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A B S T R A C T   

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder with a poorly understood 
etiology. An accurate diagnosis of idiopathic PD remains challenging as misdiagnosis is common 
in routine clinical practice. Moreover, current therapeutics focus on symptomatic management 
rather than curing or slowing down disease progression. Therefore, identification of potential PD 
biomarkers and providing a better understanding of the underlying disease pathophysiology are 
urgent. Herein, hydrophilic interaction liquid chromatography–mass spectrometry (LC-MS/MS) 
and gas chromatography-mass spectrometry (GC-TOF MS) based metabolomics approaches were 
used to profile the serum metabolome of 50 patients with different stages of idiopathic PD (early, 
mid and advanced) and 45 age-matched controls. Levels of 57 metabolites including cysteine-S- 
sulfate and N-acetyl tryptophan were significantly higher in patients with PD compared to con-
trols, with lower amounts of additional 51 metabolites including vanillic acid, and N-acetylas-
partic acid. Xanthines, including caffeine and its downstream metabolites, were lowered in 
patients with PD relative to controls indicating a potential role caffeine and its metabolites 
against neuronal damage. Seven metabolites, namely cysteine-S-sulfate, 1-methylxanthine, 
vanillic acid, N-acetylaspartic acid, 3-N-acetyl tryptophan, 5-methoxytryptophol, and 13-HODE 
yielded a ROC curve with a high classification accuracy (AUC 0.977). Comparison between 
different PD stages showed that cysteine-S-sulfate levels were significantly increasing with the 
advancement of PD stages while LPI 20:4 was significantly decreasing with disease progression. 
Our findings provide new biomarker candidates to assist in the diagnosis of PD and monitor its 
progression. Unusual metabolites like cysteine-S-sulfate might point to therapeutic targets that 
could enhance the development of novel PD treatments, such as NMDA antagonists.   
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1. Introduction 

Parkinson’s disease (PD) is the second most frequent neurodegenerative condition and the most prevalent age-related movement 
disorder worldwide [1,2]. The incidence of PD is increasing at a faster rate compared to other neurological conditions, with projections 
suggesting that its prevalence will be more than double within the next three decades [3]. Additionally, the economic, social, and 
emotional burden of PD will increase as the population ages. 

PD is a chronic progressive disorder. Pathological features include motor (e.g. bradykinesia, muscular rigidity, resting tremor) and 
nonmotor (e.g. sleep disorders, depression, and cognitive changes) symptoms that substantially impact patients’ mobility, cognition 
and behavior over a period of 15–20 years [4,5]. The death of dopaminergic neurons located in the substantia nigra, coupled with the 
accumulation of intracytoplasmic inclusions known as Lewy Bodies, have been pinpointed as the primary causes behind the motor 
symptoms of PD [6]. Although most cases of PD are idiopathic, genetic and environmental factors have been linked to the disease 
pathogenesis [7]. Despite decades of research, there are still no definitive tests to confirm the diagnosis of PD. Current diagnosis 
depends mainly on medical history, physical examination and response to dopaminergic treatment [1,7]. Accurate diagnosis of PD is 
challenging. Underlying pathophysiological changes will take place before the onset of motor symptoms, whereas the latter may not be 
clinically evident until approximately 50 %–80 % of dopaminergic neurons are lost [8]. Moreover, early nonmotor presentations are 
not PD specific which further complicates an early diagnosis [5,9], particularly in idiopathic PD [3]. 

To date, PD medications are focused on symptomatic management rather than preventing or slowing down disease progression 
[10]. Given that the pathogenesis of the disease remains enigmatic, together with the lack of definitive diagnostic test and treatment 
therapeutics, current research has focused on applying new analytical approaches to unravel the molecular mechanisms behind PD, 
discover potential diagnostic biomarkers and identify new therapeutic targets for drug development. 

Metabolomics is a hypothesis generating analytical approach the enables the identification and the measurements of hundreds of 
metabolites in an untargeted manner. Metabolomics couples state of the art analytical approaches with bioinformatics to identify 
unique biomarkers, monitor disease progression, and obtain valuable insights into the underlying pathophysiological mechanisms of 
diseases. In PD research, untargeted metabolomics have been mainly applied to case-control studies using blood sample (plasma or 
serum) due to its minimal invasive and easily accessible nature compared to other samples such as brain tissue [11–16]. Moreover, 
metabolites profiling using other biological fluids such as cerebrospinal fluid (CSF) [17–20], or urine samples have also been reported 
[21,22]. To increase metabolomic coverage, multiple assays should be combined. Consequently, we here present, for the first time, 
combination of GC-MS and LC-MS data to profile the serum metabolome of patients with idiopathic PD and age-matched controls and 
between different stages of PD (early, mid and advanced). This will aid in the identification of potential diagnostic biomarkers and 
providing a better understanding of PD pathophysiology. Additionally, comparing different stages of PD will detect metabolites that 
can aid in monitoring disease progression and highlighting promising therapeutic targets. 

2. Material and methods 

2.1. Ethical considerations 

Ethical approval for this study was obtained from the institutional review board of Jordan University of Science and Technology, 
Irbid, Jordan (Ref.: 26/143/2021, date 07.09.2021). All participants (patients and controls) signed an informed written consent before 
participation. 

2.2. Subjects and selection criteria 

Fifty Jordanian patients referred to private and public neurology clinics and diagnosed with idiopathic PD by registered neurol-
ogists were enrolled in this study. Patients with PD were at the “on” stage of medication, and without a history of deep brain 

Table 1 
Demographic data of recruited control and patients with PD.  

Demographic and clinical characteristics PD (n = 50) Control (n = 45) p-valueb 

Mean SD Mean SD 

Age (years) 64.2 13.3 59.4 10.4 0.06 
Gender (F/M)a 19/31 NA 23/22 NA 0.20 
BMI (kg/m2) 28.3 5.2 29.9 4.4 0.10 
Systolic blood pressure (mmHg) 131.6 16.4 NA NA  
Diastolic blood pressure (mmHg) 84.2 6.8 NA NA  
Duration of PD (Years) 9.8 7.2 NA NA  
Total Cholesterol (mmol/L) 5.18 0.53 NA NA  
HDL-Cholesterol (mmol/L) 1.28 0.25 NA NA  
LDL-Cholesterol (mmol/L) 3.45 0.90 NA NA  

PD: Parkinson’s disease; F/M: Female and Male; BMI: Body mass index. 
a Presented as the number of subjects in each group. Values are presented as mean ± SD. 
b p-value using Student’s t-test for age and BMI and chi-square test for gender. 
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stimulation surgery. Patients underwent classification into three clinical subgroups according to Hoehn Yahr staging criteria post 
subjective evaluation by the examining physician: the early group (H–Y stages I and II, n = 28), mid group (H–Y stage III, n = 14), and 
advanced subgroup (H–Y stages IV and V, n = 8) [23]. The exclusion criteria are detailed in Ref. [24]. Additionally, 45 adult vol-
unteers, with no clinical evidence of PD or other movement or neurodegenerative disorders, were recruited as healthy control from the 
local community. The healthy controls and patients with PD were matched for age, gender, body mass index (BMI) and ethnic origin. 
The same cohorts were previously used to investigate serum lipidome in LC-MS lipidomic study [24]. 

Table 1 shows subjects’ demographic data in terms of age, gender, and BMI. 

2.3. Sample collection, processing, and storage 

Blood samples were collected from participants after a 6-h fasting period. A volume of 5 mL of blood was collected in plain tubes 
and then centrifuged at 1500×g for 10 min (Hermle centrifuge, Germany). The obtained serum was transferred into 1.5 mL microtubes 
(Eppendorf, Hamburg, Germany) and stored at − 80 ◦C until further analysis. 

2.4. Metabolite extraction 

Metabolite extraction was performed as previously described [24]. All solvents used were LC-MS grade obtained from Fisher 
Scientific, USA. Briefly, cold methanol and chloroform were added to 35 μL serum followed by the addition of water and then shaking. 
Equal volumes of chloroform and water were added before centrifugation at 10,000×g for 5 min. From the upper separated phase 
(moderate-to-highly polar metabolites), 400 μL was taken and divided into two Eppendorf tubes (200 μL each); one for GC-MS analysis 
and other one for hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) experiment. All samples were dried 
using vacuum centrifugal evaporator (Eppendorf, Hamburg, Germany) and stored at − 80 ◦C until further analysis. The lower organic 
phase (non-polar metabolites and lipids) was used in a separate reversed phase LC-MS lipidomic study as detailed in Ref. [24]. 

2.5. Metabolite profiling using hydrophilic interaction liquid chromatography (HILIC) coupled with quadrupole-time-of-flight mass 
spectrometry 

Dried samples were resuspended in 100 μL of HILIC resuspension solution (80:20 acetonitrile (ACN):H2O) containing 41 in house 
prepared internal standards as quality control markers. Samples were vortexed, sonicated for 5 min, centrifuged at 16,100×g for 2 min 
and finally transferred (the upper 60 μL) to autosampler vials with 200 μL inserts. LC-MS based metabolomics was performed using 
Agilent 1290 UHPLC connected to a Sciex TripleTOF 6600 mass spectrometer. 5 μL samples were injected into a Waters Acquity UPLC 
Premier BEH Amide column (1.7 μm, 2.1 × 50 mm). Chromatography was performed using a mobile phase composed of 100 % LC-MS 
grade H2O with 10 mM ammonium formate and 0.125 % formic acid as solvent A, and 95:5 (v/v) ACN:H2O with 10 mM ammonium 
formate with 0.125 % formic acid as solvent B with a flow rate of 0.8 mL/min. The LC gradient was set at 100 % B for 0.5 min, 70 % B at 
1.95 min, 30 % B at 2.55 min, 100 % B at 3.15 min till 3.8 min. Column temperature was kept at 45 ◦C. Data was acquired using Sciex 
TripleTOF 6600 mass spectrometer operating in positive and negative ESI in data-dependent acquisition (DDA) mode (5 DDA scans per 
cycle) using the following MS parameters: mass range, 50–1500 m/z for MS1 and 40–1000 m/z for MS2; ion source gas 1 and 2, 60; 
curtain gas, 35; ion source temperature, 600 ◦C; ion source voltage, 4000 V and collision energy, 40. Analyst 1.8 was used for data 
acquisition. 

To evaluate the LC-MS instrument’s performance, a combined quality control (QC) sample was prepared by mixing 30 μL from each 
resuspended individual sample. QC samples were then injected after every 10 individual samples, and the coefficient of variability 
(CV) was calculated for all mass ions to ensure the system’s suitability and stability. 

2.6. Metabolomics using gas chromatography-time of flight mass spectrometry 

Before GC-time of flight (GC-TOF) analysis, metabolites were derivatized by adding 10 μL of methoxyamine hydrochloride in 
pyridine (40 mg/mL) to each dried sample followed by shaking at 30 ◦C for 90 min. A volume of 90 μL of N-methyl-N-(trimethylsilyl) 
trifluoroacetamide (MSTFA, Sigma-Aldrich, USA) was added for trimethylsilylation followed by the addition of C8–C30 fatty acid 
methyl esters (FAMEs, Sigma-Aldrich, USA) for retention time correction. Samples were shaken at 37 ◦C for 30 min. Derivatized 
samples were analyzed using Agilent 7890A GC coupled to a Leco Pegasus HT TOF mass spectrometer applying the same chro-
matographic and MS parameters previously described [25]. 

2.7. Data processing and metabolites identification 

Raw GC-TOF MS data was processed and annotated using metabolomics GC-BinBase Database and then manually curated as 
detailed previously [25]. For HILIC-TTOF MS data, the freely available software MS-DIAL version 4.92 was used for data processing 
including peak picking, alignment and metabolite annotation [26]. Metabolites detected via HILIC-TTOF MS were annotated based 
upon precursor m/z paired with retention time compared to previously analyzed reference standards, or by matching of experimental 
MSMS spectra with NIST/MoNA library spectra, or by a combination of both approaches. HILIC-TTOF MS metabolite annotation 
confidence levels were assigned per Metabolomics Standards Initiative (MSI) guidelines as described previously [27]. Final processed 
GC and HILIC MS data were combined for subsequent statistical analyses. 
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2.8. Statistical analysis (Multivaritate and univariate analyses) 

Univariate and multivariate statistical analyses were performed using MetaboAnalyst version 5.0 (McGill University, Montreal, QC, 
Canada) [28,29] and Simca P+14 (Sartorius Stedim Data Analytics AB, Umea, Sweden), respectively as detailed previousely [24]. 
Group separation and clustering were evaluated using partial least square-discriminative analysis (PLS-DA). High model fitness values 
(R2Y close to one) and predictive ability (Q2 values ≥ 0.5) reflect robust models. PLS-DA model was also validated by performing a 
permutation test (999 permutations). Variable importance in the projection (VIP) > 1 was used to extract significantly altered me-
tabolites in PLS-DA model. 

Heat maps, volcano plots and receiver operating characteristic (ROC) curve were generated using MetaboAnalyst. After normal-
ization and pareto-scaling of the datasets, student’s independent t-test (for binary comparison between PD and control cases) and one- 
way ANOVA (comparison between PD stages) were used to identify significantly altered metabolites among the compared groups. 
Correction for multiple comparison was peformed using Benjamini–Hochberg false discovery rate (FDR). Only metabolites with VIP 
score >1 (in multivarite analysis) and FDR <0.05 (in univariate analysis) were considered potential diagnostic biomarker for PD. 

Individual metabolite abundance comparisons between control and PD cases and between PD stages were performed using 
GraphPad Prism 8 (version 8, San Diego, CA, USA). A P-value less than 0.05 is defined significant. 

3. Results 

3.1. Demographic and clinical data of participants 

Tables 1 and 2 show the characteristics of the study population. No significant differences were detected between control and PD 
cases in terms of age, BMI and gender, Table 1. Similarly, patients in the different PD stages; early, mid and advanced were matched 
with regards to age, BMI and gender, Table 2. 

3.2. Metabolite profiling in patients with PD compared to healthy controls 

In combination, around 600 metabolites were structurally annotated by GC-TOF MS and HILIC-MS/MS assays. Herein, 446 unique 
metabolites were detected by HILIC-MS/MS with additional 97 unique metabolites were identified by GC-MS while only 55 com-
pounds were detected by both platforms. PLS-DA revealed a complete separation of the two study groups reflecting significant changes 
in the metabolic profile in the circulation of patients with PD compared to controls, Fig. 1A. The PLS-DA model had satisfactory R2Y 
(0.95) and Q2 (0.82) values and passed the validity permutation test (Fig. S1 in Supplementary Information). Among the metabolites 
responsible for the class separation in the PLS-DA model (VIP >1) are dipeptides (e.g Glu-Ala, Pro-Gln, Pro-Ser), the PD drug treatment 
L-DOPA and its related metabolite 3-methoxytyrosine (also known as 3-O-methyldopa), 5-methoxytryptophol and sulfated metabolites 
(e.g. cysteine-S-sulfate, homovanillic sulfate), Fig. 1B and Table S1. 

Set enrichment analysis using ChemRICH software [30] showed that several metabolite clusters were impacted in PD cases 
including dipeptides, xanthines, amino acids (sulfur and aromatic), benzyl alcohol, dicarboxylic acids and disaccharides (Fig. 2A). 
Additionally, perturbations in lipid clusters in PD were observed in saturated and unsaturated lysophosphatidylcholines (LPC) and 
phosphatidylcholines. Of note, all metabolites identified in xanthines cluster were down regulated in PD compared to controls. 
Caffeine and the caffeine metabolites 5-acetylamino-6-formylamino-3-methyluracil, 1,3,7-trimethyluric acid, 1-methylxanthine, and 
5-acetylamino-6-amino-3-methyluracil along with tea metabolites theophylline and vanillic acid were observed significantly lower in 
PD patients relative to healthy controls. 

Volcano plot revealed that the levels of 57 and 51 metabolites were significantly (FDR<0.05) higher and lower, respectively, in PD 
patients compared to controls, Fig. 2B. The level of cysteine-S-sulfate, 3-methoxytyrosin, and N-acetyl tryptophan was significantly 
increased, while the level of 5-methoxytryptophol, N-acetylphenyl alanine, vanillic acid, N-acetylaspartic acid and 13-Hydroxyocta-
decadienoic acid (13-HODE) was significantly decreased in PD. Visualization of the top perturbed metabolites between the two groups 
is presented in the heatmap in Fig. 2C. 

Out of the univariate and multivariate analyses, 187 metabolites and chemicals were found to be significant in both (using VIP>1 
and FDR<0.05) (Table S1 in Supplementary). These included mainly amino acids, dipeptides, hippuric acids, xanthines and fatty acids 
(Fig. S2 in Supplementary). Seven of the significantly altered and clinically relevant metabolites namely: cysteine-S-sulfate, 3-N-acetyl 
tryptophan, 5-methoxytryptophol, 1-methylxanthine, vanillic acid, N-acetylaspartic acid and 13-HODE were further evaluated as 

Table 2 
Demographic data of recruited patients with PD at early, mild and advanced stages.  

Demographic and clinical characteristics PD-Early (n = 28) PD-Mid (n = 14) PD-Advanced (n = 8) p-valueb 

Age (years) 63.9 ± 12.1 68.7 ± 13.3 57.5 ± 15.8 0.07 
Gender (F/M)a 10/18 6/8 3/5 0.12 
BMI (kg/m2) 28.2 ± 6.4 28.5 ± 2.8 28.3 ± 3.4 0.19 

PD: Parkinson’s disease; F/M: Female and Male; BMI: Body mass index. 
a Presented as the number of subjects in each group. Values are presented as mean ± SD. 
b p-value using one-way ANOVA test for age and BMI and chi-square test for gender. 

L.A. Dahabiyeh et al.                                                                                                                                                                                                 



Heliyon 10 (2024) e30452

5

potential biomarkers to discriminate between controls and PD cases. Fig. 3A shows the levels of the seven selected metabolites in PD 
patients and age-matched controls. These metabolites yielded a satisfactory ROC curve with Area Under the Curve (AUC) value of 
0.977 (Fig. 3B). 

3.3. Metabolite profiling of the three different stages of PD; early, mid and advanced 

Complete separation between the three PD stages could not be acheived in the PLS-DA score plot (Fig. 4A). The early and mid stage 
cases partially overlaped but were separated from the advanced stage. Univariate analysis revealed that 70 metabolites were disturbed 
between PD stages (Table S2). The differential metabolites can be mainly classified as amino acids, dipeptides, saturated fatty acids, 
TCA acids, dicarboxylic acids, and xanthines (Fig. S3 in supplemental information). Heatmap of the top altered metabolites between 
the three groups is shown in Fig. 4B. 

Expectedly, most significant metabolic changes were detected between early and advanced stages of PD. PLS-DA score plot revealed 
complate separation between the two groups (Fig. 4C), while enrichemnt analysis indicated increaed level of dipeptides and decreased 
level of xanthines and oligopeptides in advanced stage PD (Fig. 4D). Compared to early stage, the level of cysteine-S-sulfate, N8- 
acetylspermidine and galactosamine-1-phosphate was significantly increased in adavnced stage while the level of lysophosphatidy-
linositol 20:4 (LPI 20:4) and glucose-1-phosphate was significantly decreased (Fig. 4E). 

Six metabolites demonstrated a pattern in the change of their level with the progression of PD from early to advanced stage, 
Fig. 5A–F. The level of cysteine-S-Sulfate, N8-acetyl spermidine, 13-HODE, galactosamine-1-phosphate was significantly increasing 
with the progression of PD while the level of LPI 20:4 was significantly decreasing. 

4. Discussion 

Parkinson’s disease is a neurodegenerative disorder with recently increasing incidence due to aging population. Loss of 
dopaminergic-neurons in the substantia nigra, misfolding and accumulation of proteins, oxidative stress, and neuroinflammation are 
the hallmarks of the disease. Although age, nutrition, environmental and genetic factors are described as risk factors for PD, the 
etiology of the disease remains poorly understood, particularly for idiopathic PD [31]. In the current work, serum samples from pa-
tients with different stages of PD (early, mid and advanced) and age-matched controls were analyzed for the first time using two 
metabolomics assays; HILIC-MS/MS and GC-TOF MS to identify metabolites significantly altered between PD and control cases and 
between the different stages of the disease. These metabolites might act as potential biomarkers to aid in disease diagnosis and 
monitoring, provide new insights into the underlying biochemical mechanisms associated with the pathophysiology of PD and identify 
new therapeutic targets that could enhance the development of novel treatment strategies. 

Lower level of xanthines, including caffeine and its downstream metabolites, was observed herein in PD patients relative to healthy 
controls (Fig. 6). Several studies investigated the potential beneficial role of xanthines (i.e caffeine and theobromine) in improving 
cognitive decline in neurodegenerative diseases. Due to their antioxidant properties and their ability to act as histone deacetylase 
activators and adenosine receptor (AR) antagonists, xanthines are believed to modulate mechanisms related to PD pathophysiology 
such as accumulation of misfolded proteins, oxidative stress and neuroinflammation [32,33]. Multiple epidemiological studies could 
already demonstrate an inverse association between coffee drinking and PD [33,34]. Moreover, lower circulating levels of caffeine and 
its metabolites have been reported in PD patients compared to control groups [35–38]. Our finding is in line with previous results 
which further supports the protective effect of caffeine and its metabolites against neuronal damage. Additionally, we observed lower 
xanthines in advanced stage PD compared to early stage indicating that caffeine and its related metabolites might play a role in 
decelerating PD progression among early-stage PD individuals. 

Evidence showed that N-acetylaspartic acid (NAA), an abundant amino acid in the brain localized primarily to neurons, Fig. 6 [39], 
has important roles in the osmoregulation of neuronal cells as well as maintaining nitrogen balance in the brain and energy metabolism 
in neuronal mitochondria [40,41]. Recently, NAA has also been described as a potent protein aggregation inhibitor [42]. Lower brain 
level of NAA has been reported with various neurodegenerative conditions associated with neuronal loss and damage such as PD and 
Alzheimer’s disease using magnetic resonance spectroscopy [43,44]. NAA released by neurons to the extracellular space is taken up by 
astrocytes and then excreted to the circulation [45]. Herein, a significant decrease in the level of circulating NAA was observed for the 
first time in PD patients compared to controls which might be a consequence of its lower level in the brain. Our finding suggests that 
circulating level of NAA might be an indicator of the functional and structural integrity of neurons in the brain. 

Among the metabolites that were significantly increased between PD stages is the polyamine N8-acetylspermidine. Polyamines, 
including spermine and spermidine, are polycations with important roles in modulating cell growth and proliferation and interacting 
with DNA and RNA [46]. Acetylation is a crucial mechanism to modulate polyamines level and functions. Acetylation of the intra-
cellular spermidine at the N8 position by spermidine N8-acetyltransferase will lead to the formation of N8-acetylspermidine which is 
then excreted from the cell to the circulation [47], Fig. 6. Since N8-acetylspermidine is an excretion product, its plasma level has been 
suggested as an indicator of intracellular polyamine activity where an increase in its excretion is linked to brain injury, neuro-
inflammation and neuronal cell damage [48,49]. Elevated N8-acetylspermidine levels were detected in the plasma and the CSF of 
patients with PD compared to control [50,51]. Additionally, N8-acetylspermidine was increased in fast progressing PD patients 
compared to slow progressing ones [52]. Herein, the circulating level of N8-acetylspermidine was significantly increased between 
early and advanced stage PD cases which is plausibly a cellular response to neuroinflammation exacerbation as a consequence of the 
progression of the disease. Our finding reinforces previous work that measuring circulating level of N8-acetylspermidine is a promising 
approach to aid in monitoring motor symptom progression in PD [52]. 
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Fig. 2. Significantly altered metabolites clusters and metabolites in patients with PD compared to healthy controls (A) ChemRICH set enrichment 
result for significantly impacted metabolite clusters. The plot y-axis shows the most significantly altered clusters on the top. Cluster colors give the 
proportion of increased or decreased compounds (red = increased, blue = decreased). (B) Volcano plots of up (red) and down (blue) regulated 
metabolites using false discovery rate (FDR) and fold change (FC) cutoffs of <0.05 and 1.5, respectively. (C) Heatmap of the top altered metabolites. 
The higher values (red) reflect higher metabolite abundance, and lower values (blue) reflect lower abundance. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 1. Multivariate analysis of patients with PD (n = 50) compared to healthy controls (n = 45) (A) PLS-DA score plot (R2Y = 0.954, Q2 = 0.817) 
(B) Top significant metabolites and compounds with the highest VIP scores in the PLS-DA model. 
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Interestingly, to the best of our knowledge this is the first study to report the significant change in the levels of the two metabolites; 
cysteine-S-sulfate and LPI 20:4, between patients with PD and controls and between the different stages of PD. The level of LPI 20:4, 
also known as 1-arachidonoyl-phosphatidylinositol, was significantly lower in PD compared to controls and its level continued to 
decrease as the disease progress (Fig. 5). LPI is a subspecies of lysophospholipid with inositol in its head group generated by the action 
of phospholipase A1. Although LPIs are much less explored compared to lysophosphatidic acid (LPA), over the years they have come to 
be considered as bioactive lipids, and their role as endogenous agonists for GPR55 is now widely accepted [53,54]. GPR55 is impli-
cated in many physiological processes and its activation has been found beneficial in combating PD [55]. Moreover, a neuroprotective 
effect of LPI against glutamate-induced neuronal cell death and altered neurotransmission in PD has been reported [56]. Lower levels 
of LPI 20:4 seems to boost PD progression, nevertheless, further research is warranted to investigate the role of LPI in the pathogenesis 
of PD. On the other hand, cysteine-S-sulfate was found to be increased in PD cases compared to controls and also upon the progression 
of the disease. Cysteine-S-sulfate is an abnormal sulfate derivative of cysteine produced by the reaction of inorganic sulfite and cystine, 
Fig. 6 [57]. This reaction is described as the first scavenging mechanism for sulfite in the plasma [58]. Accumulation of 
cysteine-S-sulfate might lead to low cystine reservoir, and subsequently glutathione (GSH), resulting in disturbances in the redox 
homeostasis. High level of cysteine-S-sulfate was associated with brain damage and mental retardation in sulfite oxidase deficiency 
specifying that neurons are sensitive towards these metabolic changes [59]. Therefore, high level of cysteine-S-sulfate in PD, 
particularly advanced stage, might underline the severe homeostatic dysregulation caused by cysteine-S-sulfate accumulation. 
Moreover, cysteine-S-sulfate is structurally related to glutamate and is considered a potent N-methyl-D-aspartate (NMDA) gluta-
matergic receptors agonist [60]. NMDA receptors are widely expressed in the basal ganglia and have a critical role in the regulation of 
excitatory synaptic transmission. Excessive stimulation of NMDA receptors by agonists will activate a cascade of signaling pathway 
that eventually will result in neuronal damage and death [61]. Therefore, high level of cysteine-S-sulfate might be a major contributor 
to neurodegeneration progression seen herein in PD by triggering excitotoxicity and exacerbating motor functions decline. Antagonists 
of NMDA receptors have displayed promising effects on slowing PD progression and reversing motor symptoms. Our result supports 
previous studies that highlighted the role of NMDA receptors as new therapeutic targets for treating PD and slowing down its 
progression. 

PD is a multifactorial disorder that involves several pathophysiological mechanisms and pathways. Hence, it is of high importance 
to have a diverse set of biomarkers that possesses sufficient specificity and sensitivity to accurately diagnose PD. Therefore, seven 
significantly altered metabolites linked to different mechanisms underlying PD were evaluated. Cysteine-S-sulfate, 1-methylxanthine, 
vanillic acid, N-acetylaspartic acid, 3-N-acetyl tryptophan, 5-methoxytryptophol, and 13-HODE yielded a ROC curve with a high 
classification accuracy. This novel panel of potential biomarkers could serve as a diagnostic biomarker set for idiopathic PD. 
Nevertheless, validation in a larger cohort remains urgent. 

Fig. 3. Receiver operating characteristics (ROC) curve (A) generated from seven significantly altered metabolites between control and PD (B). 
Significance between the two groups is expressed as ***P-value ≤0.001, ****P-value ≤0.0001 (Student’s independent t-test). 
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5. Conclusion 

The current study used for the first time HILIC-MS/MS and GC-TOF MS based metabolomics to identify biomarkers that can assist in 
the diagnosis of PD and monitor its progression. Altered metabolites shed light on perturbed processes in PD including neuro-
inflammation, neuronal loss and damage, polyamine activity, lipid metabolism, and redox homeostasis. Several metabolite clusters 

Fig. 4. Metabolite profiling of different stages of PD; early, mid and advanced (A) PLS-DA score plot (R2Y = 0.742, Q2 
= 0.34) of different PD stages; 

early (n = 28), mid (n = 14) and advanced (n = 8) (B) Heatmap of the top altered metabolites. The higher values (red) reflect higher metabolite 
abundance, and lower values (blue) reflect lower abundance. (C) PLS-DA score plot (R2Y = 0.94, Q2 = 0.42) for class separation between early and 
advanced stages of PD (D) ChemRICH set enrichment result for significantly impacted metabolite clusters in advanced stage PD compared with early 
stage. The plot y-axis shows the most significantly altered clusters on the top. Cluster colors give the proportion of increased or decreased com-
pounds (red = increased, blue = decreased). (E) Volcano plot of up (red) and down (blue) regulated metabolites in advanced PD compared with 
early stage using p-value and fold change (FC) cutoffs of <0.05 and 1.5, respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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were impacted in PD, including xanthines which highlights the protective role of caffeine and its metabolites against neuronal damage 
and in slowing down disease development. Additionally, a novel panel of seven significantly altered metabolites linked to different 
mechanisms underlying PD yielded a ROC curve with a high classification accuracy suggesting that they could serve as potential 
diagnostic biomarkers for idiopathic PD. Due to the small sample size in this study, validation for the identified potential biomarkers in 
a larger cohort of patients with PD is necessary. Future validation can be employed using more sensitive targeted methods for absolute 

Fig. 5. Metabolites significantly altered during the progression of PD. One-way ANOVA analysis using Turkey’s post hoc test was used to indicate 
significance. * P-value ≤0.05, **P-value ≤0.01, ***P-value ≤0.001, ****P-value ≤0.0001. 

Fig. 6. Significantly altered metabolites in PD compared to control and how they might be related to the pathogenesis of PD. Red and blue arrows 
refer to metabolites increased and decreased in PD compared to control, respectively. N8-acetylspermidine was increased in advanced stage PD 
compared to early stage PD. ODC refers to ornithine decarboxylase. Figure was created with BioRender.com. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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quantification (using LC-triple quadrupole MS) to assess the applicability of the discovered markers and their potential to be used in 
clinical settings for the diagnosis of PD and monitoring its progression. 

Our findings indicate that circulating cysteine-S-sulfate not only could serve as a potential diagnostic biomarker for PD, together 
with other metabolites, but also has a promising role to monitor the stages of PD advancement. Lower levels of LPI 20:4 seems to boost 
PD progression However, additional research remains urgent to investigate the role of bioactive lipids particularly LPI in the patho-
genesis of PD. 

Current treatment of PD is limited to symptomatic relief. The significantly altered metabolites pointed to therapeutic targets that 
could enhance the development of novel treatment strategies including GPR55 agonists and NMDA antagonists. Notably, NMDA 
antagonism is increasingly viewed as an important target for the development of new drugs to prevent or treat PD. Further studies 
exploring the function of these targets in neurodegenerative disorders, particularly PD, are essential. Despite standardizing samples 
through fasting, the potential variability in diet and medication history among participants remains a limitation of our study. It is 
possible that some of the variations in metabolites levels identified in this study could be attributed to the medication for PD. This 
cannot be determined as the control group in our study did not take any PD medication. Despite the difficulty, future research should 
incorporate prospective trials with subjects who were not on PD medication but later diagnosed with PD, compared to corresponding 
control subjects. 
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