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Anti-senescent drug screening by deep
learning-based morphology senescence scoring
Dai Kusumoto1,2, Tomohisa Seki3, Hiromune Sawada1, Akira Kunitomi4, Toshiomi Katsuki1, Mai Kimura1,

Shogo Ito1, Jin Komuro1, Hisayuki Hashimoto1,2, Keiichi Fukuda 1 & Shinsuke Yuasa 1✉

Advances in deep learning technology have enabled complex task solutions. The accuracy of

image classification tasks has improved owing to the establishment of convolutional neural

networks (CNN). Cellular senescence is a hallmark of ageing and is important for the

pathogenesis of ageing-related diseases. Furthermore, it is a potential therapeutic target.

Specific molecular markers are used to identify senescent cells. Moreover senescent cells

show unique morphology, which can be identified. We develop a successful morphology-

based CNN system to identify senescent cells and a quantitative scoring system to evaluate

the state of endothelial cells by senescence probability output from pre-trained CNN opti-

mised for the classification of cellular senescence, Deep Learning-Based Senescence Scoring

System by Morphology (Deep-SeSMo). Deep-SeSMo correctly evaluates the effects of well-

known anti-senescent reagents. We screen for drugs that control cellular senescence using a

kinase inhibitor library by Deep-SeSMo-based drug screening and identify four anti-senescent

drugs. RNA sequence analysis reveals that these compounds commonly suppress senescent

phenotypes through inhibition of the inflammatory response pathway. Thus, morphology-

based CNN system can be a powerful tool for anti-senescent drug screening.
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Advances in deep learning technology have enabled com-
plex task solutions1. The accuracy of image classification
has increased rapidly owing to the development of con-

volutional neural networks (CNNs)2,3. CNNs have been applied
to broad medical research fields4, and image classification is
employed as a diagnostic tool in the clinic5. In the biological field,
cell morphology images obtained by phase-contrast microscopy
contain numerous biological data such as cellular identity and
status, which are currently evaluated by molecular biology tech-
niques. A morphology-based identification system using CNN
can replace the molecular biology techniques in some tasks and
be applicable to various research areas. We previously developed
a label-free system to identify endothelial cells among various cell
types derived from induced pluripotent stem cells by phase-
contrast microscopy images using a CNN6. Many reports
demonstrate the high potential of CNNs in a classification or
identification task. Versatile biologic systems should construct
quantitative and not just qualitative classifications7. CNNs are a
potential tool to develop non-biased quantitative evaluation
systems.

Endothelial cells serve many functions in homoeostasis and
diseases. Cellular senescence plays an important role in age-
related diseases. Endothelial cells are pivotally involved in the
pathology of age-related diseases through cellular senescence.
Endogenous and exogenous stresses such as reactive oxygen
species (ROS), telomere dysfunction, DNA damage, inflammatory
cytokines, and drugs such as anti-cancer drugs, induce cellular
senescence8. Senescent cells show an inflammatory phenotype
called senescence-associated secretory phenotype (SASP) and
contribute to age-related disease progression9. Cellular senescence
is considered a potential therapeutic target for age-related
diseases10,11. Thus, drugs that directly intervene in endothelial
cell senescence may represent a therapeutic option. Specific bio-
logical markers are commonly used for cellular senescence
screening such as senescence-associated beta galactosidase (SA-β-
gal), P16, and P21. Cellular senescence can also be defined by
specific morphology such as flat and enlarged cell bodies and
heterochromatin aggregation12. Despite this, the unbiased quan-
titative evaluation of those morphological changes for a large
number of cells is difficult in using conventional methods. A
scoring system that can quantitatively assess the cellular state
could be an important tool for drug screening.

In this study, we developed a robust, morphology-based CNN
system to identify senescent cells. Additionally, we established an
automated, non-bias quantitative scoring system to evaluate the
state of endothelial cells using senescence probability output
directly from pre-trained CNN, Deep Learning-Based Senescence
Scoring System by Morphology (Deep-SeSMo) (Supplementary
Fig. 1a). Deep-SeSMo-based drug screening using a kinase inhi-
bitor library was used to identify anti-senescent drugs.

Results
High accuracy identification of senescent cells by a CNN. We
induced cellular senescence in human umbilical vein endothelial
cells (HUVECs) by using three different stressors: ROS, an anti-
cancer reagent, and replication stress (Supplementary Fig. 1b).
Hydrogen peroxide (H2O2), camptothecin (CPT), and repetitive
passage (replication: rep)-induced cellular senescence was con-
firmed by SA-β-gal activity (Supplementary Fig. 1c, d). In
senescent cells, the P21–P53 pathway is activated to induce cell
cycle arrest13. Expression of P21, a marker of cell senescence, was
also upregulated in senescent cells (Supplementary Fig. 1e). Next,
we prepared 50 × 50 pixels of input datasets at the single-cell
resolution level from phase-contrast images (Supplementary
Fig. 2a, b). Senescence was independently induced four times for

each stress type to increase the data generalisability. For each
induction, 10 phase-contrast images were acquired under each
condition, and the number of obtained images was 92,242 for
H2O2-induced senescence, 41,207 for H2O2 control, 134,097 for
CPT-induced senescence, and 64,535 for CPT control (Fig. 1a and
Supplementary Fig. 2c, d). The images were then analysed in a
network to predict them as senescence or control (Supplementary
Fig. 2e). The predictions were compared with predetermined
answers, and weights were automatically and iteratively optimised
to train the CNN and thereby increase accuracy. We examined
whether the CNN could classify the senescent cells induced by
either H2O2 or CPT, and control cells. After training, the CNN
could classify H2O2- or CPT-induced senescent cells and control
cells with high accuracy (Supplementary Fig. 3a–d). Next, we
mixed H2O2- and CPT-induced senescence images and trained
the CNN to classify senescent and control cells. The CNN was
successfully trained and showed no discrepancy between the loss
values in training and validation data (Fig. 1b and Supplementary
Fig. 3e). The trained CNN performed strongly; the accuracy,
F1 score, and area under the curve (AUC) of the receiver oper-
ating characteristic (ROC) were 0.93, 0.88, and 0.98, respectively
(Fig. 1c, d). We compared these results with feature-based tra-
ditional machine learning methods (Support Vector Machine,
Random forests, and logistic regression) to examine the super-
iority of CNN. To analyse cellular images using classical machine
learning models, we extracted features of images to create input
datasets. We used Histograms of Oriented Gradients (HOGs),
which is one of the most commonly used feature descriptors and
trained the machine learning models. The accuracy and F1 score
of traditional machine learning models were lower than that of
the CNN, and we concluded that the CNN is the most suitable
method for our study (Supplementary Fig. 3f).

CNN generalisability. Generalisability is important in machine
learning and requires external validation of the analysis. To
confirm whether CNN could identify senescent cells in the
datasets of different senescence induction methods, we acquired
new datasets not used for the CNN training. We prepared data-
sets for the three induction methods, and each induction was
independently performed three times. These images were eval-
uated by three different CNNs, which had been previously trained
by H2O2-induced senescence, CPT-induced senescence, and
mixed H2O2- and CPT-induced senescence (Fig. 1e). The aver-
aged classification accuracy was over 0.9, and the F1 score was
also greater than 0.85 in every dataset (Fig. 1f, g and Supple-
mentary Fig. 4a, b). Importantly, the CNN trained by H2O2-
induced senescence recognised senescence not only in newly
acquired H2O2-induced senescence datasets but also in CPT- and
replication-induced senescence. Similarly, the CNN trained by
CPT-induced senescence and CPT- and H2O2-induced senes-
cence showed high performance in classifying senescence from
controls under every condition (Fig. 1f, g and Supplementary
Fig. 4a–f). AUCs were greater than 0.95 under every condition
(Fig. 1h and Supplementary Fig. 4g, h), which supports a suc-
cessful identification system for senescent cells.

Moreover, we examined whether the CNN can be applied to
datasets obtained at another institution, Kyoto University.
HUVECs were cultured and phase-contrast images were acquired
at Kyoto University. The CNN was successfully trained on both
the Keio (our institution) and Kyoto datasets with high
performance (Supplementary Fig. 5a, b). We tested the perfor-
mance of the CNN on Kyoto datasets, which were not used for
training, and found that the CNN trained on the datasets from
both institutes have a higher performance (Supplementary Fig. 5c).
Importantly, the CNN also has a high performance with the Keio
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datasets, which suggests that the CNN trained on datasets from
both institutes has higher generalisability. We also examined
whether the CNN could classify senescence in other cell types. We
used human diploid fibroblasts (HDFs), induced cellular senes-
cence by H2O2 or CPT, cropped input datasets at single-cell
resolution levels, and trained the CNN to classify them

(Supplementary Fig. 5d). The CNN was successfully trained
(Supplementary Fig. 5e), and had a high performance in the test
datasets (Supplementary Fig. 5f). Interestingly, the CNN trained on
HUVEC-datasets was also able to classify healthy and senescent
HDFs (Supplementary Fig. 5g). These results suggest that cellular
senescence shows a unique morphologic characteristic, and a
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Fig. 1 CNN training to classify control and senescent cells. a Representative images of input images. Input images of control and H2O2-induced senescent
cells were cropped from phase-contrast microscopy images at single-cell resolution by the OpenCV-based script. Scale bar, 7.1 µm. Data are representative
of over three independent experiments. b Learning curve through the CNN training. Accuracy and loss in the training data and validation accuracy and
validation loss in the validation data show the process of training. c Indexes: F1 score, accuracy, precision, and recall in the final setting of training. d AUC of
the ROC curve in the final setting of training. e Protocol for the evaluation of CNN generalisability. Each CNN was trained by either the images of H2O2-
induced senescent cells, the images of CPT-induced senescent cells, or the mixed images of H2O2- and CPT-induced senescent cells. Newly acquired data
were used as test data. In the test data, cellular senescence was induced by H2O2, CPT, or replication. Test data were evaluated by three pre-trained CNNs.
f A heatmap shows the accuracy of CNN prediction in each test dataset. Three independent experiments and evaluations were conducted for each
senescence induction method. g Macro-averaged accuracy for each evaluation (n= 3 independent experiments). h AUC of the receiver operating
characteristic (ROC) curve in the test data evaluated by CNNs, which were pre-trained by the data from H2O2-, CPT-, or replication-induced senescent
cells. Data are representative of three independent experiments. i Grad-CAM shows an important region for the prediction of healthy or senescent cells.
Data are representative of three independent experiments. CNN convolutional neural network, CPT camptothecin, Rep replication.
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morphology-based CNN system can reliably identify senescent
cells.

To better understand where CNN could identify senescent
cells, we visualised important regions for senescent cell
prediction by gradient-weighted class activation mapping
(Grad-CAM). Grad-CAM incorporates class-specific gradient
information into the final CNN convolutional layer to visualise
important image regions14. Grad-CAM indicated that the CNN
identified healthy and senescent cells by recognising peripheral
and heterogeneous intracellular images, respectively (Fig. 1i).
This information could help understand the biological meaning
of cellular morphology.

Development of Deep-SeSMo. The output of the trained CNN
was a non-linear prediction with two values, control (0) or
senescence (1), meaning that the CNN classified cells as senescent
or control, and there was no intermediate state. A drug-screening
index ideally requires a quantitative evaluation. To examine the
relationship between cellular senescence and the strength of
senescence-inducing stress, we acquired phase-contrast images
with several H2O2 or CPT doses or passage numbers (Fig. 2a and
Supplementary Fig. 6a, b). P21 expression was correlated with
H2O2 and CPT concentrations and passage numbers (Fig. 2b–d),
indicating that cellular senescence could be induced quantitatively
in a stress strength-dependent manner. In the last CNN layer, the
softmax function calculates class probability with the image
belonging to either senescence or non-senescence. We then
focused on the senescence probability for quantitative assessment.
Interestingly, the senescence probability output from the pre-
trained CNN mostly showed 0 or 1 at the single-cell level (Fig. 2e
and Supplementary Fig. 6c); however, the ratio of senescent cells
and average senescence probability correlated with the degree of
cellular senescence induction (Fig. 2f). Therefore, we proposed a
“senescence score” based on the pre-trained CNN, optimised it
for the classification problem, and defined the overall average
output probability calculated by the pre-trained CNN as a
quantitative senescence score. Importantly, the senescence scores
strongly correlated with the H2O2 and CPT concentrations and
passage numbers (Fig. 2g–i and Supplementary Fig. 6d, e). The
Pearson correlation coefficient demonstrated a high linear cor-
relation between the score and stressors in all combinations
(Fig. 2j). The networks trained by both H2O2- and CPT-induced
senescence showed a correlation coefficient over 0.9 under any
stress-induced senescence, including replication stress (Fig. 2k).
We termed this strategy for the calculation of a senescence score
using CNN training Deep-SeSMo. Deep-SeSMo could calculate
the senescence score for each phase-contrast image in only
0.08–0.1 ms (Supplementary Fig. 7a). A senescence score which
was generated by the CNN trained on the datasets acquired at two
institutes, Keio and Kyoto (Supplementary Fig. 7b, c), or the CNN
trained on another cell type, HDFs (Supplementary Fig. 7d, e),
also showed high performance.

Anti-senescent drug screening. To validate the performance of
Deep-SeSMo, we first examined the effects of well-known anti-
cellular senescence reagents such as nicotinamide mononucleo-
tide (NMN), a key NAD+ intemediate15, and metformin, an
AMPK activator16. NMN and metformin decreased the SA-β-gal-
positive cell ratio, P21–P53 activation, and P16INK4a expression
(Fig. 3a–c). Deep-SeSMo successfully assessed the effects of NMN
and metformin (Fig. 3d, e). Senolytics are focused as potential
therapeutic drugs for age-related diseases to induce apoptosis
specifically in senescent cells17. We examined whether Deep-
SeSMo could correctly assess the senolytic effect of ABT263. We
mixed the young and old HUVECs, treated them with ABT263,

and analysed the cells using Deep-SeSMo. Deep-SeSMo could also
correctly assessed the senolytic effect of ABT263 (Supplementary
Fig. 7f, g). We then conducted drug screening to repress cellular
senescence utilising Deep-SeSMo (Supplementary Fig 1a). A
kinase inhibitor library was used to screen compounds that
suppress cellular senescence induced by the three methods in
HUVECs and to understand the mechanism underlying cellular
senescence. Senescence scores were calculated by Deep-SeSMo
and normalised by a control sample (Fig. 3f). We repeated the
screening twice with three senescence induction methods (Sup-
plementary Fig. 8a, b). The senescence score was converted into
senescence score ranking for each evaluation. The surface plot of
senescence score ranking for each drug clearly showed that sev-
eral drugs could suppress senescence (Fig. 3g). Most drugs
showed the strongest effect on senescence promotion. To identify
potential drugs for senescence suppression, we ranked the com-
pounds by calculating the median senescence score ranking in all
evaluations and focused on the top four compounds, terreic acid,
PD-98059, daidzein, and Y-27632·2HCl, as anti-senescent drugs
(Fig. 3h). We also established a heatmap image of senescence
score ranking to visualise the effects of every drug and determine
an anti-senescence cluster, in which the senescence phenotype
was prominently suppressed (Fig. 3i and Supplementary Fig. 8b).
The top four compounds were also included in an anti-
senescence cluster.

Terreic acid, a metabolite of Aspergillus terreus, possesses
antibiotic properties18 and is a quinone epoxide inhibitor of
Bruton’s tyrosine kinase (BTK)19. Interestingly, terreic acid can
extend yeast life span, even though yeast does not express BTK20.
PD-98059 is a selective inhibitor of mitogen-activated protein
kinase, a kinase of the extracellular signal-regulated kinase, and
suppresses cellular senescence21,22. Daidzein is an isoflavone in
soybean that suppresses ageing phenotypes23,24. Y-27632·2HCl is
an inhibitor of the Rho-associated coiled-coil-forming kinase
(ROCK), a member of the serine/threonine kinases, which
regulates cell proliferation, apoptosis, migration, metabolism,
and senescence25,26. We tested whether the selected compounds
suppressed cellular senescence, using conventional experiments.
SA-β-gal activity analyses showed that the four compounds
decreased cellular senescence (Fig. 4a, b). Western blotting also
demonstrated that the four compounds suppressed P53–P21 axis
activation and P16INK4a expression (Fig. 4c). P21 expression was
also reduced by all compounds with the three senescence
induction methods (Supplementary Fig. 9a–d). We also examined
the effects of four drugs (SC-514, TYRPHOSTIN51, Indirubin,
and SU4312, which were determined as non-effective drugs by
Deep-SeSMo analysis, with almost the same senescence score as
the control) on the P53–P21 senescence axis. All four drugs
showed almost no effects on the activation of the P53–P21
signalling pathway (Supplementary Fig. 9e). This evidence
suggests that Deep-SeSMo was reliable and could be used for
drug screening.

Underlying mechanisms for cellular senescence suppression.
Finally, we examined the mechanism by which these compounds
suppress the senescence phenotype. Global gene expression
analysis by RNA sequencing was conducted using senescent
endothelial cells treated with each of the four compounds. A
heatmap showed the top 10 genes among the differentially
expressed genes for all four compounds and the control (Fig. 4d
and Supplementary Fig. 9f). Nuclear factor kappa B (NFκB) is an
important transcription factor that induces inflammatory SASP27.
Among the top 10 genes, three genes were associated with NFκB
function: TBL1XR1 (ref. 28), an NFκB activator, was down-
regulated, and SIGIRR29 and ASCC1 (ref. 30), NFκB inhibitors,
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were upregulated (Fig. 4d). Gene set enrichment analysis (GSEA)
showed that genes related to the inflammatory response and
NFκB signalling were negatively enriched in the four compounds
(Fig. 4e, f). These results indicate that the four compounds not
only suppress the senescence pathway but also the inflammatory
phenotype. Terreic acid, the top compound, is a BTK inhibitor19,
but the expression of BTK was faint in HUVECs (Supplementary

Fig. 9g). Thus, the mechanism of terreic acid activity in HUVECs
remains unclear. Gene ontology (GO) analysis demonstrated that
terreic acid uniquely upregulates genes related to the positive
regulation of ATPase activity in the mitochondria (Fig. 4g and
Supplementary Fig. 9h, i). In senescent cells, mitochondrial
function and ATP production via oxidative phosphorylation
(OXPHOS) impairments have been observed31. RNA sequence
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results suggest that terreic acid would maintain mitochondrial
function under stress conditions (Fig. 4h, i). The inflammatory
response and NFκB signalling were also attenuated by terreic acid
treatment (Supplementary Fig. 9j, k). Terreic acid could be a drug
against senescence and age-related diseases.

In conclusion, we established a drug screening method by
constructing a rapid, accurate, morphology-based CNN system to

identify senescent cells with Deep-SeSMo and identified potential
drugs to suppress senescence.

Discussion
In this study, we developed a drug-screening system for cellular
senescence using a pre-trained CNN optimised by the overall
average value of output senescence probability. Moreover,

0

20

40

60
%

%
 S

A-
�-

ga
l p

os
iti

ve
 c

el
ls

SA
- �

-g
al

D
AP

I

Con
tro

l

Metf
orm

in
NMN

Control Metformin NMN

P21
Con

tro
l

NMN
Metf

orm
in

P53

GAPDH

p-P53
(Ser15)

Se
ne

sc
en

ce
 s

co
re

0
0

0.2
0.4
0.6
0.8

1

200

control
anti-

senescence

500 1000
��M)

Se
ne

sc
en

ce
 s

co
re

0
0

0.2
0.4
0.6
0.8

1

200 500 1000
��M)

Metformin NMN

P16INK4a

GAPDH

p < 0.0001

p = 0.0002

21 kDa

53 kDa

53 kDa

37 kDa

37 kDa

16 kDa

Senescence induction
H2O2 Replication

1st 2nd 1st 2nd 1st 2nd

1st 2nd 1st 2nd
1st 2nd

Ranking

CPT

Anti-senescence cluster
HBDDE
BML-257
PD-98059
Y-27632·2HCl
LFM-A13
Daidzein
Terreic acid

Senescence induction

Compounds

Se
ne

sc
en

ce
 s

co
re

 ra
nk

in
g

Ranking

H2O2

CPT

Rep

H2O2
+ CPT

H2O2

CPT

Training Data

HBDDE
PD-98059

Y-27632·2HCl

LFM-A13

Daidzein

Terreic acid
Ranking Compounds

1
2
3
4
5
6

BML-2577
TYRPHOSTIN 18
Genistein9
HA-1004·HCl10

BA
Y

11
-7

08
2

PP
1

H2O2 (1st)

N
or

m
al

iz
ed

 s
en

es
ce

nc
e 

sc
or

e

0

3
4
5

2
1

AG
-4

90
2-

H
yd

ro
xy

-5
-(2

,5
-d

ih
yd

ro
xy

be
nz

y la
m

in
o)

be
nz

oi
c

ac
id

D
ai

dz
ei

n
2,

2',
3,

3'
,4

,4
'-H

ex
ah

yd
ro

xy
-1

,1
'-b

ip
he

ny
l-6

,6
'-d

im
et

ha
no

l…
T e

rre
i c

a c
id

H
A-

10
77

·2
H

C l
ZM

44
98

29
AG

-1
26

AG
-4

94
TY

RP
H

O
ST

IN
1

H
-9

·H
Cl

H
A-

10
04

·H
Cl

P D
-9

80
59

Y-
27

63
2 ·

2H
C

l
TY

RP
H

O
ST

IN
AG

12
95

BM
L-

25
7

Er
bs

ta
tin

an
al

og
I s

o-
ol

om
ou

cin
e

C
on

tro
l

H
yd

ro
xy

-2
-n

ap
ht

ha
le

ny
lm

et
hy

lp
ho

sp
ho

ni
c

ac
id

T Y
RP

H
O

ST
IN

23
TY

RP
H

O
ST

IN
51

SC
-5

14
TY

RP
H

O
ST

IN
25

I n
di

ru
bi

n
LF

M
-A

13
La

ve
nd

u s
tin

A
G

en
is

te
in

AG
-3

70
2-

Am
in

op
ur

in
e

AG
-1

29
6

AG
-8

79
N

9-
iso

pr
op

yl
-o

lo
m

ou
ci

ne
O

lo
m

ou
cin

e
TY

RP
H

O
ST

IN
46

BM
L-

26
5

5,
6-

di
ch

lo
ro

- 1
-

-D
- ri

bo
fu

ra
no

sy
lb

en
zi

m
id

az
ol

e
Q

ue
rc

et
in

·2
H2

O
U

-0
12

6
Ap

ig
en

in
TY

RP
H

O
ST

IN
47

R
ap

am
yc

in
SU

43
12

D
-e

ry
th

ro
-S

ph
in

go
sin

e
TY

RP
H

O
ST

IN
AG

12
88

Pi
ce

at
an

no
l

SB
-2

03
58

0
KN

-6
2

H
yp

er
ic

in
SP

60
01

25
B M

L-
25

9
SU

14
98

AG
-8

25
SB

-2
02

19
0

Ke
np

au
llo

ne H
-8

ZM
33

63
72

TY
R P

H
O

ST
IN

AG
14

78
R

G
-1

46
2

G
F

10
92

03
X

R
os

co
vit

in
e

I n
di

ru
bi

n-
3'-

m
on

oo
xim

e
H

-8
9·

2H
Cl

M
L-

9·
H

Cl
Pa

lm
ito

yl
-D

L-
ca

rn
itin

e
TY

RP
H

O
ST

IN
9

H
-7

·2
H

Cl
W

or
tm

an
ni

n
5-

Io
do

tu
be

ric
id

in
Tr

ic
iri

bi
ne

P
P
2

St
au

ro
sp

or
in

e
R

o
31

-8
22

0
m

es
yla

te
PK

C
-4

12
KN

-9
3

LY
29

40
02

G
W

50
74

M
L-

7·
H

C l
R

ot
tle

rin

a c

d e

b

i

g

h

f

Fig. 3 Drug screening using Deep-SeSMo. a Representative images of SA-β-gal activity in senescent HUVECs treated with metformin or NMN. Scale bar,
100 μm. DAPI indicates the cell nuclei. Data are representative of two independent experiments. b Percentage of SA-β-gal-positive cells per total cells in
senescent HUVECs treated with metformin or NMN (n= 12 images over two independent experiments). c Western blotting of P21, P53, Ser15
phosphorylation of P53, and P16INK4a in senescent HUVECs treated with metformin or NMN. GAPDH was used as an internal control. Data are
representative of two independent experiments. d, e Senescence score calculated by Deep-SeSMo of senescent HUVECs treated with d metformin and
e NMN. Data are representative of two independent experiments. f Eighty kinase inhibitors were added to HUVECs, and cellular senescence was induced
by H2O2. The senescence score was calculated by Deep-SeSMo and normalised to a control score. g Senescence score ranking for 80 kinase inhibitors and
control. Rankings were calculated for three stressors with two replications and evaluated by three pre-trained CNNs. A surface plot shows senescence
score ranking sorted by the median value of senescence score ranking. h Top ten compounds detected by Deep-SeSMo. i A heatmap demonstrates a
senescence score ranking for each condition evaluated by CNNs trained by H2O2- and CPT-induced senescent HUVECs. The right map shows an anti-
senescence cluster that strongly suppresses senescence. CPT camptothecin, Rep replication, NMN nicotinamide mononucleotide. Data are shown as
mean ± s.e.m. p values by two-sided Student’s t-test.
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utilising a non-biased method, we identified four compounds,
terreic acid, PD-98059, daidzein, and Y-27632·2HCl, which
showed anti-senescent and anti-inflammatory effects. Drug
development is facilitated by sophisticated screening systems. A
human cannot reliably identify cellular status by observing

cellular morphology. However, cellular morphology can be a
specific marker for cell type and pathological conditions because
of specific morphological dynamics, including changes in protein
expression and structure, and chromatin structure. In recent
years, CNN has become a standard method to assess morphology.
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Fig. 4 Anti-senescent effects of the top four compounds. a Representative images of SA-β-gal activity in senescent HUVECs treated with the top four
compounds: terreic acid, PD-98059, daidzein, and Y-27632. Scale bar: 100 μm. Data are representative of two independent experiments. b Percentage of
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CNN is most suitable for classification tasks; however, it is
unclear whether quantitative analyses by CNN would be effective
in the biological field. The concept of our strategy was simple; the
overall average of output probability calculated by a pre-trained
CNN was applied to the quantitative senescence score. Interest-
ingly, a histogram of senescence probability showed that healthy
cells would digitally transit into a senescent state, with a few cases
of cells being in an intermediate state (Fig. 2e and Supplementary
Fig. 6c). This suggests that cellular senescence would be induced
digitally, and a less intermediate state might be observed during
physiological ageing. Under intermediate stress conditions, the
senescence probability is bipolarized, suggesting that senescence
thresholds differ among cells. It would be interesting to elucidate
the biological mechanism underlying the digital transition and
threshold of cellular senescence. Although the CNN showed high
performance, there were still mispredictions. When we output the
false decision images (Supplementary Fig. 3g), the morphological
appearance of false-positive images was similar to that of true-
positive images, and false-negative images were similar to true-
negative images. These suggest that a very small proportion of
senescent cells exist in healthy conditions, and a very small
proportion of healthy cells exist in senescence-inducing condi-
tions, even though we paid full attention to the preparation of
healthy or senescent cells. However, in our current analysis,
incorrect predictions of the CNN were very rare; therefore, we
believe that any incorrect predictions would have very little effect
on the computation of the senescence score.

In this study, we identified several compounds repressing the
senescence phenotype in vitro. A global transcriptome analysis
indicated that these compounds have anti-inflammatory effects,
via suppression of NFκB signalling. NFκB plays a central role in
inflammation and the appearance of SASP32, suggesting that
these compounds could be strong candidates for a treatment
against age-related diseases. Interestingly, the anti-senescent
effects of terreic acid, which was the top candidate in our
screening, have not been reported previously. Terreic acid is a
BTK inhibitor, but BTK is not expressed in endothelial cells. Our
results indicate that terreic acid improves mitochondrial function
and ATP production via OXPHOS. Interestingly, a drug screen-
ing for life-extending compounds in yeast revealed that terreic
acid can extend the mean replicative life span by 15%20. Its
precise mechanism of senescence suppression should be clarified
by proteome and metabolome analyses and validation of its effect
in animal models. Cellular senescence has a pivotal role in age-
related diseases such as diabetes, heart failure, atherosclerosis, and
cancer; therefore, it would be interesting to examine the effects of
the identified compounds against these diseases.

Diseased cells show specific morphology in several pathological
conditions, although a human cannot identify the differences. A
CNN-based approach contributes to the establishment of a non-
biased method to identify morphological differences in research
and drug screening. We developed a quantitative scoring system
that evaluates cellular status by pre-trained CNN. Deep-SeSMo
may be applicable for drug screening in other diseases and as a
landmark system for drug discovery.

Methods
Cell culture. HUVECs (KURABO) were cultured on gelatin-coated dishes with
HuMedia-EG2 medium (KURABO). In total, 100,000 cells (HUVECs) per well
were plated one day before senescence induction. The HDF cell line, TIG-114, was
purchased from the Japanese Collection of Research Bioresources (JCRB) Cell
Bank. HDFs were cultured on gelatin-coated dishes with Eagle’s minimum essential
medium with 10% FBS. HDFs were plated at 50,000 cells per well, one day before
senescence induction.

Microscopic imaging. Phase-contrast images of the control and senescent
HUVECs were acquired using inverted microscopy (Olympus). We prepared the

images of senescent HUVECs for training datasets; senescence was induced by
either H2O2 or CPT. For training datasets, 10 images were acquired from over four
independent experiments. For the test datasets, we induced cellular senescence in
HUVECs by three methods: H2O2, CPT, and replication. Five images were
acquired from three independent experiments for test data. Each image was saved
as a 2776 × 2074 px RGB image in Tiff format.

RNA isolation and reverse transcriptase PCR. Total RNA was collected using
TRIZOL (Thermo Fisher) and the ReliaPrep RNA cell miniprep system (Promega).
cDNAs were prepared utilising the ReverTra Ace qPCR RT master mix with gDNA
Remover (Toyobo). The following primers were used: human β-actin forward
(GCAAAGACCTGTACGCCAAC) and reverse (AGTACTTGCGCTCAGGA
GGA) and human P21 forward (TCAGGGTCGAAAACGGCG) and reverse
(AAGATCAGCCGGCGTTTGGA).

SA-β-Gal staining. Control and senescent HUVECs were washed twice with PBS,
fixed with 4% paraformaldehyde (WAKO) for 10 min at room temperature,
washed twice with PBS again, and incubated in 1 ml of SA-β-gal staining solution
containing 100 mM K4[Fe(N)6]3H2O, 100 mM K3[Fe(CN)6], 1 M MgCl2, and
20 mgml−1 X gal overnight at 37 °C. The nuclei were stained by 4′,6-diamidino-2-
phenylindole for 10 min at room temperature. SA-β-gal activity was detected by
bright field images using a fluorescence laser microscope (BZ-9000, KEYENCE).

Western blotting. We extracted protein utilising RIPA buffer (Nacalai tesque) and
measured protein concentration by Pierce BCA protein assay kit (Thermo Fisher
Scientific). Proteins were electrically separated by Mini-PROTEAN TGX gels (Bio-
Rad, 4–15%) and transferred to nitrocellulose membranes with 0.2 μm pore size by
dry blotting (Invitrogen). The membranes were incubated with a primary antibody
for P21 (#2947, 12D1, Cell Signaling), P53 (#ab1101, DO-1, Abcam), phospho-P53
(#9284, Cell Signaling), P16INK4a (#ab108349, Abcam), or GAPDH (#2118,
14C10, Cell Signaling) overnight at 4 °C and with a horseradish peroxidase-
conjugated secondary antibody (anti-mouse HRP 1:2000 or anti-rabbit HRP
1:2000) for 1 h at room temperature. Chemi-Lumi One L or Chemi-Lumi One
Super (Nacalai tesque) was used for the visualisation of immunoreactive bands.
Images were acquired utilising an Image Reader LAS-3000 (FUJIFILM).

GPU server and analysis environment. We used GPGPU server, which has two
CPUs: Xeon 4-Core E5-2637V4 3.5 GHz, 128 GB CPU memory, and two GPUs,
GeForce GTX1080Ti GDDR5 11GB (NVIDIA, Santa Clara, CA, USA). We pro-
grammed all scripts on Nvidia-docker system with Ubuntu 16.04, CUDA 8.0,
cuDNN 6.0, Anaconda 3 4.4.0, Python 3.5, Tensorflow 1.4.0, and KERAS 2.1.2.

Senescence induction. We induced cellular senescence in HUVECs by three
approaches: H2O2, CPT, and serial passages. For the CNN training, HUVECs were
exposed to 0.25 mM H2O2 in serum-free EGM2 medium (Lonza) without anti-
biotics and ascorbic acid for 4 days, or 100 nM CPT in serum-free EGM2 medium
(Lonza) without antibiotics and ascorbic acid for 2 days, to obtain senescent
HUVECs. HUVECs passaged over 10 times and cultured in serum-free EGM2
medium (Lonza) without antibiotics and ascorbic acid for 5 days were used as old
HUVECs produced by replication stress. For control samples, HUVECs were
cultured for 4 days for the H2O2 control and for 2 days for the CPT control. The
passage number for controls of old HUVECs was lower than three. Cellular
senescence in HDFs was induced by 0.02 mM H2O2 for 4 days, or 200 nM CPT for
3 days. For control, HDFs were cultured with 10% FBS EMEM for 4 days for the
H2O2 control and for 3 days for the CPT control. For the test datasets, cellular
senescence in the HUVECs and HDFs was induced using the same conditions as
the training datasets. To calculate the senescence score, 0, 0.05, 0.1, 0.15, 0.2, and
0.25 mM H2O2; 0, 6.25, 12.5, 25, 50, and 100 nM CPT; and 1, 4, 6, 8, 10, and 12
passages were used for HUVECs. The senescence score for HDFs was calculated
using 0, 0.005, 0.01, 0.015, 0.02, and 0.025 mM H2O2; 0, 6.25, 12.5, 25, 50, and
100 nM CPT. For the drug screening or drug assessment in HUVECs, 0.15 mM
H2O2 was added for 4 days or 25 nM CPT for 2 days, with simultaneous appli-
cation of the test compounds. For the replicative stress screens, moderately
senescent HUVECs were incubated with compounds for 5 days. For RNA sequence
analysis, we used moderately senescent HUVECs. As a control for the drug
treatments, the same concentration of dimethyl sulfoxide (DMSO) was used
alongside senescence induction.

Automated single-cell cropping. To generate input datasets for training, valida-
tion, and drug screening, we cropped phase-contrast images at single-cell resolu-
tion. The acquired images were binarized by a predetermined threshold, and the
cell locations were identified by black particles. The threshold value for cell size was
determined, and we confirmed that the cells could be correctly identified. We also
defined the noise particles as being smaller than the cells. Thus, cropped images
under the defined size were automatically eliminated for further analysis. The
positions of centre gravity of the cells were identified using the OpenCV package.
Next, 50 × 50 px input datasets were automatically cropped from the original
phase-contrast images at locations determined by the centre of cell gravity in
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binarized images. Input datasets were converted to numpy array. All programmes
were written using Python 3.

Training by a deep neural network. We used a convolutional neural network for
training. The network consisted of four convolution layers, two max pooling layers,
and two fully connected layers. Each convolutional network was connected to
rectified linear units for activation. The final layer was connected with the softmax
function to calculate the probability of classification. To avoid overfitting, dropout
techniques were used following the layer of first and second Max pooling, and the
first dense layer. The dropout rate was 0.5. We utilised mini-batch training with
stochastic gradient descent method, learning rate 0.032, and cross-entropy error as
loss function. Weights were initialised using the Grolot uniform value. We nor-
malised input images as follows:

Y ¼ X=255ð Þ � 0:5ð Þ ´ 2: ð1Þ
Y: value of normalised images and X: value of original images.
The max value of normalised images were “1” and the min value of normalised

images were “−1”. To increase input data on the computer, we used data
augmentation method, rotation, width shift range, height shift range, horizontal
flip, and vertical flip. The trained networks can output whether the input data
represent control cells or senescent cells. We constructed three trained networks,
which classified control versus H2O2-induced senescence, control versus CPT-
induced senescence, and control versus both H2O2- and CPT-induced senescence.
For datasets of training, we obtained 10 phase-contrast images each from over four
independent inductions of senescence. The trained network performance was
accessed by accuracy, loss value, recall, precision, F1 score, and AUC of the ROC
curve. For the training of senescent and healthy HDFs, we obtained 10 phase-
contrast images each from three independent inductions of senescence using both
H2O2 and CPT.

Training by traditional machine learning methods. For training using feature-
based traditional machine learning, we used the same datasets of healthy and
senescent HUVECs that were used for CNN training. HOG was used for a feature
descriptor of images, and 2916 length feature vectors were output in each image.
Logistic regression, Random forest, and linear kernel of Support vector classifier
were used to classify healthy and senescent HUVECs. The performance was vali-
dated by accuracy, F1 score, and AUC of the ROC curve, and compared with CNN
performance.

Evaluation of the trained networks. The performance of trained networks was
validated with newly acquired test datasets. We prepared three datasets: H2O2-,
CPT-, and replication-induced senescence. We obtained five phase-contrast images
from each of the three independent senescence inductions. Each dataset was
classified using three networks; thus, in total, 27 results were obtained for eva-
luation. Accuracy, recall, precision, F1 score, and AUC of ROC curve were used for
network evaluation. Grad-CAM was used to visualise important regions of healthy
and senescent cells. Detailed code for Grad-CAM can be available at public GitHub
repository [https://github.com/Dai-Kusumoto/Deep-SeSMo].

Senescence Scoring System (Deep-SeSMo). We calculated the senescence score
using the probability of senescence, which represents the outputs of trained clas-
sification networks to detect senescent cells, for each cell at the single-cell reso-
lution. The neural network was able to calculate the probability class of input data,
when the softmax function was used in the output layer:

softmax : yi ¼
exi

PN
j¼1 e

xj
: ð2Þ

The average probabilities of belonging to the senescence class in all input
datasets were used for the senescence score:

senescence score ¼
Pm

k¼1 y1k
m

ð3Þ
(m: the number of input datasets and y1: the probability of belonging to the

senescence class in each input dataset). The correlation between senescence score
and stress strength was quantified by Pearson correlation. Stress strengths were
obtained by the concentrations of H2O2 or CPT, or several passage numbers. For
drug assessment, the senescence score was normalised by the control sample. For
evaluation using several samples, each senescence score was converted to ranking
of senescence score for each evaluation. To prioritise drugs, the median of
senescence score ranking was used. For the evaluation of Deep-SeSMo, 0, 200, 500,
and 1000 μM metformin and 0, 200, 500, and 1000 μM NMN were added to
HUVECs for 4 days, and the senescence score was calculated by Deep-SeSMo.
Visualisation of senescence probability was performed using the ggplot2 package.

CNN validation at another institute. To validate the CNN performance at
another institute, HUVECs were cultured and cellular senescence was induced by
either H2O2 or CPT at Kyoto University as per our protocol. Induction of cellular
senescence was repeated twice with both H2O2 and CPT conditions. Then, phase-
contrast images were acquired and input datasets were generated by the defined

method. The number of obtained datasets was 57,115 for healthy and 25,471 for
senescent HUVECs. We mixed both the Kyoto University and Keio University (our
institute) datasets, obtained 281,842 healthy and 140,061 senescent cell datasets,
and trained the CNN to classify healthy and senescent HUVECs. The performance
of the CNN (Keio+ Kyoto) was compared with the CNN trained only on datasets
obtained at our institute (Keio). To assess the external validation of the CNN
(Keio+ Kyoto), we prepared the datasets which were obtained in the first senes-
cence induction at Kyoto University (33,041 for healthy and 14,425 for senescence)
and mixed them with a random arrangement of the same number of datasets
obtained at our institute. We then trained the CNN and validated the datasets
which were obtained in the second senescence induction at Kyoto University
(24,074 for healthy and 12,046 for senescence). Test datasets from our institute
(Keio) were used as well, as shown in Fig. 1f–h. For validation of senescent score,
the CNN trained on the all mixed Keio and Kyoto datasets was used, and HUVECs
with 0, 0.05, 0.1, 0.15, and 0.2 mM H2O2; or 0, 12.5, 50, and 200 nM CPT were used
to calculate the senescence score.

Senolytics treatment. We mixed young (100,000 cells per well) and old HUVECs
(200,000 cells per well) one day before drug treatment. 0.25, 0.5, 1, and 2.5 μM of
ABT263 (Adoop) were added to the HUVECs for 3 days. Five phase-contrast
images were acquired in each condition, including before drug treatment, and
senescence score was calculated using Deep-SeSMo.

Drug screening. We performed drug screening by utilising Deep-SeSMo. We
tested 80 compounds using a kinase inhibitor library (SCREEN-WELL® Com-
pound Library, Enzo). Ten micromolar drugs were added with three senescence
induction methods: H2O2, CPT, and replication. The same concentration of DMSO
was used for control samples. The senescence score was calculated utilising three
networks trained by H2O2, CPT, and H2O2 and CPT. Subsequently, the senescence
score was converted to ranking of senescence score in each analysis. To detect an
anti-senescent cluster, a heatmap was drawn using all samples with validation by
H2O2 and CPT-trained networks by the seaborn package. To calculate the anti-
senescent ranking of drugs, the median of the senescence score ranking was sorted.
A visualisation of the senescence score ranking was performed by the Plotly
package. For the evaluation of anti-senescence effects, four compounds, 10 nM
terreic acid, 500 nM Y-27632·2HCl, 5 μM daidzein, and 100 nM PD-98059, were
used. Four compounds from the kinase inhibitor panel (SC-514, TYRPHOSTIN51,
Indirubin, and SU4312) were selected for the validation of non-effective drugs,
which displayed almost the same senescent score as the control by Deep-SeSMo
analysis.

Evaluation of network performance. Network performance was evaluated by
accuracy, precision, recall, and F1 score, and the AUC of ROC curve. Accuracy is
the ratio of correct predictions to all predictions. Precision is the hitting ratio of
positive predictions. Recall is the sensitivity of prediction.

accuracy ¼ TPþ TN
TPþ FPþ TNþ FP

; ð4Þ

precision ¼ TP
TPþ FP

; ð5Þ

recall ¼ TP
TPþ FN

: ð6Þ

F1 score is the combination of recall and precision:

F1 score ¼ 2 Recall ´ Precision
Recallþ Precision

: ð7Þ

The ROC curve is the plot of true-positive rate against false-positive rate for all
possible thresholds.

RNA sequence analysis. We added four compounds: 10 nM terreic acid, 500 nM
Y-27632·2HCl, 5 μM daidzein, and 100 nM PD-98059 to HUVECs for 4 days, and
mRNA was extracted as described above. The library for sequencing was prepared
according to the manufacturer’s protocol (NEBNext® UltraTM II RNA Library Prep
Kit for Illumina®). Next, 2 × 150 bp pair-end (PE) sequencing was carried out by
Illumina Hiseq. Sequencing data were converted into fastq format using the
bcl2fastq software. The sequence quality was checked by the FastQC software, and
we eliminated adapter sequences by Trimmomatic. We processed the sequence
data and got FPKM using the HISAT2-StringTie-Ballgown pipeline. Differential
expressed genes between control and all four compounds or control and terreic
acid were calculated using Ballgown packages. Heatmap showed a distance from
the average logFC of the median control value and median values of all four
compounds. GSEA was performed using genesets in Molecular Signatures Data-
base. Gene ontology analysis of upregulated genes (fold change >1.5) in terreic
acid-treated HUVECs compared with control was carried out by the Database for
Annotation, Visualisation, and Integrated Discovery (DAVID).
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for figures are provided with the paper. For RNA sequence data in Fig. 4 and
Supplementary Fig. 9, raw data have been deposited in DDBJ Sequence Read Archive
(DRA) with the accession code “DRA010959”.

Code availability
Custom code for CNN training, validation, senescence scoring based on Deep-SeSMo can
be available at public GitHub repository [https://github.com/Dai-Kusumoto/Deep-
SeSMo].
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