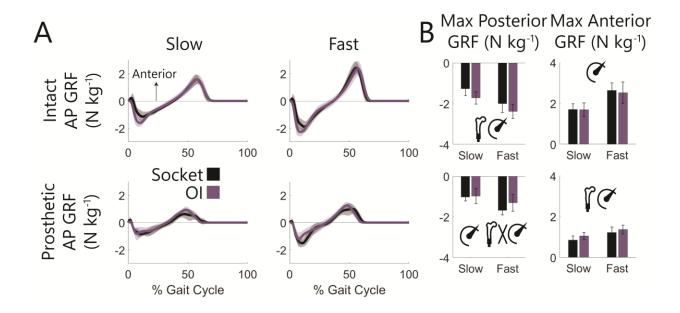
Title: Comparing the mechanical energetics of walking among individuals with unilateral transfemoral limb loss using socket and osseointegrated prosthetic interfaces

Authors: *Pawel R. Golyski^{a,b}, Benjamin K. Potter^{b,c,d}, Jonathan A. Forsberg^e, Brad D. Hendershot^{a,b,c}

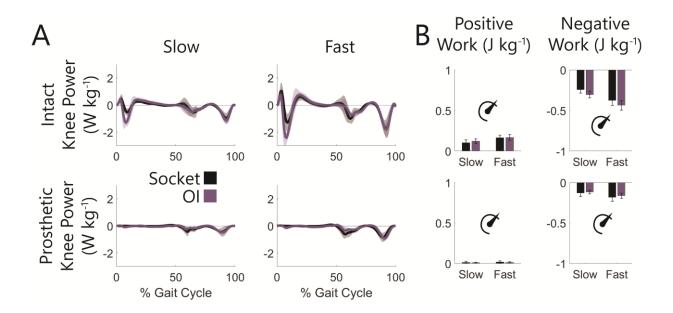
Affiliations:

^aExtremity Trauma and Amputation Center of Excellence, Falls Church, VA, USA

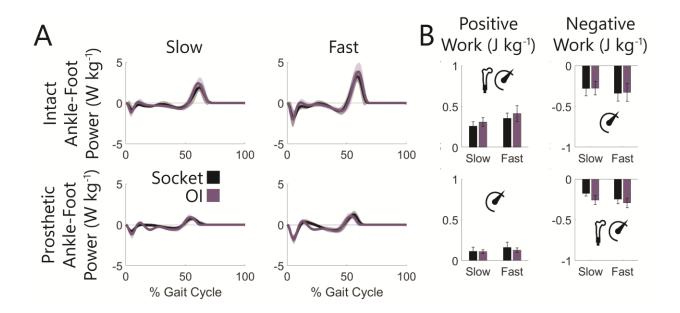
^bWalter Reed National Military Medical Center, Bethesda, MD, USA

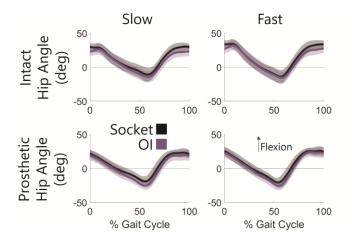

^cUniformed Services University of Health Sciences, Bethesda, MD, USA

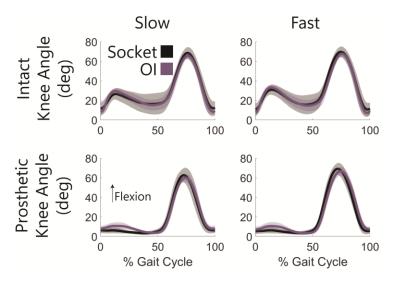
^dUniversity of Pennsylvania, Philadelphia, PA, USA

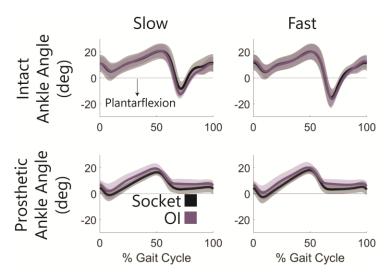

^eOrthopaedics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA

*Corresponding author's email: pawel.golyski.civ@health.mil


Supplementary Figures


S1 - Across-participant ensemble averaged A) anteroposterior ground reaction forces with (B) associated peak anterior and posterior forces across slow (0.6-1.1 m s⁻¹) and fast (1.1-1.6 m s⁻¹) walking speeds for socket and OI interfaces. Shaded regions and error bars represent ± 1 s.d. Values were normalized to each participant's body mass. Significant effects (P < 0.050) of interface, speed, and interface-speed interaction were determined using two-way repeated measures ANOVAs and are graphically represented as an osseointegrated femur, speedometer, and their interaction. Statistical results of pairwise comparisons are reported in text.


S2 – Across-participant ensemble averaged A) knee powers with (B) associated positive and negative mean work values across slow (0.6-1.1 m s $^{-1}$) and fast (1.1-1.6 m s $^{-1}$) walking speeds for socket and OI interfaces. Shaded regions and error bars represent ± 1 s.d. Values were normalized to each participant's body mass. Significant effects (P < 0.050) of interface, speed, and interface-speed interaction were determined using two-way repeated measures ANOVAs and are graphically represented as an osseointegrated femur, speedometer, and their interaction. Statistical results of pairwise comparisons are reported in text.


S3 – Across-participant ensemble averaged A) ankle-foot powers with (B) associated positive and negative mean work values across slow (0.6-1.1 m s $^{-1}$) and fast (1.1-1.6 m s $^{-1}$) walking speeds for socket and OI interfaces. Shaded regions and error bars represent ± 1 s.d. Values were normalized to each participant's body mass. Significant effects (P < 0.050) of interface, speed, and interface-speed interaction were determined using two-way repeated measures ANOVAs and are graphically represented as an osseointegrated femur, speedometer, and their interaction.

S4 – Across-participant ensemble averaged sagittal hip angles across slow (0.6-1.1 m s $^{-1}$) and fast (1.1-1.6 m s $^{-1}$) walking speeds for socket and OI interfaces. Shaded regions represent ± 1 s.d.

S5 – Across-participant ensemble averaged sagittal knee angles across slow (0.6-1.1 m s⁻¹) and fast (1.1-1.6 m s⁻¹) walking speeds for socket and OI interfaces. Shaded regions represent ± 1 s.d.

S6 - Across-participant ensemble averaged sagittal ankle angles across slow (0.6-1.1 m s⁻¹) and fast (1.1-1.6 m s⁻¹) walking speeds for socket and OI interfaces. Shaded regions represent ±1 s.d.