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Abstract

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious side effect of nitrogen-containing bisphosphonate
(NBP) use. Many studies have shown that BRONJ is limited to the jawbone and does not occur in the other bones. We
hypothesized that BRONJ is related to local bacterial iections and involves the innate immune system. To examine the
relationship between BRONJ and innate immunity, we examined the effects of NBPs on macrophages, one of the important
cell types in innate immunity. The expression of toll-like receptor-4 (TLR4) in cells after pretreatment with zoledronic acid
(ZOL) did not considerably differ from that in untreated control cells. However, cytokine levels and nitric oxide (NO)
production increased after pretreatment with ZOL. Furthermore, ZOL induced NF-kB activation by enhancing IkB-a
degradation. Lipopolysaccharide (LPS)-induced apoptosis also increased after pretreatment with ZOL. This effect was
mediated by a reduction of suppressor of cytokine signaling-1 (SOCS1), which is a negative regulator of myeloid
differentiation primary response gene 88 (MyD 88)-dependent signaling. These results suggest that ZOL induced excessive
innate immune response and proinflammatory cytokine production and that these processes may be involved in the bone
destruction observed in BRONJ.
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Introduction

Nitrogen-containing bisphosphonates (NBPs), which are syn-

thetic analogs of pyrophosphate, are an effective treatment for

osteoporosis, hypercalcemia of malignancy, osteolytic lesions in

multiple myeloma, and bone metastases from solid tumors,

including breast cancer and hormone-independent prostate cancer

[1,2]. In addition, NBPs are effective for the treatment of

numerous metabolic bone diseases. NBPs have a high affinity for

bone minerals [3] and accumulate in high concentrations in bones

[4,5]. They are selectively taken up by osteoclasts and strongly

inhibit bone resorption by inducing apoptosis in osteoclasts [6,7].

However, serious side effects such as bisphosphonate-related

osteonecrosis of the jaw (BRONJ) have been reported with the use

of NBPs [8,9]. In addition to the clinical appearance of exposed

necrotic bone, concomitant local infections are often observed in

patients with BRONJ. It has been reported that bisphosphonate-

related osteonecrosis is limited to the jawbone and is not observed

in other bones. In afflicted patients, BRONJ adversely affects

quality of life and produces significant morbidity. Because

bisphosphonates have been shown to reduce bone remodeling

[10] and angiogenesis [11], the suppression of bone turnover and

jaw angiogenesis resulting from bisphosphonates have been

proposed as underlying mechanisms for BRONJ.

Myriad numbers of bacteria reside in the mouth. Therefore, it

has been suggested that infection triggers the development of

BRONJ. Infections of the jawbone cause inflammation, which

intensifies as the severity of BRONJ increases [12]. Innate

immunity has a critical role in the inflammation process, and

innate immune surveillance relies in part on the recognition of

conserved molecules unique to some classes of potential pathogens.

For example, bacterial lipopolysaccharide (LPS), which is found in

the cell wall of Gram-negative bacteria, is a potent inducer of

immune responses. Toll-like receptors (TLRs), originally identified

as key mediators of development in Drosophila [13], initiate

second-messenger pathways that regulate the expression of genes

required for protective immune responses. For example, activation

through TLRs has been shown to induce potent inflammatory

responses, including the production of reactive oxygen and

nitrogen intermediates, the secretion of chemokines and cytokines,

and cellular differentiation, and many of these responses are
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regulated by NF-kB [14]. Each TLR has a specific ligand that

binds and activates it.

Depending on the oral cavity environment, the oral flora

changes in various ways. For example, when the oral cavity

environment gets worse, gingival inflammation occurs. As a result,

the proportion of Gram-negative bacteria producing LPS increase.

LPS-induced inflammatory cytokines specifically bind to TLR4.

Therefore, in this study, we used macrophages, which are of the

same origin as osteoclasts, like all typical immune cells, and we

focused on the relationship between innate immunity and

BRONJ, specifically the involvement of the NBP zoledronic acid

(ZOL), and its effects on TLR4 signaling and inflammatory

cytokine production.

Materials and Methods

Cell Culture
The murine macrophage cell line, RAW264.7, was obtained

from the Division of Host Defense, Research Center of Prevention

of Infectious Disease, Medical Institute of Bioregulation, Kyushu

University [15] and maintained in Dulbecco’s modified Eagle’s

medium (DMEM) (Sigma Aldrich, USA) supplemented with 10%

decomplemented fetal bovine serum, 2 mM glutamine, 1 mM

sodium pyruvate, 100 U/mL penicillin, and 100 mg/mL strepto-

mycin (Invitrogen, USA) in a humidified atmosphere containing

5% CO2 at 37uC.

Reagents
ZOL was purchased from Novartis Pharma AG (Switzerland) as

a hydrated disodium salt. Escherichia coli 0111: B4 LPS was

purchased from Sigma (UK).

Real-time Reverse Transcription-polymerase Chain
Reaction (RT-PCR)

RNA was extracted from RAW264.7 cells using TRIzol

Reagent (Invitrogen, USA) as according to the manufacturer’s

protocol. First-strand complementary DNA (cDNA) was synthe-

sized from total RNA (1.0 mg) in a final volume of 20 mL according

to the Reverse Transcriptase cDNA synthesis protocol. Quanti-

tative real-time PCR was performed with Brilliant III Ultra-Fast

SYBRH Green QRT-PCR Master Mix (Agilent Technologies,

USA). using the following gene-specific primers: mouse-IL-1b:

forward, CAGGATGAGGACATGAGCACC; reverse,

CTCTGCAGACTCAAACTCCAC; mouse-IL-6: forward, CCA-

GAGATACAAAGAAATGATGG; reverse, ACTCCAGAA-

GACCAGAGGAAT; mouse-TNF-a: forward, GGGGCCAC-

CACGCTCTTCTG; reverse,

GGCAGGGGCTCTTGACGGC; mouse-iNOS: forward,

CCCTTCCGAAGTTTCTGGCAGCAG; reverse,

GGCTGTCAGAGCCTCGTGGCTTTGG; and mouse-glyceral-

dehyde 3-phosphate dehydrogenase (GAPDH): forward, CAATG-

CATCCTGCACCACCAA; reverse, GTCATTGAGAG-

CAATGCCAG. The specificities of the expected products were

demonstrated by melting curve analyses. GAPDH was used as an

internal standard for mRNA analysis. PCR reactions for each

sample were performed in triplicate. The real-time PCR data were

quantified by the DCT method using the following formula:

n = 100*2 - (DCT targeted gene - DCT GAPDH).

Quantification of Nitric Oxide (NO) Release
The accumulation of NO2

-, a stable end product extensively

used as an indicator of NO production by cultured cells, was

assayed using the Griess reaction kit (Dojindo Laboratories, Japan)

according to the manufacturer’s instructions. RAW264.7 cells

were plated in 96-well tissue culture plates at a density of 2 6103

cells per well (in 200 mL), and preincubated with or without ZOL

(10 mL) for 24 h, and then incubated with LPS (100 ng/mL) at

37uC for another 24 h. The cell-free supernatants were then

mixed with equal amounts of Griess reagent and incubated at

room temperature for 15 min, and then the absorbance at 540 nm

was read using a plate reader (Labsystems Multiscan MS,

Germany).

Flow Cytometry
RAW264.7 cells were plated in 6-well tissue culture plates at a

density of 2 6103 cells per well in DMEM with 10% fetal bovine

serum. After 24 h of culture, cells were incubated in the presence

or absence of 10 mM ZOL with or without 100 ng/mL LPS at

37uC for an additional 24, 48, or 72 h. Following bisphosphonate

treatment, RAW264.7 cells were harvested with 0.25% trypsin-

EDTA and then washed 3 times in phosphate-buffered saline.

Combined cell pools were finally resuspended in 250 mL of

labeling solution according to the manufacturer’s instructions and

then incubated for 10–15 min in the dark. Labeled cells were then

counted in a flow cytometer (FACS VerseTM; BD Biosciences,

USA) within 30 min. Annexin-V-fluorescein isothiocyanate

(FITC) labeling was measured at 518 nm in the FL-1 channel

(FITC detector), and propidium iodide (PI) staining was measured

at 620 nm in the FL-2-channel (phycoerythrin detector).

Western Blotting
RAW264.7 cells were incubated with ZOL in DMEM and 10%

fetal bovine serum for 24 h. After harvesting, whole cell lysates

were prepared by washing the cells 3 times with phosphate-

buffered saline and then resuspending them in lysis buffer (10 mM

Tris-HCl [pH 7.6], 150 mM NaCl, 1% Triton X-100, and a

cocktail of protease inhibitors; Boehringer Mannheim, Switzer-

land). Insoluble material was removed by centrifugation at

12,000 rpm for 10 min at 4uC. Samples containing equal protein

were mixed with 56 sample buffer (20% glycerol, 10% 0-

mercaptoethanol, 6% sodium dodecyl sulfate, and 125mM Tris-

HCl [pH 6.8]). Protein samples were separated with 10% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis and then

transferred to polyvinyl difluoride membranes (Immobilon-P;

Millipore, USA). Membranes were blocked with blocking solution

(50 mM Tris-HCl, 150 mM NaCl, nonfat dry milk, and 0.1%

Tween) for 30 min at room temperature and then incubated

overnight with anti-phospho- IkB-a (#9246; Cell Signaling, USA),

anti- IkB-a (#9242; Cell Signaling, USA), anti-signal transducer

activator of transcription 1 (STAT1, #9172; Cell Signaling, USA),

anti-phospho-STAT1 (#9171; Cell Signaling, USA), anti-suppres-

sor of cytokine signaling 1 (SOCS1, ab65989; Abcam, USA), anti-

myeloid differentiation primary response gene 88 (MyD88,

ab2068; Abcam, USA), or anti-extracellular signal-regulated

kinase 2 (ERK2, #12607; Santa Cruz, USA) primary antibodies

at 4uC. The membranes were washed thoroughly with washing

buffer (0.32 M sucrose, 10 mM HEPES, and 0.1 mM EDTA

[pH 7.4]) and incubated with anti-rabbit IgG at a 1:10,000

dilution for 30 min. The proteins were visualized with SuperSignal

West Pico Chemiluminescent Substrate (Thermo Fisher Scientific,

USA) or Immobilon Western Detection Reagents (Millipore,

Germany).

Effect of Zoledronic Acid on TLR4 Signaling
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Results

Effects of ZOL Pretreatment on LPS-induced Expression
of Cytokines

Interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a are

important inflammatory cytokines. Therefore, we examined the

effects of ZOL on LPS-induced release of IL-1b, IL-6, and TNF-a
from RAW264.7 cells. RAW264.7 cells were pretreated with ZOL

(10 mM) for 24 h and then incubated with LPS (100 ng/mL) for 0,

1, 2, 4, or 6 h. LPS-stimulated production of IL-1b, IL-6, and

TNF-a from RAW264.7 cells increased significantly after ZOL

pretreatment (Figure 1).

Effects of ZOL on NO Release from LPS-stimulated
Macrophages

NO is an index of inflammation that is generated by iNOS. We

examined the effects of ZOL on LPS-induced iNOS release from

RAW264.7 cells. RAW264.7 cells were pretreated with ZOL

(10 mM) for 24 h and then incubated with LPS (100 ng/mL) for 0,

1, 2, 4, or 6 h. LPS-stimulated production of iNOS by RAW264.7

cells increased significantly after ZOL pretreatment (Figure 2A).

RAW264.7 cells were pretreated with ZOL for 24 h, and then

treated with LPS in the presence of ZOL for 24 h. NO production

was significantly higher in ZOL-pretreated cells than in the LPS-

treated controls, suggesting that ZOL accelerates NO release

(Figure 2B). ZOL had no effect on the release of NO (Figure 2B).

Effects of ZOL on LPS-induced Cell Apoptosis
Cells were stained with annexin-V-FITC and PI, and the results

are presented as contour plots of PI versus annexin-V staining

intensity (Figure 3A). The cells represented in the 4 quadrants of

these plots are as follows. The lower left includes cells that stained

negatively for both annexin-V and PI, and these were considered

undamaged cells. The lower right shows PI-negative cells with

moderate annexin-V staining, and these were considered early

apoptotic cells. The upper left includes annexin-V-negative cells

with high PI staining, and these were classified as necrotic cells.

The upper right includes cells that were both annexin-V and PI-

positive, and these were considered late apoptotic cells. These

results are expressed as the percentage of positively-stained

RAW264.7 cells (Figure 3A). The controls exhibited increased

apoptosis at 24 h followed by decreased apoptosis. After stimula-

tion with LPS, apoptosis increased compared to that of the

controls. The same degree of apoptosis was observed after LPS

stimulation with ZOL pretreatment, whereas a significant increase

in apoptosis was observed after further LPS stimulation (Figure 3B).

Effects of ZOL on LPS-induced TLR4-mediated Activation
of NF-kB

Translocation of NF-kB to the nucleus and its effects on

inflammatory genes are preceded by the phosphorylation,

ubiquitination, and proteasome degradation of IkB-a.

To determine whether ZOL has an effect on IkB-a phosphor-

ylation and its subsequent degradation, we examined the levels of

phospho-IkB-a and total IkB-a expression by western blotting.

RAW264.7 cells were pretreated with ZOL (10 mM) for 24 h and

then incubated with LPS (100 ng/mL) for 0, 15, 30, or 60 min.

After incubation, RAW264.7 cells were lysed and assayed by

western blotting using antibodies against phosphorylated IkB-a
and total IkB-a. These data indicated that ZOL treatment

increased the levels of phosphorylated IkB-a and enhanced the

degradation of IkB-a (Figure 4A).

TLR4 signaling is divided into MyD88-dependent and MyD88-

independent (Toll/IL-1 receptor-domain containing adaptor-

inducing and IFN-b-dependent) pathways. The MyD88-depen-

dent pathway mediates the expression of proinflammatory

cytokines, whereas the MyD88-independent pathway mediates

the induction of type-1 interferons and interferon-inducible genes.

TLR4 stimulation can induce potent responses, which explains

why inhibitory pathways are necessary to protect the host from

Figure 1. Effects of ZOL pretreatment on LPS-induced cytokine expression. RAW264.7 cells were cultured with or without ZOL for 24 h and
then with LPS for an additional 0, 1, 2, 4, or 6 h. After treatment, the expression of IL-1b, IL-6, and TNF-a was examined by real-time PCR. LPS-
stimulated inflammatory cytokine (IL-1b, IL-6, and TNF-a) production by RAW264.7 cells increased significantly after ZOL pretreatment. Significant
differences from the negative controls that were not treated with ZOL are indicated as follows: *P,0.05 and **P,0.01.
doi:10.1371/journal.pone.0067906.g001

Effect of Zoledronic Acid on TLR4 Signaling

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e67906



inflammation-induced damage. Some reports have suggested that

TLR4 signaling is regulated at multiple levels by numerous

negative regulators [16]. One negative regulator, SOCS1, induces

ubiquitination of the Toll/IL-1 receptor domain containing

adaptor protein, which is upstream of MyD88, and its subsequent

degradation. STAT1 is phosphorylated by Janus kinase/STAT

signaling, and induces SOCS1. SOCS1 is a negative feedback

regulator of signaling molecules such as LPS, and the induction of

SOCS1 expression can decrease macrophage cytokine production

[17]. In our studies, STAT1 protein levels decreased over time

after ZOL treatment. The levels of Phospho-STAT1 increased 1 h

after ZOL treatment and then decreased in a time-dependent

Figure 2. Effects of ZOL on NO release from LPS-stimulated macrophages. RAW264.7 cells were cultured with or without ZOL for 24 h and
then with LPS for an additional 0, 1, 2, 4, or 6 h. After treatment, iNOS expression was examined by real-time PCR. LPS-stimulated production of iNOS
from RAW264.7 cells increased significantly after ZOL pretreatment. Significant differences from the negative controls that were not treated with ZOL
are indicated by an asterisk (*P,0.05). (B) RAW264.7 cells were cultured with or without ZOL (10 mM) and LPS (100 ng/mL) for 24 h. NO release was
measured by the Griess method. NO production was significantly higher in ZOL-pretreated cells than in LPS-treated positive controls. ZOL had no
effect on the release of NO. Significant differences from the negative controls that were not treated with ZOL are indicated by an asterisk (*P,0.05).
doi:10.1371/journal.pone.0067906.g002

Figure 3. Effects of ZOL on LPS-induced cell apoptosis. RAW264.7 cells were incubated for the indicated times (0, 24, 48, or 72 h) with control
medium, LPS (100 ng/mL), ZOL (10 mM), or ZOL+LPS. annexin V and PI were added to the cultures prior to flow cytometry. See the methods for a
detailed explanation of the contour plots. (B) Plot of apoptosis in (m) controls, (N) LPS-treated, (%) ZOL-treated, and (&) ZOL+LPS-treated cells. After
stimulation with LPS, apoptosis increased compared to that in unstimulated controls. A similar amount of LPS-stimulated apoptosis was observed
after ZOL pretreatment, and a significant increase in apoptosis was observed after further LPS stimulation. Significant differences from the cikb
ontrols that were not treated with ZOL are indicated by an asterisk (*P,0.01).
doi:10.1371/journal.pone.0067906.g003

Effect of Zoledronic Acid on TLR4 Signaling
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manner. Therefore, the levels of SOCS1, whose expression is

induced by Phospho-STAT1, increased 1 h after ZOL treatment,

and then decreased in a time-dependent manner. MyD88 protein

levels increased over time after ZOL treatment (Figure 4B). These

results indicate that ZOL might be important for regulating

cellular SOCS1 accumulation.

Discussion

The accumulation of NBPs, which can decrease bone metab-

olism, does not properly induce tissue repair that normally occurs

in response to an induced or a physiological trauma, leading to the

exposure of necrotic bone to the oral environment [11,18,19].

A proposed hypothesis for the development of BRONJ is an

alteration in bone turnover associated with the particular

characteristics of the jaw bone [10,20], such as mucosal coating,

frequent risk of infection, and constant potential for trauma

[18,21]. Some authors have described the appearance of BRONJ

along with Actinomyces infections and have reported several cases

involving bone necrosis and osteomyelitis that were caused by this

microorganism [22].

However, there have been few reports on bacterial infection and

innate immunity in association with BRONJ. In our study, the

influence of ZOL, a NBP, on TLR4 signaling in RAW264.7 cells

was examined.

LPS binding to TLR4 induces inflammatory cytokines and

nitric oxide by activating NF-kB because intracellular signal

transduction through various TLR4 downstream adaptor mole-

cules occurs, resulting in the production of nitric oxide synthase.

We showed that LPS-stimulated induction of inflammatory

cytokines IL-1b, IL-6, and TNF-a and NO production in

RAW264.7 cells were enhanced after pretreatment with ZOL.

Although inflammatory cytokines in blood, such as TNF-a and IL-

6, are reportedly increased in patients treated with NBPs [23], we

did not find any significant increase in these inflammatory

cytokines in RAW264.7 cells after stimulation with ZOL alone.

Inflammation involves multiple cascades mediated by activated

inflammatory or immune cells. In these cascades, a number of

immunopathological changes occur, including the overproduction

of NO, proinflammatory cytokines such as IL-1b, IL-6, and TNF-

a, and other detrimental mediators, including caspases, that in

turn activate apoptosis [24,25].

TNF-a overproduction stimulates the generation of other pro-

oxidant mediators that directly induce cell injury. Among these,

free radicals such as NO seem to play a central role [26]. The

inflammatory cytokines IL-1b and TNF-a are involved in the

induction of cell apoptosis. IL-1b is produced as an inactive

precursor that assumes the active form through excision of a

precursor domain by an IL-1b-converting enzyme. This enzyme,

caspase 1, is the first caspase discovered and it is among a group of

cysteine proteases that govern the apoptotic process. TNF-a acts

as an apoptosis-inducing factor by activating caspase 8 through

adaptor molecules such as the TNF receptor type 1-associated

death domain molecule and the Fas-associated death domain

molecule [27]. It is known that NBPs induce cellular apoptosis by

inhibiting the mevalonic acid pathway [28,29]. In the present

study, apoptosis was increased by the administration of ZOL.

Furthermore, apoptosis in the ZOL-treated cells was highly

accelerated by stimulation with LPS. The inhibition of mevalonic

acid pathway by ZOL and the hypersecretion of inflammatory

cytokines in the ZOL-treated cells upon stimulation with LPS were

considered as the reason that apoptosis increased.

In TLR signal transduction, IkB-a is bound to NF-kB, which is

directly involved in the production of inflammatory cytokines;

thus, it acts as a suppressive factor [30]. Phosphorylation of IkB-a
at Ser 32 triggers its ubiquitination and subsequent proteolysis via

the proteasome pathway. NF-kB then translocates into the nucleus

and then inflammatory cytokines are expressed. In the present

study, inflammatory cytokine expression in ZOL-treated cells was

enhanced by increased translocation of NF-kB into the nucleus

due to elevated LPS-stimulated IkB-a phosphorylation and

accelerated proteolysis. IL-1 receptor-associated kinase M

(IRAK-M) and SOCS1 are known suppressors of this signal,

and they both inhibit the enzymatic activity of IRAK [17]. IRAK-

M is specifically expressed in monocytes and macrophages and is

induced through the NF-kB pathway [31]. IRAK-M inhibits the

formation of the IRAK-TRAF6 complex by suppressing the

dissociation of IRAK-1 and IRAK-4 from MyD88. SOCS1, a

cytokine-inducing protein with an SH2 domain, is induced by

TLR stimulation and inhibits the activation of NF-kB and

STAT1. It has been reported that, in the absence of SOCS1,

Figure 4. Effects of ZOL on LPS-induced TLR4-mediated activation of NF-kB cytokines. (A) RAW264.7 cells were cultured with or without
ZOL (10 mM) for 24 h and then with LPS (100 ng/mL) for the indicated times (0, 15, 30, or 60 min). The levels of phospho-IkB-a, IkB-a, and ERK2 were
analyzed by western blotting. These data indicated that ZOL treatment increased the levels of phosphorylated IkB-a and enhanced the degradation
of IkB-a. (B) RAW264.7 cells were cultured with ZOL for the indicated times (0, 1, 4, 8, or 12 h). STAT1 protein levels decreased over time after ZOL
treatment. The levels of Phospho-STAT1 increased 1 h after ZOL treatment and then decreased in a time-dependent manner. The levels of SOCS1,
which suppresses TLR4 signaling, increased 1 h after ZOL treatment and then decreased in a time-dependent manner. The levels of MyD88 protein
increased with time after ZOL treatment.
doi:10.1371/journal.pone.0067906.g004

Effect of Zoledronic Acid on TLR4 Signaling
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the inflammatory signals of IFN-c are excessively activated,

resulting in the disappearance of the suppressive effects of

prostaglandin E2 (PGE2) [32]. Therefore, excessive inflammation

might be provoked by suppression of the anti-inflammatory

actions of elements such as IRAK-M and SOCS1, and an

excessive inflammatory condition might develop due to suppres-

sion of the anti-inflammatory PGE2. It has also been reported that

IRAK-M and SOCS3 are attenuated by NBPs [33,34]. In our

study, SOCS1 expression was attenuated by ZOL alone, which

was similar to the results found with SOCS3. In addition, MyD88

expression increased, which was thought to be a result of

attenuated SOCS1 and IRAK-M expression due to stimulation

with BPs that downregulated their activation as part of a negative

feedback mechanism.

The results of this study have led us to speculate the mechanism

of BRONJ. BRONJ onset is thought to be associated with delay of

the physiological remodeling speed of the jawbone, the suppres-

sion of angiogenesis, delayed wound healing, and local bacterial

infections [35]. NBPs accumulate as bone is metabolized and their

potent suppression of osteoclasts leads to metabolic suppression in

bones throughout the body [4,5]. The concentration of NBPs is

selectively increased in bones where metabolism is naturally active.

The jawbone and in particular the alveolar bone, which is a

dental-supporting tissue, are constantly exposed to the strong

masticatory pressure that accompanies eating. For this reason, the

remodeling of the alveolar bone is faster than other bones in the

body. Due to the high rate of bone metabolism, NBPs selectively

accumulate in high concentrations in the alveolar bone area. In

addition, because the oral cavity has abundant bacterial flora, it is

easy to cause infection. Therefore, bone infections occur as the

bone becomes exposed due to surgical procedures and wounds.

Then, the high concentrations of NBPs are diffused from the

alveolar bone. Diffuse NBPs affects immune cells that have been

induced by the infection. As a result, immune cells produce large

amounts of inflammatory cytokines to give rise to a hyperin-

flammatory state. In the affected area, diffuse NBPs affects

fibroblasts and causes delayed wound healing [35], further

infection and aggravation of inflammation, which continues to

be repeated, extending the osteonecrosis. In the present study, the

inhibitory effects of ZOL on SOCS1 expression were first

confirmed in RAW264.7 cells. In conclusion, our data strongly

suggest that onset mechanism of BRONJ is due to the

dysregulation of the inflammatory cytokine output with ZOL.
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