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Abstract: Carex muskingumensis is a highly valued perennial ornamental grass cultivated worldwide.
However, there is limited genetic data regarding this species. Selection of proper reference genes (RGs)
for reverse transcription quantitative PCR (RT-qPCR) data normalization has become an essential
step in gene expression analysis. In this study, we aimed to examine expression stability of nine
candidate RGs in C. muskingumensis plants, subjected to osmotic stress, generated either by salinity
or PEG treatment. The identification of genes exhibiting high expression stability was performed
by four algorithms (geNorm, NormFinder, BestKeeper and deltaCt method). The results showed
that the combination of two genes would be sufficient for reliable expression data normalization.
ADP (ADP-ribosylation factor) and TBP (TATA-box-binding protein) were identified as the most
stably expressed under salinity treatment, while eIF4A (eukaryotic initiation factor 4A) and TBP
were found to show the highest stability under PEG-induced drought. A set of three genes (ADP,
eIF4A and TBP) displayed the highest expression stability across all experimental samples tested in
this study. To our best knowledge, this is the first report regarding RGs selection in C. muskingumensis.
It will provide valuable starting point information for conducting further analyses in this and related
species concerning their responses to water shortage and salinity stress.
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1. Introduction

Carex L. is the largest and the most widespread genus in the Cyperaceae family [1]. Carex muskingumensis
Schwein., also known as Muskingum sedge or Palm sedge, is a highly valued perennial ornamental
grass cultivated worldwide. It is used as a ground cover or planted in flowerbeds or containers.
The species is rather easy to grow in an average, medium to wet soil, in full sun or part shade [2].

During its life cycle plants are exposed to various environmental stresses. Water deficits,
as well as soil salinization are currently becoming increasingly a problem in various regions of the
world. Both drought and high salinity disrupt osmotic balance in plant cells and in consequence
limit plant growth and development [3,4]. Therefore, knowledge of plants molecular response to
such conditions is of great importance. In order to better understand plants tolerance adaptation
mechanisms, many studies have focused on monitoring changes in genes expression under PEG-induced
drought [5–7] or salinity treatments [8–10].

Reverse transcription quantitative PCR (RT-qPCR) constitutes commonly used approach in
gene expression studies. However, in order to avoid erroneous results and consequently incorrect

Genes 2020, 11, 1022; doi:10.3390/genes11091022 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0001-7990-8000
https://orcid.org/0000-0002-4835-3804
https://orcid.org/0000-0001-7892-6565
http://dx.doi.org/10.3390/genes11091022
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/9/1022?type=check_update&version=3


Genes 2020, 11, 1022 2 of 14

conclusions this technique requires proper data normalization. The necessity for reliable RT-qPCR
data normalization has been emphasized in MIQE guidelines by Bustin et al. 2009 [11]. An accurate
data analysis can be achieved with the help of reference genes (RGs)” [12]. An ideal RG would be a
gene that displays constitutive, stable expression across different species regardless of tissue types,
developmental stages and experimental conditions [13]. The ideal RG, however, does not exist or at least
has not yet been identified. Previous studies have shown that a RG, which is considered to be stable
under given experimental conditions often exhibits variable expression under different treatments [14–16].
The same have been demonstrated for different organs of the same species [17–19] or different species
subjected to the same treatment [20,21]. Consequently, it is necessary to perform RG selection within
each gene expression study. This step is usually conducted on the panel of candidate genes, that have
previously been reported as stable under similar conditions and/or in related species. Commonly used
RGs include genes encoding actin (ACT), tubulin (TUB), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), elongation factor 1-α (EF1a) or ubiquitin (UBQ) [22]. Since the identification of appropriate
RGs for RT-qPCR analysis has become fundamental in gene expression studies, several software
programs, which use distinct algorithms facilitating this step have been developed, such as geNorm [23],
NormFinder [24], BestKeeper [25] as well as deltaCt method [26].

The information on sedges’ molecular responses to osmotic stress and their adaptation mechanisms
is limited [27–29]. To address this issue, our study aims at identifying best RGs for C. muskingumensis
under salt and drought stress. Here, we determine expression stability of nine candidate RGs encoding
actin 7 (ACT7), ADP-ribosylation factor (ADP), elongation factor 1-α (EF1a), eukaryotic initiation
factor 4A (eIF4A), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoenolpyruvate
carboxylase-related kinase 1 (PEPKR1), SAND family protein (SAND), tubulin α (TUBa) and
TATA-box-binding protein (TBP) with the use of four different algorithms. The current study will
provide useful information for conducting further analysis in this and related species concerning their
responses to water shortage and salinity stress.

2. Materials and Methods

2.1. Experiment Design

The plant material were C. muskingumensis tufts obtained from a stable tissue culture grown on the
solidified Murashige and Skoog (MS) [30] medium supplemented with kinetin (KIN) in concentration
of 2.5 mg·dm−3 and indole-3-acetic acid (IAA) in concentration of 0.25 mg·dm−3. The pH was adjusted
to 5.7. Explants for the experiment were 3–4 cm long single shoots with 4–5 leaves. The explants were
placed on the MS medium supplemented with 1.5% or 3% of NaCl for salinity treatment and 2% or
8% of PEG (polyethylene glycol) for drought treatment. The medium without NaCl or PEG (0%) was
treated as a control. Each treatments consisted of 4 flasks with 5 shoots. The explants were grown in
the temperature of 22 ◦C day/20 ◦C night and 16 h photoperiod with 35 µmol·m−2

·s−1 light intensity.

2.2. The RNA Extraction and Reverse Transcription

The RNA extraction was conducted after 7 days of cultivation, in four biological replicates for each
treatment. Immediately after harvesting leaves from the treated and control plants, the tissue (100 mg)
was homogenized in liquid nitrogen using mortar and pestle. Total RNA isolation was conducted
with the use of TRIzol reagent (invitrogen, Carlsbad, CA, USA) in accordance with the manufacturer’s
instructions. In order to prevent RNA degradation ribonuclease inhibitor (EURx, Gdansk, Poland)
was added to all samples to final concentration of 1 U/µL. The RNA concentration was assessed with
NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The integrity of RNA
samples was analysed by the means of electrophoresis in 2% agarose gel stained with ethidium bromide.

Prior to cDNA synthesis, genomic DNA was removed by DNase I (EURx) treatment. The reverse
transcription was performed with NG dART RT kit (EURx) according to the supplier’s recommendations.
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The components of reaction mixture were as following: 0.5 µg RNA, 4 µL of 5 ×NG cDNA Buffer, 1 µL
of 50 µM Oligo(dT)20 primer, 1 µL of NG dART RT mix and RNase-free water to final volume of 20 µL.

2.3. RT-qPCR Reactions

Nine genes (ACT7, ADP, EF1a, eIF4A, GAPDH, PEPKR1, SAND, TUBa, TBP) that are more or less
frequently used as internal controls for RT-qPCR data normalization were chosen as candidates for
RGs selection. Since no sequences for C. muskingumensis were available, Carex rigescens sequences
deposited in GeneBank or SRA database (Sequence Read Archive accession No. SRX2755644) [27] were
used for primer designing. Arabidopsis thaliana and Zea mays nucleotide sequences were used as query
sequences for performed BLASTN search. Primers for RT-qPCR were designed with PrimerBLAST
tool [31] (Table S1).

The RT-qPCR reactions were based on SYBR Green chemistry. The reaction mixture (final volume
of 25 µL) contained 10 ng of cDNA, 1 × SG/ROX qPCR Master Mix (EURx), 400 nM of each primer and
0.25 U uracil-N-glycosylase. The reactions were performed according to the following cycling program:
2 min at 50 ◦C, 10 min at 95 ◦C, 40 cycles of 15 s at 94 ◦C, 30 s at 60 ◦C and 30 s at 72 ◦C. All RT-qPCR
reactions were conducted on a QuantStudio 3 apparatus (Applied Biosystems, Carlsbad, CA USA).
In order to verify the specificity of PCR products melting curve analysis was performed after each
run with continuous data collection from 60 to 95 ◦C. The reactions were performed in four biological
replicates with two technical replicates for each sample. No-template controls were included in
analyses. Standard curves were generated from serial dilution of pooled cDNA. The PCR efficiencies
for each primer pair were determined according to the equation [10(1/−S)

− 1]× 100%, where S represents
the standard curve slope value [25].

2.4. Analysis of Gene Expression Stability

The expression stability of tested genes was estimated using following algorithms: geNorm [23],
NormFinder [24], BestKeeper [25] and deltaCt method [26]. According to the requirements,
performed analyses were based, either on untransformed Cq values (for BestKeeper and deltaCt
method) or relative quantities (for geNorm and NormFinder).

For the validation of selected reference genes, the expression level of target gene ascorbate
peroxidase (APX) was analyzed under tested experimental conditions. The expression data of APX
was normalized using most stable and least stable RGs according to the obtained results. The RT-qPCR
amplification conditions were the same as those described above. The relative expression level of the
target gene was calculated using the 2−∆∆Ct method.

3. Results

3.1. Growth of Shoots

C. muskingumensis shoots cultivated on the medium supplemented with PEG or NaCl had
visible symptoms of the negative influence of the substances used. Explants grown on media,
supplemented with PEG, were smaller than the control ones. It was noted that the higher concentration
of PEG the smaller plants were obtained (Figure 1). Explants treated with NaCl were definitely
damaged after the first week of treatment. It was observed that leaves started to turn pale green after
the first week of cultivation, changing into brown after the second and the third ones. On the medium
supplemented with 8% NaCl most explants died after four weeks of cultivation (Figure 2).
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Figure 2. Growth of explants on the medium supplemented with NaCl after 4 weeks of cultivation.

3.2. Candidate Reference Genes—Efficiency and Specificity of Amplification

Nine genes (ACT7, ADP, EF1a, eIF4A, GAPDH, PEPKR1, SAND, TUBa, TBP) were chosen as
candidate RGs for normalization of gene expression data in C. muskingumensis plants subjected to NaCl
and PEG treatments. Confirmation of designed primer pairs suitability for RT-qPCR analysis was based
on the analysis of standard curves performed on pooled cDNA and melting curves. Determined reaction
efficiency, slope and regression coefficient (R2) are shown in Table S2. Amplification efficiency of each
primer pair was above 90% and it ranged from 95.6% (ADP) to 111.2% (PEPKR1). Regression coefficients
were all above 0.99 except for the EF1a where it reached 0.986. Specificity of each designed primer pair
was confirmed by a single peak on dissociation curves (Figure S1).

3.2.1. Reference Gene Selection

Nine candidate RGs were screened among all experimental samples in order to find the most
stable ones in tested material. Tested genes displayed variation in their expression across all of the
samples with Cq value ranging from 21.83 to 32.82 (Table S3). Out of all candidate RGs ACT7 had
the highest expression with mean Cq value of 23.11, while PEPKR1 showed the lowest expression
level with mean Cq value of 30.77. The widest range of expression (Cq difference of almost 5 cycles)
suggesting low stability level was observed for TUBa gene.

The expression stability of selected candidate RGs was investigated with four different
algorithms—geNorm, NormFinder, BestKeeper and deltaCt method. The analyses were conducted
for three different datasets, that was data obtained from NaCl experiment, data obtained from PEG
experiment and combined data of two abovementioned experiments.
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3.2.2. geNorm Analysis

The geNorm algorithm ranks the candidate RGs according to the average expression stability
value (M value). The lower the M value the more stable is the gene’s expression. The M value threshold
for RG selection was established at 1.5 by Vandesompele et al. [23]. All tested candidate genes in all
analyzed datasets (Figure 3) had the M value lower than the 1.5 cutoff. The same three genes (eIF4A,
ADP and TBP) displayed the most stable expression in combined dataset (PEG plus NaCl samples) as
in NaCl experiment alone. The most stable RGs, found in PEG-treated samples, were eIF4A, TBP and
PEPKR1. TUBa exhibited the least stable expression in all experimental conditions (regardless of the
NaCl and PEG samples being analyzed separately or together).
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Figure 3. Average expression stability M of all remaining control genes after stepwise exclusion of the
least stable reference genes according to the geNorm algorithm. The lower the M value the more stable
is the gene’s expression in tested samples. Analysis was performed separately for (a) NaCl treated
samples (NaCl), (b) PEG treated samples (PEG) and (c) all samples combined together (Total).

3.2.3. NormFinder Analysis

NormFinder algorithm generates a stability value (SV) for each candidate RG including in its
estimations both intra-group and inter-group variation in the sample set. The lower the SV, the more
stable is the gene’s expression [24]. The best-scoring genes for samples subjected to NaCl stress were
ADP, TBP and ACT7. In PEG treated samples the highest stability was displayed by PEPKR1, eIF4A
and TBP (Table 1). When all of the sample sets were analyzed together the NormFinder ranked TBP,
ADP and eIF4A as the most stable RGs for data normalization. Noteworthy, TBP gene was among
three most stable RGs regardless of what data set was used for the calculations. On the other hand,
the TUBa gene displayed the lowest expression stability in all of the data sets analyzed.

Table 1. Stability analysis of candidate reference genes performed by NormFinder algorithm. The lower
the stability value (SV) the more stable is the gene’s expression in tested samples. Analysis was
performed for NaCl treated samples (NaCl), PEG treated samples (PEG) and all samples combined
together (Total).

Rank
Total NaCl PEG

Gene SV Gene SV Gene SV

1 TBP 0.187 ADP 0.138 PEPKR1 0.115
2 ADP 0.197 TBP 0.145 eIF4A 0.147
3 eIF4A 0.205 ACT7 0.170 TBP 0.220
4 PEPKR1 0.235 eIF4A 0.238 ADP 0.234
5 ACT7 0.278 PEPKR1 0.242 GAPDH 0.272
6 EF1a 0.305 EF1a 0.326 SAND 0.299
7 SAND 0.355 SAND 0.381 EF1a 0.326
8 GAPDH 0.452 GAPDH 0.432 ACT7 0.363
9 TUBa 0.794 TUBa 0.496 TUBa 0.793

3.2.4. BestKeeper Analysis

BestKeeper software calculates its statistics based on Cq values. The best RGs are identified by
assessing correlation coefficient (r) of each individual gene with the BestKeeper index (the geometric
mean of all candidate genes). The most stably expressed genes are those exhibiting the highest coefficient
of correlation [25]. Out of all tested candidate RGs, TBP was found to be the most stable, regardless of
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the treatment (Figure 4). High expression stability was also observed for ADP, eIF4A and EF1a, however,
with interchanging ranking positions. Highest variation, on the other hand, was consistently displayed
by PEPKR1 and TUBa genes.
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3.2.5. deltaCt Method

The deltaCt method is an approach that identifies the most stable RGs by comparing relative
expression of pairs of genes within each sample. Low average standard deviation (mean SD) reflects
the low level of variability [26]. Based on the results generated from deltaCt method, highest stability
of expression in all datasets was displayed by ADP, which was followed by either TBP or eIF4A
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(Table 2). Both TUBa and PEPKR1 could be considered as least stable in tested material, as they were
characterized by the highest mean SD.

Table 2. Candidate reference gene ranking according to deltaCt method. The lower the mean standard
deviation (mean SD) value the more stable is the gene’s expression in tested samples. Analysis was
performed for NaCl treated samples (NaCl), PEG treated samples (PEG) and all samples combined
together (Total).

Rank
Total NaCl PEG

Gene Mean SD Gene Mean SD Gene Mean SD

1 ADP 0.707 ADP 0.624 ADP 0.742
2 TBP 0.733 TBP 0.646 eIF4A 0.769
3 eIF4A 0.787 ACT7 0.765 TBP 0.787
4 SAND 0.834 eIF4A 0.777 SAND 0.824
5 ACT7 0.838 SAND 0.802 ACT7 0.923
6 EF1a 0.913 GAPDH 0.851 EF1a 0.971
7 GAPDH 0.999 EF1a 0.859 GAPDH 1.089
8 PEPKR1 1.076 TUBa 1.001 PEPKR1 1.188
9 TUBa 1.428 PEPKR1 1.033 TUBa 1.425

3.2.6. Determination of Reference Genes Optimal Number

The geNorm algorithm, additionally to ranking candidate RGs from the most to the least stable,
allows for the determination of their optimal number for data normalization. The optimal number of
RGs can be calculated by pairwise variation (Vn/Vn+1). If pairwise variation is below 0.15, the inclusion
of additional RG does not make any significant contribution to the data analysis. In this study, V2/3 was
lower than the threshold value of 0.15 (Figure 5) thus indicating that using just two best-performing
RGs would be sufficient for expression data normalization. Nevertheless, Vandesompele et al. [23] and
Pfaffl et al. [25] recommend the minimal use of at least three most stable RGs for reliable normalization.

1 
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Figure 5. Determination of optimal number of reference genes calculated by geNorm. Pairwise
variation (Vn/Vn+1) below 0.15 indicates no significant contribution made by inclusion of additional
reference gene. Analysis was performed for NaCl treated samples (NaCl), PEG treated samples (PEG)
and all samples combined together (Total).

In the present study, when all samples were analyzed together, the same three genes were
identified as the most stably expressed by all used algorithms, that is ADP, eIF4A, and TBP. However,
their ranking positions slightly differed (Table 3).
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Table 3. Ranking of candidate reference genes stability according to all tested algorithms. Analyses were
performed for NaCl treated samples (NaCl), PEG treated samples (PEG) and all samples combined
together (Total).

Method
Stability (High→Low)

1 2 3 4 5 6 7 8 9

Total

geNorm ADP/eIF4A - TBP ACT7 PEPKR1 EF1a SAND GAPDH TUBa
NormFinder TBP ADP eIF4A PEPKR1 ACT7 EF1a SAND GAPDH TUBa
BestKeeper TBP ADP eIF4A EF1a SAND ACT7 GAPDH PEPKR1 TUBa

deltaCt ADP TBP eIF4A SAND ACT7 EF1a GAPDH PEPKR1 TUBa

NaCl

geNorm ADP/eIF4A - TBP ACT7 PEPKR1 EF1a GAPDH SAND TUBa
NormFinder ADP TBP ACT7 eIF4A PEPKR1 EF1a SAND GAPDH TUBa
BestKeeper TBP ADP EF1a eIF4A ACT7 SAND GAPDH TUBa PEPKR1

deltaCt ADP TBP ACT7 eIF4A SAND GAPDH EF1a TUBa PEPKR1

PEG

geNorm eIF4A/TBP - PEPKR1GAPDH ADP ACT7 SAND EF1a TUBa
NormFinder PEPKR1 eIF4A TBP ADP GAPDH SAND EF1a ACT7 TUBa
BestKeeper TBP eIF4A ADP EF1a SAND GAPDH ACT7 PEPKR1 TUBa

deltaCt ADP eIF4A TBP SAND ACT7 EF1a GAPDH PEPKR1 TUBa

The ADP and TBP were among top three ranked genes in salinity treatment regardless of the
calculation method. Both NormFinder and deltaCt method pointed out ACT7 as third most stable
gene in NaCl treatment, whereas geNorm and BestKeeper indicated eIF4A, or EF1a, respectively.

According to all algorithms eIF4A and TBP were among the most stably expressed genes in
drought treated plants. Moreover, PEPKR1 was indicated as stably expressed during PEG-induced
drought by both geNorm and NormFinder. However, according to the results generated by BestKeeper
and deltaCt method, the PEPKR1 gene showed high expression variability in this treatment. Instead,
ADP was proposed as a gene showing relatively stable expression in this conditions.

All algorithms indicated that both SAND and GAPDH showed medium to poor stability of
expression. ACT7 and EF1a mostly displayed intermediate level of stability. The PEPKR1 gene,
interchangeably with TUBa, were ranked by BestKeeper and deltaCt algorithms as two least stable
genes in all sample sets. The geNorm and NormFinder invariably ranked TUBa at the last position,
suggesting its high expression instability in tested conditions.

Additionally, the expression of target gene ascorbate peroxidase (APX) was analyzed, using most
stable and least stable RGs, according to obtained results. Based on the comprehensive evaluation of
RGs stability, we normalized APX expression in NaCl treated samples with ADP, TBP, combination of
ADP + TBP and TUBa. PEG treated samples were normalized with eIF4A, TBP, combination of eIF4A +

TBP and TUBa. The expression profile of APX under salinity stress was consistent when normalized
with RGs showing high stability (Figure S2). However, a strong increase in APX expression could be
observed when TUBa was used for data normalization. The expression of APX under drought treatment
was at steady level with eIF4A, TBP or combination of eIF4A + TBP as a reference, whereas normalization
with TUBa resulted in underestimation of APX expression (Figure S2). This confirms that selection of
reliable RGs is crucial for proper target gene expression analysis.

4. Discussion

The influence of specific treatments on candidate reference genes (RGs) expression has been
well-presented in studies testing various stressing factors [16–18,32]. Depending on the conditions,
applied candidate gene might exhibit, either stable or varied expression, thus, it might be useful or
useless for data normalization. Since using unstable RGs may lead to erroneous results and incorrect
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conclusions, appropriate RT-qPCR data normalization has become necessity [13,22,33]. In this study,
we investigated nine potential RGs (ACT7, ADP, EF1a, eIF4A, GAPDH, PEPKR1, SAND, TUBa, TBP) in
terms of their stability in C. muskingumensis plants exposed to salinity and PEG-induced drought.

The results of our experiment showed that the combination of ADP and TBP genes was the most
suitable for normalization of data obtained from C. muskingumensis plants subjected to NaCl stress.
Only one of the algorithms, used in this study, presented partially different results, selecting ADP with
eIF4A as the most stable pair of genes. Still, TBP performed well and was identified as third in the
ranking. More inconsistent results were found in C. muskingumensis plants exposed to PEG-induced
drought. Here different algorithms selected different pairs of genes. Yet, each pair included eIF4A, thus,
confirming its high stability under water deficit. Among other genes identified as highly stable were
TBP (selected by two algorithms), ADP and PEPKR1. Partially inconsistent results, generated through
various programs, are due to distinct statistical algorithms they use in stability calculations. Such
differences in ranking positions were also reported in other studies [15,22,34].

More consistency in current study was observed in rankings obtained when both drought and
salinity sample sets were considered together. Although with different ranking positions, the same
three genes (ADP, eIF4A, TBP) were identified by all used algorithms as the most stable across
tested conditions. Consequently, we believe that they constitute strong candidates for RT-qPCR
data normalization. We suggest that these genes are included in the gene expression analyses of C.
muskingumensis subjected to osmotic stress.

The ADP, eIF4A and TBP have been previously identified as stable RGs in several plant
species subjected to drought and salinity stresses. ADP performed well or very well in wild barley
(Hordeum brevisubulatum) under different treatments that generated osmotic stress in cells [22]. TBP was
found to be highly stable in drought treated celery (Apium graveolens) and moderately stable under
salt stress [34]. The eIF4A was first in comprehensive rankings generated for perennial ryegrass
(Lolium perenne) subjected to drought and high salinity stresses [35].

Study performed on close relative, C. rigescens, recommended eIF4A together with PEPKR1 and
GADPH to be preferentially selected for RT-qPCR analyses of that species [32]. To some extent, this is in
concordance with our results, as eIF4A and PEPKR1 ranked well or very well in the results generated by
geNorm and NormFinder algorithms, particularly for PEG-treated samples. Both eIF4A and PEPKR1
were among top three most stable genes in these rankings. Nevertheless, GAPDH did not perform as
good as it might have been expected in the conditions of our experiment.

Both GAPDH and ACT have been commonly used as RGs for RT-qPCR data normalization
in plants [36–40]. However, it has been noticed that among many studies testing larger panels of
potential RGs, few found GAPDH or ACT to show high stability of expression [13]. ACT and GAPDH
exhibited variable expression in leaves of bermudagrass (Cynodon dactylon) under NaCl and PEG
stress [18]. Likewise, both genes performed poorly in seashore paspalum (Paspalum vaginatum) exposed
to drought and salinity [19]. Furthermore, GAPDH was reported to be least stable in annual ryegrass
(Lolium multiflorum) under abovementioned stresses [16], while ACT was least stable in durum wheat
(Triticum durum) subjected to drought [33].

In our study, ACT7 performed slightly better than GAPDH in terms of expression stability in
NaCl experiment, contrary to PEG-induced drought experiment, where the situation was reversed.
Both genes, however, are considered to be far from optimal for C. muskingumensis data normalization,
as they showed rather medium to poor expression stability in most rankings. Moreover, according to
most of the algorithms TUBa, which is another ‘traditional’ RG, proved to be the least stable of all
tested RGs in conditions of our study. High variability of TUB expression in response to drought and
salt treatment was also reported in leaves of creeping bentgrass (Agrostis stolonifera) [17], as well as
leaves of bermudagrass (C. dactylon) [18].

It has been agreed that RGs should be selected individually for each experiment [12,15,16].
However, prior to performing RGs selection, the type of candidate genes tested should be carefully
considered. Apart from using a few ‘traditional’ RGs (such as GAPDH, ACT, TUB, EF1a), it is worth
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analyzing less frequently used genes or even novel genes, as they may turn out to be more stable under
given conditions. For instance, Dudziak et al. [41] analyzed expression stability of five traditional
RGs together with five novel candidate genes in common wheat (Triticum aestivum) lines subjected to
drought stress. Both geNorm and NormFinder algorithms found novel gene, CJ705892, to be the most
stable. Similarly, Liu et al. [16] tested six common RGs together with four novel candidate genes in
annual ryegrass (L. multiflorum). They found that under drought stress one of the ‘traditional’ RGs
(eIF4A) was the most stable. However, under saline-alkali stress highest stability was exhibited by one
of the novel genes (Unigene14912). Therefore, while satisfactory results might be obtained by using
conventional RGs (as it was done within this study), considering some alternatives might bring about
valuable outcomes.

The fact that gene expression analysis using RT-qPCR technique should be preceded by
identification of most stable RGs within its sample set is nonnegotiable [12,13]. However, the results
of other studies testing panels of potential RGs in the same, or closely related, species can provide
valuable starting point information. Such studies might indicate which candidate RGs are worth being
tested for expression stability. This is especially true for non-model organisms that are not yet well
characterized [13].

To our best knowledge, apart from our investigation, RGs selection has been reported in the family
Cyperaceae only in C. rigescens [32]. In the order Poales, such studies were conducted most commonly
in the family Poaceae. In BOP clade evaluation of RGs was reported frequently in rice, wheat and
barley and concerned various treatments (e.g., cold, heat, salinity, drought, submergence, heavy metals,
hormone treatment, biotic stresses [14,22,33]). Other species from BOP clade, which were tested in
respect to RGs stability belong to such genera as Agropyron [42], Agrostis [17], Avena [43], Bambusa [44],
Brachypodium [45], Elymus [46], Lolium [16], Poa [47] and Stipa [48].

In PACMAD clade identification of stable RGs was reported several times in such genera as
Eleusine [49], Cynodon [18] and Setaria [50].

Our experiment identified most stable RGs in C. muskingumensis plants subjected to osmotic stress.
The data suggests that ADP and TBP would be the most suitable to use in salinity studies, while eIF4A
in combination with TBP could be used in drought experiments. Across all tested conditions highest
expression stability was displayed by ADP, eIF4A and TBP. To our best knowledge this is the first
report regarding RGs selection in this species. The identification of stable RGs in C. muskingumensis
will be helpful for accurate RT-qPCR data normalization and will facilitate further investigations of
molecular mechanisms involved in its response to high salinity and drought.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/9/1022/s1.
Figure S1: Melting curves for nine candidate reference genes, Table S1: Primer sequences for candidate reference
genes, Table S2: Parameters derived from RT-qPCR analysis—slope, regression coefficient (R2), reaction efficiency
and melting temperature of the amplicon (Tm), Table S3: Cq values of nine candidate reference genes under
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