in MCAO mice models [84] as a result of the therapeutic drugs
they carry [88,89]. In addition, NPs have proven to be effective agents in improving image
contrast and sensitivity in MRI scans for strokes [4]. Toth, Gerda B. et al. used ferumoxytol,
an iron oxide nanoparticle, as a contrast agent for MRI scans of the brain and other organs.
They found that doses as low as 1 mg/kg administered intravenously not only provided
high-resolution MRI scans with improved contrast but that ferumoxytol’s long circulation
time allowed for multiple high-resolution scans within 72 h until eventually being cleared
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by the brain’s innate macrophages and astrocytes [90]. Moreover, iron oxide NPs have been
used as a contrast agent for MRI scans toward early detection of neuroinflammation in
ischemic stroke [77]. In a study by Hubert, B. et al., superparamagnetic iron oxide (SPIO)
NPs were used in murine stroke models and successfully tracked phagocytes at the onset
of acute ischemic stroke as a measure of inflammatory response [83]. Lastly, ultra-small
superparamagnetic iron oxide NPs have been used as MRI contrast agents by Saleh, A. et al.,
tracking macrophage recruitment to the ischemic brain in post-stroke neuroinflammation
in vivo in clinical settings following IV injection [91]. NPs have been shown to enhance
MRI resolution and provide precise anatomical targeting while being cleared easily by
the body’s phagocytic cells [92]. Thus, NPs are an effective means of both treatment and
diagnostics for strokes owing to their nanoscale size and modifiability.

5. Translational Potential of Nanoparticle-Based Therapeutics
While NP-based therapies have shown promise in preclinical studies, their translation

to clinical practice has been limited, and few NP formulations have advanced to clinical
trials. This can largely be attributed to challenges in scaling up manufacturing processes,
ensuring consistent quality and reproducibility, addressing potential immunogenicity and
toxicity concerns, navigating complex regulatory requirements, and demonstrating long-
term safety and efficacy in diverse patient populations. In the context of neurological
diseases, including stroke, TBI, and SAH, certain nanotechnologies have reached early-
phase clinical trials. For instance, iron oxide nanoparticles such as ferumoxytol have
been evaluated as MRI contrast agents and demonstrated utility in visualizing inflam-
mation in ischemic stroke [93–95]. Similarly, lipid-based nanoparticles for brain-targeted
drug delivery have been explored in phase I/II trials, focusing on their pharmacokinet-
ics and safety profiles [96–98]. Some notable examples include lipid nanoparticles for
siRNA delivery, such as patisiran (Onpattro) [99,100], liposomal cytarabine (DepoCyt) for
chemotherapy delivery [101,102], doxorubicin for targeting brain tumors [103,104], cur-
cumin for neuroinflammation in Alzheimer’s disease [105], and lipid nanoparticles used in
mRNA vaccines [106,107]. Given the potential for nanoparticles to cross the blood–brain
barrier and deliver targeted therapies, future research should focus on bridging the gap
between preclinical findings and clinical applications. Addressing the challenges such
as nanoparticle biocompatibility, immunogenicity, and precise targeting mechanisms will
be crucial for their successful integration into therapeutic protocols. Continued advance-
ments in nanoparticle engineering and regulatory pathways are expected to facilitate their
adoption in clinical settings over the coming years.

6. Conclusions
While NPs have shown promise as both diagnostic tools and therapeutic agents in

murine models, further investigation is necessary to inform future clinical trials. In particu-
lar, researchers have emphasized the importance of further studying NP distribution and
optimizing localization to the brain [64,82], as well as safety and toxicity evaluations [108]
prior to considering its use in human patients. Nonetheless, it is evident that NPs have the
potential to revolutionize therapeutics for SAH, neurotrauma, and stroke.
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Abbreviations

ATX astaxanthin
BBB blood–brain barrier
C-NPs curcumin nanoparticles
CeNPs cerium oxide nanoparticles
DSPE 1,2-distearoyl-sn-glycero-3-phosphoethanolamine
EBI early brain injury
GSH glutathione
HIF-1a Hypoxia-Inducible Factor-1 alpha
IMPs immunomodulatory nanoparticles
NMDA N-methyl-D-aspartate
NP nanoparticle
Nrf2 nuclear factor-erythroid 2 p45-related factor 2
PFC perfluorocarbon
PFOB Perfluorooctyl-Bromide
PGAs polyglycolides
PLAs polylactides
PLGAs poly(lactide-co-glycolides)
ROS reactive oxygenated species
SAH subarachnoid hemorrhage
TBI traumatic brain injury
VEGF vascular endothelial growth factor
Z-DEVD-FMK N-benzyloxycarbonylAsp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone
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