
Ghosh et al. Virology Journal           (2022) 19:42  
https://doi.org/10.1186/s12985-022-01767-5

REVIEW

Application of machine learning 
in understanding plant virus pathogenesis: 
trends and perspectives on emergence, 
diagnosis, host‑virus interplay and management
Dibyendu Ghosh1†  , Srija Chakraborty2†  , Hariprasad Kodamana2,3   and Supriya Chakraborty1*   

Abstract 

Background:  Inclusion of high throughput technologies in the field of biology has generated massive amounts of 
data in the recent years. Now, transforming these huge volumes of data into knowledge is the primary challenge in 
computational biology. The traditional methods of data analysis have failed to carry out the task. Hence, researchers 
are turning to machine learning based approaches for the analysis of high-dimensional big data. In machine learning, 
once a model is trained with a training dataset, it can be applied on a testing dataset which is independent. In current 
times, deep learning algorithms further promote the application of machine learning in several field of biology includ-
ing plant virology.

Main body:  Plant viruses have emerged as one of the principal global threats to food security due to their devastat-
ing impact on crops and vegetables. The emergence of new viral strains and species help viruses to evade the concur-
rent preventive methods. According to a survey conducted in 2014, plant viruses are anticipated to cause a global 
yield loss of more than thirty billion USD per year. In order to design effective, durable and broad-spectrum manage-
ment protocols, it is very important to understand the mechanistic details of viral pathogenesis. The application of 
machine learning enables precise diagnosis of plant viral diseases at an early stage. Furthermore, the development of 
several machine learning-guided bioinformatics platforms has primed plant virologists to understand the host-virus 
interplay better. In addition, machine learning has tremendous potential in deciphering the pattern of plant virus 
evolution and emergence as well as in developing viable control options.

Conclusions:  Considering a significant progress in the application of machine learning in understanding plant virol-
ogy, this review highlights an introductory note on machine learning and comprehensively discusses the trends and 
prospects of machine learning in the diagnosis of viral diseases, understanding host-virus interplay and emergence of 
plant viruses.
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Background
Machine learning: an introduction for biologists
Over the years, extensive research has been carried out 
in various fields of biology to understand the science 
behind a plethora of complex biological phenomena. 
The study of problems such as traits in plants and plant 
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viral diseases lead to generation of massive data sets. The 
progress in technology has rendered data generation a 
simple task. Cost-effective technologies such as next gen-
eration sequencing (NGS) have made it easier to gather 
data regarding gene expression, chromosome conforma-
tion, genetic variation, traits and diseases of animals and 
plants, leading to generation of such massive data sets 
having multiple characteristics [1]. However, the result-
ant data explosion, especially in the field of omics, has 
made the handling of large datasets a major concern. The 
traditional statistical data analysis methodologies are not 
effective or efficient anymore in this context [2].

Furthermore, biological phenomena comprise vari-
ous aspects, which lead to the generation of more than 
one data type. This necessitates an integrated analysis 
of the different types of data. But the noisiness of het-
erogeneous biological data makes this a difficult task [3]. 
Data dimensionality is another major impediment, for 
instance, omics data is generally highly resolved, hence 
highly dimensional. Moreover, the sample size in bio-
logical studies is limited in most cases. This may lead to 
issues including overfitting, multi-collinearity and data 
sparsity [4].

In order to overcome all these barriers, attempts are 
being made to incorporate machine learning (ML) and 
deep learning (DL) tools in the analysis of the datasets. 
ML tools identify patterns in the data using different 
statistical methods. Based on existing data, the ML par-
adigm can be used to derive models for classification, pat-
tern recognition, and predictions. DL algorithms extract 
high-level features from huge datasets (such as collection 
of genomic sequences, or images), recognize the hidden 
patterns, and then utilize them to train models [5]. These 
trained models can be further applied to diverse types 
of unseen data from different sources for tasks such as 
prediction and classification. These techniques have the 
ability to tackle tough problems by detecting structure in 
seemingly random data, even when the amount of data 
is too complex and large for human comprehension [6]. 
Hence, ML especially DL, has the ability to perform anal-
ysis of enormous datasets in an extremely efficient, cost-
effective, accurate and high-throughput manner [7].

In the context of ML, there are two primary frame-
works for training the models: supervised and unsuper-
vised learning. Both of these have potential for use in 
biology. Under supervised learning, the given collection 
features, or attributes of a system under investigation, are 
labeled [8]. Two recurring problems in the supervised 
learning framework are regression and classification. 
The classification process assigns objects into classes on 
the basis on the properties of features. In biology, one 
example of such training (involving mapping of object-
to-class) is mapping of gene expression profiles to their 

respective diseases. The algorithm returns an assigned 
class of the object with certain “confidence measure” 
indicating the correctness of classification. Some of the 
widely used supervised models are linear/nonlinear 
regression, support vector machines (SVM), Gaussian 
processes, and neural nets [9].

In unsupervised learning, the objects involved in the 
study are not under any predefined labels [10]. The entire 
goal of these models is to recognize similarities in the 
various objects by exploring the data. These similarities 
define clusters in the data (groups of data objects). So, the 
basic concept of unsupervised learning is to discover nat-
ural patterns in data and categorize it into groups. Over-
all, in supervised learning, the data is pre-labeled and the 
algorithm learns how to utilize the labels to associate the 
objects to the classes. On the other hand, in unsuper-
vised learning, the data is unlabeled, and the algorithm 
also learns to create labels by clustering the objects. Prin-
cipal component analysis is an important example of 
unsupervised learning technique which includes k-means 
clustering, Gaussian mixture models, density-based spa-
tial clustering of applications with noise (DBSCAN), and 
hierarchical clustering [9].

In certain exceptional cases, a method known as 
semi-supervised learning has proven to be quite useful. 
One example of such a scenario could be the classifica-
tion of protein sequences. Only a few samples of protein 
sequences are labeled (belonging to a known class) but 
numerous sequences belong to unknown classes. The 
semi-supervised algorithm combines a small amount of 
labeled data with a large amount of unlabeled data during 
training [11].

The basic steps for creating a machine learning model 
for the study of biological data are shown in Fig. 1. Fol-
lowing the collection of data (labeled or unlabeled), it is 
divided into two sets for training and testing. The data 
samples need to undergo preprocessing and augmenta-
tion before the splitting in case they are corrupted with 
noise and outliers. Next the model is trained using the 
training dataset. The model can either be created from 
scratch, or a pre-trained model can be adjusted according 
to the collected dataset. Once the trained model is ready, 
the testing data is fed into it to determine the accuracy 
with which the objects are classified into different labels 
[12].

Deep learning is broad category of machine learning 
wherein large multiple layered neural network models 
are employed for representation learning. Deep learning 
can be performed in supervised, unsupervised, or semi-
supervised fashion. When working with neural networks, 
we essentially attempt to create the inferences analogous 
to the human brain by building an artificial neural net-
work (ANN) [13]. An ANN resembles a biological neural 
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network. The artificial neurons used here are basically 
mathematical models that carry out three main func-
tions: activation, addition and multiplication. The goal is 
to build layers of neurons, each of which produces a suit-
able response to any input provided to it. The neurons of 
each layer multiply their inputs with the corresponding 
weights. Then it is passed through the activation function 
and finally transferred to the next layer of neurons. Once 
the input layer is fired up, the decision moves along to 
the subsequent layers of the neurons (hidden layers), fir-
ing up the respective neurons until the final output layer 
is reached [14]. A schematic representation of a neural 
network is presented in Fig.  2, where the various com-
ponents of the network such as input, hidden and output 
layers are explained.

In neural networks, the direction of information flow is 
determined by the internodal connections. On this basis, 
there are two classifications of neural networks: (i) unidi-
rectional flow which can further be divided into cascade 
forward and feed-forward; and (ii) bidirectional flow, also 
known as recurrent flow [15]. In feed-forward networks, 
the flow of information between the layers takes place in 
one direction. Cascade forward is similar except that the 

input to the next layer is weighted. In recurrent networks, 
flow of information takes place in both directions. All the 
nodes are interconnected among each other, including 
self-connection. These networks are extremely complex, 
bulky, difficult to operate and take up a large amount of 
computational space. In addition to this, some neural 
networks architectures, such as self-organizing networks, 
convolutional neural networks (CNN), variational auto 
encoders (VAE) and generative adversarial networks 
(GAN) [16, 17] have recently attracted great attenttion in 
the DL community.

Various parameters are used to evaluate the classifi-
cation performance of the developed model. Some of 
the important parameters include accuracy, sensitivity/
recall rate, specificity rate, precision/positive predictive 
value, negative predictive value and F1score [18]. The per-
formance of models is evaluated by calculating various 
ratios involving true positives, false positives, true nega-
tives and false negatives. All of these can also be com-
bined into a single confusion matrix to assess the model’s 
performance [19]. Furthermore, the phenomena of over-
fitting and underfitting are widely faced while employ-
ing ML models [20]. Overfitting occurs when the model 

Fig. 1  Standard flowchart for creation of a machine learning model to study biological data. The figure here shows the steps followed in order 
to create a machine learning model that can successfully study different types of biological data. The data is initially split up into training and 
testing sets. Each object of the training set is associated with a feature vector, which is passed into the required machine learning algorithm. After 
manipulating the various parameters of the model, a resultant machine learning model for prediction is developed. This model is then checked by 
passing the objects of the testing set through it. The resultant output accuracy determines the usefulness of the created model
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is fitted with respect to the noise in the data rather than 
the underlying signal. The validation data error increases 
while the training data error decreases [21]. On the other 
hand, underfitting is the reverse scenario. In this case, the 
model is not capable of recognizing data variability [22]. 
Several techniques including penalty methods, training 
by early stopping, batch normalization, and dropouts are 
being developed to avoid such imperfect fittings [23].

Main text
Application of machine learning in understanding plant 
viruses and viral infections
Diagnosis and detection of plant viral diseases
Plant viruses pose major economical constraints in cul-
tivated crop plants across the world. Early detection of 
plant viral infection is crucial for successful disease man-
agement. An empirical evaluation through visible survey 
is traditionally followed by farmers to identify the symp-
toms of virus infected plants. The visual assessment bias 
dictates the inefficiency and inaccuracy of this method. 
On the other hand, laboratory-based detection tech-
niques are primarily reliant on polymerase chain reaction 
(PCR) and serological-based method such as enzyme 
linked immune sorbent assay (ELISA). Despite their 
improved accuracy, the requirement for professional 
experts and their time-consuming and invasive nature 
pinpoints the shortcomings of these diagnosis assays [24, 

25]. A pathogen attack significantly alters the biochemi-
cal and biophysical state of the plant leading to an altera-
tion of tissue structure, water level and transpiration rate, 
ultrastructure of chloroplast and pigment content [26, 
27]. At the very beginning of the twenty-first century, a 
few studies used remote sensors to capture and detect 
altered leaf reflectance and thermography profiling of 
diseased plants, which empowered the scientific com-
munity with an edge in phenotyping of stressed plants 
[28]. However, this technique was unable to determine if 
the stress was biotic or abiotic, and if biotic, what kind 
of pathogen was involved. Hyper-spectral imaging (HSI) 
and ML assisted data analysis are now revolutionizing 
the concept of stress phenotyping of diseased plants by 
enabling the diagnosis of specific plant diseases and even 
the severity of the disease. In the case of HSI, a light spec-
trum with a larger range of wavelengths is being used to 
capture plant images, which enables us to go beyond the 
limited range of human vision (400-700 nm) in monitor-
ing minor alterations in the growth and development of 
plants [29]. For ML assisted detection of plant viral dis-
eases, first a ML model has to be trained with a train-
ing dataset (images of diseased plants captured through 
unmanned aerial vehicle, grounded robots or even 
smartphones) [30–38]. There are increasing numbers of 
free online databases which provide images of specific 
plant diseases as training datasets. ‘Plantvillage’ is one 

Fig. 2  A schematic representation of a standard artificial neural network. The network is divided into three major components: the input 
layer, multiple hidden layers and the output layer. In this figure, it is assumed that the input layer has 3 independent variables, each of which 
is parsed through a set of weights and activation functions in the hidden layers and finally output layers to yield the model output. The activation 
functions are nonlinear mathematical function such as Tanh, Sigmoid, ReLU, etc. to induce nonlinearity to the model. Depending on the network 
structure, there may be ‘n’ neurons (also called hidden layer units) in each hidden layer and there may be multiple hidden layers. Any ANN with 
more than one hidden layer is technically is deep ANN. Once an input is fed into the network, one after another, each hidden layers gets operated 
among each other till finally the output layer is reached and activated, producing the final result. Weights in each layer is trained by means of the 
backpropagation algorithm
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such initiative [39]. Once a certain ML model has been 
trained accurately and precisely, a testing dataset (eg: 
hyperspectral images of specific plants under diagnosis) 
can be assessed [32, 34]. HSI generates high dimensional 
data with redundant information and hence, an efficient 
pre-processing of the data is crucial for the precise func-
tioning of the model. An effective specific range of wave-
length can be determined to reduce the dimensionality of 
HSI data [29]. The next step is feature extraction which 
minimizes the number of the features present in the raw 
dataset. The feature extraction method is vital for assur-
ing a simple classifier with a limited variety of features, 
since multifeatured classification always hinders the 
smooth performance of the concerned model [40, 41]. 
ML researchers have devised a variety of feature extrac-
tion techniques based on the nature of the data and the 
model. However, the process is time-consuming and 
the success of the operation greatly relies on the exper-
tise of the professional. Here comes the benefits of using 
DL techniques for feature extraction as DL empowers 
automatic extraction of features rather than handcrafted 
method used in traditional ML algorithms, for instance 
the application of convolutional neural networks. DL has 
substantially improved the reliability of plant stress phe-
notyping by enabling the accommodation of a large sam-
ple size for training and testing [40]. A major constraint 
of this method is the vast variation of environmental con-
ditions between the field and the lab. While consistent 
temperature, humidity, and light intensity are maintained 
in the lab, all of these variables are constantly changing 
in the field, influencing the captured images [42]. Hence, 
it is recommended to use field images to train a model 
since it has been demonstrated that a classifier trained on 
field images can also classify lab-based images with preci-
sion [43]. The lack of availability of a huge collection of 
field-based images of a specific plant disease is another 
key challenge for an accurate and reliable diagnosis.

Transfer learning is a recent advancement in the field 
of ML which enables the data scientists to adopt a pre-
viously well-trained model for solving a similar kind of 
problems [40]. For example-a model trained for chilli-leaf 
curl disease detection may be used for detecting leaf curl 
symptoms caused by viruses in tomato (Fig. 3). There are 
several approaches to adopt a pre-trained model; one can 
select and finetune the architecture and/or parameters 
of a model depending upon the types of datasets. Table 1 
summarizes the development of ML assisted diagnosis of 
plant viral diseases over last few years.

Understanding the diversity and emergence of plant viruses
The recent trend of studying plant virome through 
metagenomics has unveiled the diversity of plant viruses. 
Huge numbers of phylogenetically related and unrelated 

virus species have been found in diseased samples [44, 
45]. Explosion in virome data generated through NGS 
necessitates the urgent structural orientation and analysis 
of sequence data in order to understand the actual por-
trait of the viral diversity. Although a significant progress 
has been followed up in the case of animal viruses, lim-
ited efforts have yet been recorded in the field of plant 
virology [46, 47]. V-pipe has provided a bioinformatics 
pipeline for analyzing genomic diversity of human immu-
nodeficiency virus (HIV) from sequencing data [48].

As RNA viruses use error-prone polymerases dur-
ing their replication, the chances of mutations in their 
genome sequences remain quite high. Mutation in the 
viral genome finally leads to the emergence of new viru-
lent viral strains [49]. A neural network-based model can 
predict probable point mutations in the RNA sequence. 
It has been successfully explored in the case of newcas-
tle virus [50], and its optimized form may be very use-
ful for the prediction of mutations in plant viral genome 
(Fig. 3). Besides RNA viruses, DNA viruses also possess 
significant genetic variations. Events like recombination 
and genome reassortment play crucial role in mediating 
the emergence of new viral forms [51, 52]. The identi-
fication of novel virus and satellite molecules through 
metagenomics approach emphasizes the importance of 
precise taxonomic classification followed by demarcation 
of these new species. An excellent effort by Silva and col-
laborators have developed Fangorn Forest, a ML based 
method, for classification of geminiviruses. Among the 
three tested algorithms, random forest (RF) has proven 
to be best in classification of genes and genera of this 
largest plant virus family [53]. Recently, a CNN guided 
sequencing platform has successfully completed human 
genome sequencing within couple of hours and efficiently 
identified the disease-causing variations in the genome. 
This ML based fastest sequencing approach may open up 
new windows in studying diversity and evolution of plant 
viruses [54].

Understanding host‑virus interplay
Being obligate parasites, viruses rely on cellular machin-
eries of plants for every aspect of pathogenesis including 
replication, gene expression and movement [55]. Plants 
elicit a robust antiviral immune response to restrict viral 
invasion [56]. Viruses encode effector proteins which 
disarm plant defense signaling. This tug of war contin-
ues which fuels the co-evolution of both virus and host 
[57]. Hence, understanding the interplay between plant 
and viruses is crucial for an in-depth dissection of viral 
pathogenesis.

Although plants have evolved a variety of tools and 
tactics to prevent virus multiplication, the resistance (R) 
protein-mediated immune response and gene silencing 
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are the most well-known features of their antiviral 
defense [56]. A majority of canonical R-proteins contain 
nucleotide binding site leucine-rich repeats (NBS-LRR), 
which mediate direct or indirect recognition of virus-
encoded effector proteins, resulting in the activation 
of effector triggered immunity (ETI). Very few R-genes 

imparting immune response against viruses have been 
identified and characterised till date, which limits our 
knowledge regarding the detailed mechanism of domi-
nant resistance in plant virus interaction [58]. Support 
vector machine-assisted development of a high through-
put bioinformatics tool, NBSPred, precisely identifies 

Fig. 3  Application of ML in understanding plant virus pathogenesis. ML enables early diagnosis of plant viral diseases at field level through 
analyzing hyperspectral images. Metagenomics study of diseased plant samples helps identification of related and unrelated viral genomes. ML 
can assist in the classification of these viral sequences which primes our understanding of virus evolution. Furthermore, ML-assisted bioinformatics 
tools have been developed to identify viral suppressors of RNA silencing (VSRs). ML can also guide us to predict the sub-cellular localization and 
even the structure of the viral proteins. Prediction of accurate structures of virus encoded proteins may help to identify inhibitors of these effector 
proteins. To understand the host response, several groups have performed transcriptome, proteome and metabolome of virus infected plants. ML 
can prime the accurate and fast analysis of these high throughput data to identify gene regulatory networks (GRN) and novel host factors involved 
in host-virus interplay. Characterization of these host factors in terms of sub-cellular localization and structure prediction will boost understanding 
of plant virus pathogenesis. ML may also assist plant virologists in genomic selection to identify elite virus resistant cultivars. This figure was created 
using BioRender (https://​biore​nder.​com/)

https://biorender.com/
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NBS-LRR containing R proteins from genome, tran-
scriptome and proteome data [59]. Receptor-like kinases 
(RLK) are crucial players in the immune perception of 
phytopathogens, many of them acting as pattern recogni-
tion receptors (PRRs) which lead to induction of pattern 
triggered immunity (PTI) [60]. However, several plant 
viruses target RLKs to promote viral pathogenesis [61]. 
Brustolini et al. have recently developed a machine learn-
ing assisted technique for detection of RLKs from pro-
teome data. Identification and annotation of novel RLKs 
may advance our current understanding of plant-virus 
interactions [62]. Furthermore, to identify host factors 
differentially regulated in host-virus interplay, several 
groups have performed transcriptome and proteome 
analysis in both resistant and susceptible plant varieties. 
These studies have revealed that a significant proportion 
of differentially expressed transcripts are of unknown 
nature suggesting the existence of novel gene regulatory 
networks (GRNs) modulating the host-virus interac-
tion [63–66]. ML helps biologists to predict GRNs from 
high-throughput transcriptome data [67] which may 
lead to identification of several regulatory nodes of plant 
immune signalling (Fig. 3).

On the other hand, viruses encode few but multitasking  
effector proteins which facilitate the viral pathogenesis. 
Examining the sub cellular localization of these effector 
proteins is important to understand their mechanism of 
action. Furthermore, viruses also redirect the subcellu-
lar localization of several host proteins to disrupt their 
assigned functions [68]. ML assisted development of 

online tools such as LOCALIZER and MU-LOC enable 
precise as well as accurate analysis of subcellular locali-
zation of effector proteins and host factors by simply 
using amino acid sequences of proteins as input (Fig. 3) 
[69, 70]. Application of ML in the successful prediction of 
fungal effector proteins has added an extra edge in phyto-
pathology research [71]. In the case of viruses, some viral 
effector proteins have been evolved to block antiviral 
gene silencing, known as viral suppressors of RNA silenc-
ing (VSRs). VSRs expand the negative impact of viral 
diseases by promoting synergistic associations among 
different plant viruses [72]. Jagga et al. have developed a 
bioinformatics platform, pVsupPred, for the prediction 
of VSRs encoded by plant-infecting viruses. They have 
used four classifier models including LibSVM, J48, Naı¨ve 
Bayes and RF, and among all of them, RF algorithm has 
emerged as the best with an overall accuracy of 86.11% 
[73]. Later on, in another study, sequential minimal opti-
mization (SMO) algorithm had been improved to achieve 
an overall accuracy of 95.3% for the successful identifica-
tion of plant virus encoded VSRs (Fig. 3) [74].

Another significant facet of plant-virus interaction 
is the virus induced alteration of microRNA (miRNA) 
homeostasis which impacts the transcriptome profile of 
the infected cells. Hence, it is important to identify the 
accurate targets of specific miRNAs regulating plant 
immunity and viral pathogenesis [75]. The advent of 
ML in advancing the scope of bioinformatics has signifi-
cantly eased this difficult job. Supervised ML approaches 
including graphical models, kernel machines and 

Table 1  The application of ML-assisted diagnosis of plant viral diseases

Plant Viruses/viral diseases Algorithms/methodologies used Accuracy References

Cassava Cassava mosaic disease Convolutional neural networks (CNN) 96% [31]

Cassava brown streak disease 98%

Cucumber (i) Melon yellow spot virus; (ii) Zuc-
chini yellow mosaic virus

CNN 94.9% [30]

Mungbean Yellow mosaic disease CNN 91.234% for VirLeafNet-1 [37]

96.429% for VirLeafNet-2

97.403% for VirLeafNet-3

Potato Potato virus Y Support vector machine (SVM) classifier 89.8% [36]

Sweet pepper Tomato spotted wilt virus (TSWV) Outlier removal auxiliary classifier generative 
adversarial nets (OR-AC-GAN)

96.25% (before the onset of 
visible symptoms)

[32]

Tobacco Tobacco mosaic virus (TMV) Successive projections algorithm (SPA) with 
extreme learning machine (ELM) classifier

98.33% [34]

Tobacco TMV SVM 93.5% on the training set [41]

92.7% on the independent set

Tobacco TSWV Model by boosted regression tree (BRT) algo-
rithm and Wavelength selection by SPA

85.2% [35]

Tobacco Tomato leaf curl New Delhi virus and 
Tomato leaf curl Gujarat virus

CNN [Visual Geometry Group 16] 97.21% [38]

Tomato Groundnut bud necrosis virus (GBNV) SVM 97.8% [33]
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evolutionary algorithms are being widely used to identify 
the specific miRNA targets in eukaryotes [76]. Further, a 
new category of DL models known as graph neural nets 
(GNN) is emerging as a promising tool in bioinformatics. 
The biological networks, based on small RNAs–disease 
associations, can be constructed as graphs with nodes 
and edges. GNN can operate on the graphical data and 
has more representative features, which can be efficiently 
used for inferences [77].

Finally, the best possible way to understand the functional 
aspect of a protein is to visualize its accurate structure. A 
very small proportion of plant proteins involved in immune 
signalling have been structurally characterised yet. In addi-
tion, structures of plant viral proteins are also largely unre-
solved. Labour intensive methods of protein crystallization 
is the major bottleneck here. However, Jumper and collabo-
rators have revolutionised the idea of protein structure pre-
diction by launching Alphafold2, a neural network-assisted 
structural bioinformatics platform, which can successfully 
solve a protein structure with almost equivalent experi-
mental accuracy even if there is no similar protein structure 
available [78]. ML-guided docking studies efficiently screen 
chemical inhibitors of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) encoded spike (S) protein 
[79]. Similarly, structure prediction of plant viral proteins 
and the prediction of their chemical inhibitors followed by 
successful delivery will be a novel and effective virus man-
agement strategy (Fig. 3).

Conclusions and future perspectives
Plant-infecting viruses not only compromise the yield of 
the infected plants but also significantly affect the nutri-
tional content of  crops. Heavy crop losses due to plant 
viral outbreaks is a vital concern for global food security 
and hence necessitates the urgent implementation of 
smart management measures. Studies aiming to under-
stand the evolutionary biology of plant viruses and the 
molecular biology of plant-virus interactions have gener-
ated large-sized datasets in recent years. Here comes the 
prospective role of ML. Although the last decade has wit-
nessed a sharp increase of application of ML in solving 
complex biological problems [80], its usage in the field of 
plant virology is still at a very naïve state. Several reports 
highlighted the role of ML in the precise diagnosis of 
plant viral diseases [30–38]. Plant virologists can foresee 
the tremendous scope of ML in addressing virus evolu-
tion, emergence, plant-virus interplay and above all man-
agement strategies (Table  2). Moreover, several specific 
issues need to be explored.

Firstly, a vast amount of OMICS data (including 
transcriptome, proteome and metabolome) of virus 
infected plants are available. The application of ML 

may enable the integration of these OMICS data which 
will definitely uplift our knowledge of host response, 
especially the impact of novel potential host factors 
in viral infection. Secondly, the coordinated applica-
tion of ML and HSI pave a new path in the detection 
of viral diseases. Now, designing improved DL-based 
algorithms for easily accessible mobile app-mediated 
detection of plant viral diseases is the need of the 
hour. Thirdly, ML algorithms would be very helpful in 
deciphering the patterns and parameters of plant viral 
evolution. ML may enable the accurate prediction of 
recombination, rate of nucleotide substitutions, muta-
tions and phylogenetic relatedness among viruses. The 
use of ML to predict the advent of aggressive recom-
binant plant virus strains and the likelihood of associ-
ated epidemics will be extremely beneficial. Fourthly, a 
significant improvement can be achieved in metagen-
omics data analysis through ML approaches. Along 
with viral reads, metagenomics data also contains a 
substantial proportion of host contig contaminations 
which often hinders the identification of small viral 
reads. VirFinder is one such k-mer based platform 
which enables the identification of prokaryotic virus 
sequences from mixed metagenomic data [81]. A simi-
lar approach can be employed for plant virome study. 
Fifthly, ML is now widely utilized in genomic selection 
for rapid and better prediction of superior genotypes 
for breeding purposes [82, 83]. A certain progress of 
ML assisted genomic prediction will definitely help 
breeders in developing elite virus tolerant/ resistant 
varieties. Finally, a collaborative effort by both plant 
virologists and big data analysts is of prime importance 
for the fruitful application of ML in the understanding 
of plant virus pathogenesis followed by the develop-
ment of antiviral strategies.
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