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In recent decades, although the research on gait recognition of lower limb exoskeleton robot has been widely developed, there are
still limitations in rehabilitation training and clinical practice. The emergence of interactive information fusion technology
provides a new research idea for the solution of this problem, and it is also the development trend in the future. In order to
better explore the issue, this paper summarizes gait recognition based on interactive information fusion of lower limb
exoskeleton robots. This review introduces the current research status, methods, and directions for information acquisition,
interaction, fusion, and gait recognition of exoskeleton robots. The content involves the research progress of information
acquisition methods, sensor placements, target groups, lower limb sports biomechanics, interactive information fusion, and gait
recognition model. Finally, the current challenges, possible solutions, and promising prospects are analysed and discussed,
which provides a useful reference resource for the study of interactive information fusion and gait recognition of rehabilitation

exoskeleton robots.

1. Introduction

In recent years, the number of patients with the motor
function impairment caused by stroke, brain injuries, or
Parkinson’s disease steadily increased [1, 2]. Motor impair-
ment has become the second leading cause of disability
and death worldwide [3]. According to the WHO, stroke
alone affects nearly half a million people a year in the United
States and 11 million in Europe [4]. The majority of these
patients have suffered from severe impairment of limb
motor function, which affected their quality of life, prevent-
ing them from completing simple daily activities. The recent
emergence of lower extremity rehabilitation exoskeleton
robots has provided a track of hope for many patients with
lower limb motor dysfunction, allowing them to practically
return to normal lifestyles [5]. Rehabilitation programs

targeting these patients which incorporate the patient
gait personalization and movement intentions are the
key to designing a proper lower extremity rehabilitation
exoskeleton [6].

The application of gait recognition in the rehabilitation
training of exoskeleton robot is rising in recent years. The
initial research on gait recognition of lower limb exoskeleton
only divided the simple gait stages through the original data
or manually processed data [7-9]. Moreover, the gait infor-
mation collected then is not sufficient and comprehensive
enough to carry out effective gait recognition. The above
research did not distinguish between patients with lower
limb dyskinesia and healthy people, resulting in the slow
progress of exoskeleton robot in rehabilitation training,
while real-time gait recognition and adjustable motion pos-
ture will become the key link between these two different
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FIGURE 1: Tree diagram displaying available gait analyses.

research groups. In order to recognize human motion
patterns more comprehensively and reliably, it is necessary
to consider the acquisition of human motion and interactive
information, including various gait stages and complex
physiological information [10].

With the rapid development of sensors and information
technology, various information acquisition and fusion tech-
nologies are employed to complete more personalized gait
recognition. These are mainly realized by means of limb
motion information, plantar pressure and interaction force
information, bioelectric information, and so on. The interac-
tive information available for gait recognition is shown in
Figure 1. Moreover, several machine learning methods
appeared to replace the afore-mentioned techniques; some
machine learning methods seem to replace the above tech-
nologies that mainly rely on manual feature extraction.

Currently, these commonly used adaptive pattern
extraction methods mainly include support vector machine
(SVM) [11], linear discriminant analysis (LDA) [12],
Gaussian mixture model (GMM) [13, 14], artificial neural
network (ANN) [15-17], hybrid algorithm [18], and other
machine learning algorithms. For example, Zhang et al.
integrated, analysed, and processed a variety of interactive
information, which are then applied to study the gait rec-
ognition and associated algorithms [19, 20]. However, it is
should be noted that majority of gait pattern recognition
and classification algorithms are evaluated by the accuracy
rate. Moreover, few people are involved in the generaliza-
tion ability of the classifier model, which can reproduce
the adaptability of machine learning algorithm to fresh
samples. In the meantime, research related to the time effi-
ciency of classification model, whether on training or test
time, is even less.

With the deepening of the research on gait recognition
of lower limbs, the manifestations of information have the
characteristics of diversity, huge amount of information,

and complexity of information relationship. Therefore,
higher requirements are put forward for the timeliness,
accuracy, and reliability of information processing [19]. As
a new information processing technology, modal informa-
tion fusion has gradually become a major progress in this
field, providing a more accurate and personalized gait recog-
nition pattern [21]. Information fusion is usually described
as synthesizing information from multiple sources to obtain
high-quality and applicable information. The schematic dia-
gram of its standard gait recognition program is shown in
Figure 2. For example, Chen et al. [22] combined plantar
pressure and acceleration information, took advantage of
SVM learning algorithm to identify five human motion gaits,
and finally obtained a recognition accuracy of up to 94.08%.

The purpose of this paper is to provide a comprehen-
sive review of the current status and development direc-
tion of the research on gait recognition of lower limb
exoskeleton robots based on interactive information
fusion in recent years. The main part of this paper, the
overview of gait recognition, is divided into seven
aspects: information acquisition, sensor placement on
the human body, target group of information collection,
biomechanics of lower limb exoskeleton, interaction in
lower limb exoskeleton, interactive information fusion,
and gait recognition model. Finally, the full text is sum-
marized, and the corresponding solutions are proposed.
This paper will provide a reference for the research of
interactive information fusion and gait recognition
of exoskeleton robot.

The rest of this paper is organized as follows: in Section
2, acquisition and analysis of interaction information is
introduced. In Section 3, the research status of gait recogni-
tion in recent years is presented. Furthermore, in Section 4,
the authors list the existing problems, including both techni-
cal and practical challenges. Finally, in Section 5, a conclu-
sion of the full text is summarized.
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FIGURE 2: Schematic diagram of a standard procedure implemented for gait recognition using data fusion. The acronyms used in this
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neighbors; DT: decision tree; DA: discriminant analysis; GMM: Gaussian mixture model; ANN: artificial neural network; MLP:
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area under the curve.

2. Acquisition and Analysis of
Interaction Information

As we all know, the research of lower limb exoskeleton robot
is certainly inseparable from human participation. That is,
when people wear exoskeleton robots to move, it is essential
to collect, identify, and feedback human static and dynamic
biological information [23]. Especially for the rehabilitation
exoskeleton robot, it is obviously incomplete and unscien-
tific to only consider the data of healthy people, because
the user is a patient with limb dysfunction. Therefore, the
rehabilitation training plan should fully consider the physio-
logical factors of the patients, and even getting real-time gait
information is the best choice.

2.1. Information Acquisition. In the research of exoskeleton
robot, the common human biological information mainly
consists of body movement information, plantar pressure
information, interactive force information, and bioelectrical
information. These signals can be regarded not only as the

biological information of human body but also as the infor-
mation transmission in the interaction between human body
and exoskeleton robot. Because at this time, the human and
the exoskeleton robot form a whole system, and these
information and sensors act as perception system of the
man-machine integration, which can sense the changes of
the machine body and the external environment.

2.1.1. Body Movement Information. The fast and effective
acquisition of human body movement information is the
first step of gait recognition research. Limb attitude informa-
tion mainly comes from video image capture and inertial
data acquisition.

Video-based motion capture system usually places reflec-
tive marks on the subject’s skin or special clothing to capture
human motion through camera and special software [24, 25].
The purpose of motion capture is to obtain the motion law of
joints. There are three specific cases in the application of exo-
skeleton robot: (1) the need for bionic design [26]; (2) the
generation and comparison of motion trajectories [27, 28];



and (3) the evaluation of real-time control and rehabilitation
training [29, 30]. In the first case, the design parameters of an
exoskeleton robot are provided by measuring human gait. In
the second case, the motion data collected when the human
body wears the exoskeleton robot are often compared with
the control group without the exoskeleton robot [27]. Finally,
in the third case, motion capture provides data for real-time
control or evaluates the data of rehabilitation training.

However, it should be pointed out that the video-based
gait capture equipment is expensive and complex to operate.
In addition, the collected video image data is easy to be
affected by factors such as illumination and activity range.
Fortunately, wearable sensors such as gyroscopes, goniome-
ters, and inertial measurement units can alternatively detect
joint acceleration, velocity, and angular acceleration, so as to
meet all the requirements of obtaining limb motion infor-
mation. This method combined with other sensors is simple
and easy to implement. Therefore, it has gradually become
an important research direction of gait detection, recogni-
tion, and motion intention [31].

Moreover, the upcoming and popular commercial
motion capture systems such as Xsens MVN [32, 33] and
Xsens MTw Awinda have brought greater convenience to
gait information acquisition, which not only overcome some
of above limitations but also eliminate the errors caused by
the external interference of the wearable sensors. It can be
predicted that motion capture system will become the first
choice for researchers to obtain gait information in the
future because of its ease of use and analysis.

2.1.2. Plantar Pressure Information. In the research of the
perception of information acquisition of lower limb exoskel-
eton, the pressure-sensitive sensors are usually employed to
determine and evaluate human locomotive gait and rehabil-
itation training [34]. Generally, the plantar pressure can be
collected by force-sensing resistance sensors placed on the
exoskeleton feet. According to the test needs, 2-5 or more
sensors can be installed on the sole and heel of each foot
to measure the pressure. Collecting plantar pressure infor-
mation can distinguish swing and standing posture, identify
walking gait [35], and monitor walking process [36]. By ana-
lysing the plantar pressure information, we can calculate the
contact time between the foot and the ground and the time
in the standing posture stage [37], identify the user’s limb
dynamic parameters [38], and judge the double standing
posture, early swing, late swing, weight, and gait conversion
[39]. In addition, plantar pressure can provide on/off signals
to the controller or accurately compensate for the dynamic
effects of torque measurement in swing motion [40].

2.1.3. Interactive Force Information. After wearing an
exoskeleton, the human body interacts with the exoskeleton.
If plantar pressure refers to plantar pressure detection, the
interaction force mainly emphasizes the relationship
between force and reaction between human and exoskeleton.
In order to obtain the interaction force between the body
and the exoskeleton, Ma et al. [23] proposed to install a
piezoelectric film sensor on the outer bandage of the lower
limb rehabilitation robot. Similarly, Kyoungchul et al. [41]

Applied Bionics and Biomechanics

suggested placing the pressure-sensitive sensor on the thigh
bracket; these sensors are employed to measure muscle
movement and analyse the ratio between pressure and knee
angle. In addition, De Rossi et al. [42] proposed a new inter-
active pressure measurement method based on soft silicon
pressure sensor, which is located between the user and the
exoskeleton robot. Compared with the most advanced mea-
surement methods, the sensor is in direct contact with the
wearer’s skin, allowing distributed measurement of interac-
tion pressure. Therefore, it can effectively improve the safety
and comfort of human-computer interaction.

2.1.4. Bioelectrical Information. The movement of human
body is the result of the combined efforts of the brain, nerve,
and muscle. The interaction of bioelectrical signals thus
expresses the patient’s needs and physical conditions.
Electroencephalography (EEG) outputs are weak electrical
signals generated by the electrical responses of brain nerve
cell groups; the principle of the brain-computer interaction
interface system is shown in Figure 3(a) [19]. However,
due to the complexity, variability, and easy interference of
brain computer interaction information, it is difficult to
detect, save, and process it in real time, which limits its
application in the gait recognition.

The surface electromyography (SEMG) signal is a super-
position of motor unit action potential trains (MUAPT)
generated during muscle contraction and can be obtained
on the surface of muscles in a noninvasive way. Compared
with EEG from the brain, sEMG signals are related directly
to the limb’s movements and have higher signal-noise ratio
(SNR). That is to say, the SEMG signal can reflect not only
the strength of muscle contraction but also the movement
information of the joint. As a result, sSEMG signals have been
well applied in the recognition and prediction of human
movement intentions, for instance, detection of sit-stand or
stand-sit intentions [44] and prediction of the body’s move-
ment state, as well as the fatigue level and joint torque [45].
Figure 3(b) shows the acquisition method of sSEMG interac-
tion information. In addition, extracting sEMG signal as
feedback command to study the motion control strategy of
exoskeleton robot is also a research hotspot, which has been
widely applied in rehabilitation exoskeleton robot [46].

In order to better identify the movement intentions of
lower exoskeleton wearers, researchers have started to
explore the neural interaction technology (i.e., neural stimu-
lation). The basis behind the nerve stimulation is neuroplas-
ticity, and its induction has an obvious beneficial effect on
the rehabilitation [47]. Currently, the most common neural
interaction technologies are biofeedback stimulation and
electrical stimulation.

2.2. Sensor Placement on Human Body. In lower limb gait
recognition, different parts of the body transmit different
motion  information, and this information has
different effects on the recognition accuracy. Therefore, it
is of great significance to find the gait information with the
optimal recognition effect for human lower limb gait recog-
nition. Sensor placement of all the studies covered in this
review is presented in Figure 4. The purpose of this figure



Applied Bionics and Biomechanics 5
Feedback signal
. 1
! |
I I
! |
| |
v |
Signal Signal Controller .| Rehabilitation
acquisition analysis ! robot

1 £

Tcnsor
fasciac latac
Adductor
longus

Vastus
medialis
Semitend
inosus

I

signal
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is to provide an overview of the distribution of lower limb
sensor modules.

Kyeong et al. [57] found that an increase in the number
of sensor locations and sensor types do not always lead to
better results. Although the generated identification data
set is more comprehensive and accurate, it significantly
increases the data processing time and workload. Therefore,
prior to the acquisition of perception information, it is nec-
essary to evaluate the complexity of data processing and
determine the optimal sensor position according to the
results. In the above research, it is found that when observ-
ing the lower limb exoskeleton robot, the best sensor posi-
tions are mainly concentrated on the lower leg, thigh, and
sole, while the sole sensors are mainly placed on the toes
and heels.

Although as mentioned above, small changes in the
direction and position of the sensor will affect the output
of the sensor. In order to minimize the external disturbance

to the gait information, the problem of sensor misplacement
should be solved as much as possible. In addition to the
initial calibration of the sensor before each experiment,
researchers mainly take two methods to solve it. The first
method is to find the best installation position of the sensor
so that the sensor will not slide or move [62]. Secondly, the
error caused by misplacement is compensated by an algo-
rithm [63]. Some scholars also adopted an alignment
method similar to borehole aiming to eliminate the influence
of sensor misplacement, so as to solve the common mis-
placement problem of sensor [64].

2.3. Target Population of Information Collection. For lower
extremity rehabilitation exoskeleton robots, most studies
remain in the experimental stage. The users will most likely
be patients with physical dysfunction, but a large proportion
of the target population for gait recognition research are
healthy adults, and it is obviously unreasonable to collect
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H: head [48, 49, 58]8
C1: chest 52,53, 54]8
P: pelvis 17]%4,[51,59,60]1%, [52]4 <2,[56]°s

[
[
W: wrist [53]«4,[56]¢
[
[
[

T: thigh 51, 59] d, [52]¢, [54]4
C2: calf 59]cd

A: ankle 51, 53, 56, 60]% 9, [54]¢
F: foot

(19, 50, 5514, [57, 61]cd
(10, 55]4, [57, 61]d

a: upper, b: lower, c: left, d: right, e: front, f: back, g: center.

1: hallux, 2: lesser toes, 3: 1st MPJ, 4: 2nd MP]J, 5: 3rd-5th MPJ, 6: midfoot, 7: heel.

FIGURE 4: Sensor positions [10, 17, 19, 48-61]. (a) Typical attachment positions of multiple sensors. (b) Type and location of the
sensors applied in the papers (IMU: inertial measurement unit; FSR: force sensitive resistor; sEMG: surface electromyography,

EEG: electroencephalography; MPJ: metatarsophalangeal joint).

biological information only for healthy people [65, 66]. Ai
et al. [10] took the physiological factors of the patients as
the target population of experimental research to collect
information and compare it with the normal walking of
healthy people, which helps to improve the effect of gait
recognition and rehabilitation.

Furthermore, in addition to healthy people and patients
with lower limb dysfunction, the target population also
includes people with weight-bearing. This is because
whether it is power-assisted exoskeleton or rehabilitation
exoskeleton, the wearer is equivalent to bearing the load
brought by the robot’s own weight and subject to certain
constraints [10]. In the indoor environment, exoskeleton
robots usually have corresponding devices to balance this
load, but if they are outdoors or separated from the fixed
device, the human body will still bear part of the weight.
Therefore, it is of great significance to study the change of
gait information after weight-bearing. Table 1 shows the
target population classification for information collection.

3. Gait Recognition Based on
Information Fusion

The lower limb exoskeleton robot is a limb extension that
fits closely with human. The physiological structure and bio-
mechanical characteristics of human body should be fully
considered in the design and test. Therefore, human biome-
chanics, human-computer interaction dynamics, and gait
recognition models are the key problems that cannot be
avoided in the research of rehabilitation exoskeleton robot.
In the meanwhile, the gait and dynamics of exoskeleton
robot are interrelated and interactive. Conversely, the accu-
racy of gait recognition is very important to improve the
compatibility between the wearer and exoskeleton.
Furthermore, it is important to note that, although any
of the sensor mentioned in Section 2 can measure human
motion information, in order to obtain more accurate
human motion gait, many scholars use the fusion technol-
ogy of two or more sensors. With the development of sensor
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TaBLE 1: Classification of the target population for the information collection.
Target population Sex Age range Average weight Reference
Healthy people (6)
Tibial amputee (3 M (7) F (2) 21-34 61.25kg [67]
Healthy people (5) M (3) F(2) 24-28 54.2kg [59]
Healthy people (4) NA 21-27 73kg [57]
Healthy people (10) M (10) F (0) 24-28 67 kg [19]
Healthy people (4) NA 20-27 NA [17]
Healthy people (20) NA 20-42 NA [68]
Healthy people bearing loads (10) M (10) 25-37 77.25kg [20]
Young people (41) )
Older people (41) M (35) F (47) 24-76 NA [69]
Older people (41) M (16) F (25) 70-80 NA [70]
Stroke patients (16) M (12) F (4) 45-75 NA [71]
Parkinson’s patients (11) M (8) F (3) 56-78 NA [72]

technology and information technology, collecting a variety
of human information for fusion, analysis, and processing,
and applying it to gait recognition, prediction, and real-
time control of exoskeleton robot will be the development
trend of rehabilitation exoskeleton robot.

3.1. The Lower Limb Exoskeleton Biomechanics. Walking is
one of the main motions in the human-computer interaction
of lower limb exoskeleton robot, which has a certain periodic
motion law. Typically, a gait cycle is defined as the time
between two heel landings. In a walking gait cycle, the lower
limbs enter the support and swing stages alternately. The
former accounts for about 60% of the gait cycle [73]. Each
stage of the human gait cycle is shown in Figure 5.

Although a lot of achievements have been made in exo-
skeleton robot technology, the biomechanical mechanism of
human wearing exoskeleton robot cannot be fully explained,
and there is a lack of research on the interaction between
human and machine. In recent years, the research on
exoskeleton is no longer limited to the modelling of rigid
components. Some scholars began to consider human fac-
tors and human-computer interaction and introduced
human biomechanical models such as human muscle, bone,
plantar, and their mutual constraints [74]. In fact, there are
still many unknown areas to explore.

Nowadays, the biomechanical research related to exo-
skeleton robot mainly aims to achieve the following four
purposes:

(1) Bionic design [40, 75]: to get inspiration from the
biomechanical research of human lower limb mus-
cles, bones, and joints; to determine the degrees of
freedom and the improvement of key parameter
design and other details; and to complete the design
of knee, ankle, hip, or leg. Some scholars even put
forward the principle of structure matching and
drive matching of lower limb exoskeleton robot [25]

(2) Model accuracy [38]: to simplify the modelling of
muscles and skeletal joints and to modify the rigid
model of the original robot

(3) Control design [76]: to add the biomechanical fac-
tors to the control algorithm

(4) Performance evaluation [65]: generally, two or more
groups of biomechanical data of human body are
collected, one of which is the data after wearing the
exoskeleton robot. The data of the latter group is
employed to evaluate the correctness of the model
or the working performance of the exoskeleton robot

The research target related to biomechanics mainly focus
on the three groups of people: (1) healthy people [77];
(2) patients with lower extremity dysfunction [65, 66];
and (3) healthy people after weight-bearing [27, 78]. Among
them, whether for an assist exoskeleton or a rehabilitated
one, healthy people are often regarded as the benchmark or
reference objects. In the second category, patients with brain
injury and with spinal injury belong to this category. Analys-
ing and evaluating the walking biomechanical behavior of
these patients and comparing them with the normal walking
of healthy people will help to modify the model and optimize
the control of the rehabilitation robot. The third category is
usually the research on the assist exoskeleton robots. No
matter what kind of exoskeleton robot, in fact, this situation
does exist.

In the above research, the research methods of biome-
chanics are as follows: (1) acquisition and analysis of various
biomechanical parameters; and (2) establishment of human
body local model. The human biomechanical parameters
involved in the first method mainly include motion gait
information, joint angle, joint driving force, joint torque,
metabolic energy level, plantar pressure, SEMG signal, and
other parameters [25, 65, 77, 79]. The second research
method simplifies the modelling of muscles, bones, and
joints. In fact, there is no mature method at present. For
example, some studies have simplified the ankle joint as a
variable stiffness actuator, and the knee joint and hip joint
are designed as a series of elastic actuator [80].

3.2. Interaction in the Lower Limb Exoskeletons. As men-
tioned earlier, the exoskeleton robot is a tightly integrated
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FIGURE 5: Human gait movement cycle division [57].

human-machine system. It is often necessary to consider the
interactive response of human body wearing exoskeleton to
reflect the performance of exoskeleton robot. For the reha-
bilitation exoskeleton robot, the subjects of rehabilitation
training are mostly paralyzed, stroke, and elderly patients.
Not only the gait, movement, and plantar law are different
from those of healthy people but also the biomechanics of
muscle and bone and its biological response mechanism
are completely different. Therefore, they cannot fully refer
to the data of healthy people. Some research results have
shown that the research on human-machine exoskeleton
interaction is of great importance [79].

Currently, there is no plenty of research in this field.
Some scholars have considered the local factors of human
body and human-machine interaction and integrated them
into the research of exoskeleton robot. Relevant research
methods in healthy population include the following:

(1) Establish a human-computer interaction model:
using a spring-damping model or a combination of
a nonlinear elastic and a viscoelastic element as a
flexible connection at the contact point to express
the interaction force [44]. This is followed by
establishing the kinematic equation [37], and the
referenced study has since been experimentally
verified and evaluated [81]

(2) Parameter comparison and adjustment: estimating
the results and changes of internal force/torque
based on the biomechanical models (for example,
joints) and comparing them with experimental data
[77]. Additionally, there are studies providing a
way to identify the limb dynamics for each user, as
well as parameters needed to accurately compensate
for the dynamic torque measurement effects in
oscillating motion [46].

(3) Dynamic prediction and control compensation:
based on the human-computer interaction model, a
dynamic prediction and compensation motion con-
trol scheme is available [82]. Furthermore, several
scholars have proposed a model for the interaction
force estimation [83] and developed a system and
program to estimate muscle fatigue through online

physical interaction evaluation to provide mixed
control of stimulated muscle performance [40]

For patients with lower limb dysfunction, achievements
considering biomechanics and human-machine interaction
are very rare. Research methods are generally limited to sim-
ulation or laboratory research, so as to try to adjust, modify,
or optimize parameters or strategies on the results of
human-machine interaction of healthy people, which is
embodied in the following three aspects: (1) change param-
eters according to experimental tests [46]: force or driving
torque, joint angle, and some studies can even optimize
rehabilitation treatment schemes that can be customized
for individuals [79, 84]; (2) design or add special compo-
nents [75]; and (3) adjust the control strategy [76, 85, 86].

3.3. Interactive Information Fusion. As mentioned above, the
exoskeleton robot perception system is an important subsys-
tem for the wearer to perceive the external environment and
transmit information. Therefore, it is very necessary for exo-
skeleton to obtain data by using various sensors, conduct
rapid analysis and processing, and accurately recognize and
control its movement. Currently, sensor fusion technology
and deep learning are the research hotspots of exoskeleton
robot, which will promote its development and is undoubt-
edly the trend of this field in the near future. The application
of information fusion technology in gait recognition can be
divided into three levels according to different levels of data
abstraction.

3.3.1. Data-level Fusion. Data-level fusion refers to the fusion
on the original data layer, that is, the comprehensive infor-
mation analysis performed by various sensors without a lot
of preprocessing of the original information. Common
applications include the combination of limb movement
and plantar pressure interaction information, the fusion of
plantar pressure and bioelectric information, or the fusion
of the above types of information. As a matter of fact, an
ideal exoskeleton perception and control system is to collect,
fuse, analyse, and process all kinds of user information and
apply it to the gait recognition, prediction, and real-time
control of exoskeleton.
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TABLE 2: Feature-level extraction and fusion.

Original information Method

Formula Reference

sEMG
Accelerometer Root mean square (RMS) [20]
Accelerometer
Angular velocity Mean (M) (871
Accelerometer Standard deviation (o) [88]
Maximum (X,..)
X X .
Accelerometer Minimum (X...) maxXmin [89]
1M
Accelerometer Mean amplitude of peaks (A) A= i Z X; [90]
i=1
Accelerometer Standard deviation magnitude (|o]) o] =1/0% + 0% + 0% [91]
Accelerometer . . _ Cov(X,Y)
X, Y)= ——~2_
Angular velocity Correlation coefficients (r(X, Y)) (X.Y) DX)D(Y) [92]

N: number of data samples; i :data sample index; X;: observation vector at i;0,0y, ando, are the standard deviation values along the x-, y-, and z-axes,

respectively.

3.3.2. Feature-level Fusion. Feature-level fusion refers to
performing feature extraction by exploiting initial sensor
information, allowing comprehensive feature information
analysis and processing. As shown in Table 2, the feature
extraction methods of feature-level fusion mainly focus
on time-domain and frequency-domain analysis, which
aims to quickly analyse and process data. For example,
Zhang et al. [19] proposed that feature extraction has
three main purposes as they studied gait recognition based
on bioelectrical information: (1) reduce the dimension of
SsEMG signal; (2) reduce the complexity and classification
of pattern recognition; and (3) improve efliciency. Luo
et al. [20] calculated the root mean square and integral
as signal features in sEMG gait phase recognition, in
which the root mean square reflected the change of SEMG
signal amplitude.

3.3.3. Decision-level fusion. Decision-level fusion refers to
extracting all kinds of feature information by making full
use of feature fusion and adopting appropriate fusion
technology according to the practical needs. Previous
research on information classification and fusion system
shows that data-level and feature-level information fusion
can improve classification performance [93]. However, con-
sidering the large intraclass similarity and interclass variabil-
ity among various signal classification types, for instance,
Golrizkhatami and Acan [94] proposed an advanced fusion,
which utilizes the majority voting mechanism to combine
different classifiers to achieve decision-level fusion. The
schematic diagram of the proposed method is shown in
Figure 6. Generally speaking, compared with the other two
fusion methods, decision-level fusion is a more complex
and advanced fusion method.

For interactive information fusion, common fusion
algorithms include Kalman filter [95], particle filter [96],
complementary filter [97], and artificial neural network
[98]. Generally, a single Kalman filter is not ideal, so the
extended Kalman filter method or combined with other
methods is a good choice [99]. In addition, from the per-
spective of sensors involved, a majority of research still
choose wearable sensors to deal with gait information.

Table 3 lists the data fusion methods of multisensor at
different levels in gait recognition. In fact, no matter what
level of fusion method, there are limitations: (1) for data-
level fusion: large amount of information processing and
poor real-time performance; (2) for feature-level fusion:
integration error and inherent sensor variance error make
the deviation larger [100]; and (3) for decision-level
fusion: the attitude phase detection characteristic of the
sensor is an inherent characteristic that leads to the lin-
ear growth of integration error in attitude and position
estimation [101].

The nice thing here is that more and more scholars
started to try and even have adopted the deep learning
method to fuse the information of exoskeleton robot in
spited of the popular Kalman filter fusion method. Equally,
with the development of deep learning, there will be a better
way to process the video information. Consequently, in the
face of the problem of wearable information acquisition or
video acquisition, the deep learning method also puts for-
ward a solution for the selection of sensors in the future.
At that time, by means of deep neural network, the problem
of image information fusion will be well solved.

Moreover, there is no unified data fusion theory and
general fusion algorithm despite a large number of data
fusion algorithms have emerged. Therefore, the current
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FIGURE 6: The schematic of the method proposed in [94]. (ECG: electrocardiography.)
TaBLE 3: Fusion of multiple information sensors for exoskeletons.
Fusion method Sensor type Sampling Fusion level Real t1me./ Purpose Reference
rate postprocessing
Encoder o
NN LBKA sensor NA Feature level Real time Ensure the‘succe.s s rate anq reliability of [102]
intention detection
sEMG
Filter selection Vicon . Effectively select a specified number of
Embedded selection IMU 400Hz  Feature level Postprocessing sensors [103]
ZVU IMU 100Hz Decision level ~ Real time Determine the 3D attitude [101]
Arb1trat1on-ba.sed Accelerometer 100Hz  Decision level Postprocessing Improve recognition accuracy [104]
score-level fusion
Accelerometer Solve sensor installation errors and path
EKF Magnetometer 100 Hz Data level Real time . P [100]
integral errors caused by sensor variance
Gyroscope
ECG .
RNN IMU 50Hz  Feature level Postprocessing Improve robustness [105]
MMG . . i
NN SEMG 2048 Hz  Feature level Real time Joint torque prediction [106]
CNN Video NA Feature level Postprocessing Improve the effe.ctlveness. a.nd robustness of  [107,
gait recognition 108]
Markovian KF POterIl&%neter 50 Hz Data level ~ Postprocessing Reduce the IMU errors [30]
Con]ggate gradient  Accelerometer 100 Hz Data level  Postprocessing Find the minimum of the objective [109]
algorithm Gyroscope function
Multi-modality FS .
sensor fusion based AIS 20 Hz Feature level Postprocessing O‘{ercople the challenge of gait [110]
classification from wearable sensors
on DL IMU
IR Accelerometer 40Hz  Feature level Postprocessing Improve the detection and classification of [111]
Gyroscope STS

Note: The abbreviations in the table are reported in the Abbreviation section.
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researchers concentrate their attention on developing simple
and accurate algorithms to reduce the burden of calculation
load and parameter adjustment [16].

3.4. Gait Recognition Model

3.4.1. Feature Extraction. Before inputting the acquired gait
information into the classification model, the most impor-
tant step is feature selection. The quality of feature selection
will directly affect the results of gait recognition. For non-
wearable or wearable collection devices, the gait information
is obtained in different ways, so the feature recognition
methods are also different.

Firstly, for the gait information obtained from a non-
wearable device, e.g., a video, model-based, and model-free
gait feature extraction methods are available [112]. As men-
tioned above, the image features can be automatically
extracted by convolutional neural network with the rise of
deep learning technique [107, 108], which brings great con-
venience to feature extraction. Next, for the gait information
acquired by wearable devices, there are many ways to apply
to feature recognition, such as wavelet transform (WT)
[113], principal component analysis (PCA) [114], fast Fou-
rier transform (FFT) [115], and recursive feature elimination
(RFE) [116]. These processes can be carried out in time
domain [117], frequency domain, and time-frequency
domain, respectively. The purpose is to select the optimal
feature combination from the recognized features to
improve the accuracy of gait recognition. Similarly, the deep
learning network can also be employed to automatic feature
extraction of signal processing [118], which is quite effective
compared with the manual feature extraction of traditional
machine learning algorithm.

3.4.2. Recognition Methods. One of the most important fea-
tures of lower extremity exoskeleton robot is the prospect
of developing the intelligent human-machine cooperation.
It can improve the rehabilitation effect by detecting the
wearer movement intentions while requiring the robot
control signal input to track the gait information and
adjust in real time. Thus, accurate gait recognition is a
crucial prerequisite. Due to impaired motor function, the
patients’ normal gait cannot be measured directly; there-
fore, it is necessary to carry out rehabilitation training
and evaluate the normal gait data, which is of great signif-
icance in clinical application [119].

The gait recognition phases for lower exoskeleton
robots are generally divided into five to eight stages. As
shown in Figure 5, the typical five stages are the prestance,
midstance, terminal stance, preswing, and terminal swing,
respectively. In recent study, Yan et al. [120] divided the
gait cycle into 4 stages and proposed a new voting weight-
ing method to integrate the multidimensional acceleration
signals collected by inertial measurement unit (IMU) into
the voting-weighted integrated neural network (VWI-
DNN) algorithm model and its classification accuracy,
and Macro-F1 is up to 99.5%.

The gait recognition of lower limb exoskeleton generally
includes normal walking, running, going up and down stairs,
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going up and down slopes, turning, and sitting-standing
conversion. Semwal et al. [121] proposed a hybrid deep
learning framework based on ensemble learning to recognize
seven motion patterns: natural walk, standing, climbing
stars, cycling, jogging, running, and knees bending, and the
recognition accuracy reached 99.34%.

Numerous valuable computation methods of event and
phase detection have been presented and adopted. These
computation methods can be categorized into two main
domains. One is the domain based on the threshold method,
and the other is machine learning approach which is now
among the most popular techniques to detect phases and
events. The pie chat in Figure 7 illustrates the distribution
of the detection algorithm in the reviewed papers. A large
proportion of papers are on machine learning (73.9%),
including traditional machine learning (26.1%), combined
machine learning (13.0%), and deep learning (34.8%) in
the pie chart. Table 4 shows the application of some algo-
rithms in phase recognition and behavior recognition.
Although research results in gait recognition achieved by
traditional machine learning algorithms such as support
vector machine (SVM), Gaussian mixture model (GMM),
and hidden Markov model (HMM) are not bad, the better
and even optimized results have been continually obtained
through the combined machine learning algorithms. In par-
ticular, the deep neural network has a surprising recognition
effect on the gait information obtained by both wearable
devices and visible cameras. Furthermore, the breakthrough
technologies of real-time recognition algorithms have been
embedded in the exoskeletons and achieved good effects,
which undoubtedly promotes the favourable development
of the lower limb exoskeleton robot.

It is worth noting that the sensor fusion method was also
applied to study gait recognition in patients with hemiplegic
stroke. The gait trajectory of the rehabilitation exoskeleton
robot was calculated first, followed by the use of the zero
movement point (ZMP) based on the semiactive control
model trajectory [136]. The researcher’s aim was to deter-
mine the patient movement intentions and deviations [84]
to obtain an accurate gait recognition model based on the
results.

3.4.3. Interference Factors to Accuracy. It is worth emphasi-
zing that in the above classification algorithm model, the
recognition accuracy is difficult to reach 100%. The main
reasons are as follows: (1) the gait information obtained by
the classifier is not perfect, and the interference factors come
from the gait information acquisition stage and information
fusion stage. Wearable sensors are easily disturbed by mis-
placement [64], drift [137], noise [138], and other factors
when acquiring gait information, resulting in the collected
gait information is not pure enough. If these interference
factors are not well preprocessed, such as filtering and
denoising, it will lead to obvious integration error in infor-
mation fusion. (2) Too few data sets are collected. In gait
recognition, classifiers, especially neural network, need a
large number of data sets for training to prevent over fitting.
Therefore, researchers usually eliminate sensor integration
errors through algorithms [139]. They continue to propose
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new classification algorithms [128] or integrate multiple
classification algorithms [124] in order to continuously
improve the recognition accuracy. (3) The classification
algorithm still has defects. The traditional machine learning
algorithm itself is not perfect, although it has achieved good
recognition results in gait recognition. The development and
application of deep learning techniques will be an effective
way to solve this problem.

4. Challenges and Outlooks

In recent years, gait recognition of lower limb exoskeleton
robot based on interactive information fusion has attracted
extensive attention. Many scholars have carried out theo-
retical and experimental research in this field. However,
the research on information acquisition, fusion, and gait
of patients with lower limb dyskinesia is not mature and
comprehensive, and there are still many problems and
challenges. In the field of lower exoskeleton gait recogni-
tion, new interactive information detection technology is
needed, mainly to improve the detection efficiency, so as
to improve the wearer’s comfort and rehabilitation effect.
Similarly, the emerging advanced intelligent information
fusion and gait recognition technology is also necessary,
which can improve the compatibility between human body
and exoskeleton. These new technologies and methods are
expected to help the wearer or patients interact with the
exoskeleton more effectively and also provide the basis
for the design of follow-up control system and clinical
rehabilitation training.

4.1. Information Acquisition Technology. The primary task of
gait recognition of lower exoskeleton robot is to accurately
and quickly detect and recognize the wearer’s motion inten-
tion. In order to achieve this goal, several problems need to
be considered: how to collect more accurate motion gait data
and how to improve the comfort and usability of the wearer.
Currently, in bioelectricity and wearable detection, EEG
signal is weak and requires the wearer to pay high attention;
sEMG and other similar limb information acquisition
have some limitations such as lack of comfort and
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robustness, while video-based gait monitoring limits the
range of activity.

To solve the above problems, a new high-resolution
SEMG neural signal measurement system is developed to
obtain accurate real-time human sEMG signals. This system
is expected to achieve more accurate motion intention
decoding through action potential extraction and motion
unit decomposition [140]. Therefore, with the development
of biological signal sensing technology, the prospect of
implantable multichannel micronerve electrode array sens-
ing technology will enable people to directly extract high-
quality cortical electroencephalography (ECoG) from brain
regions related to motor intention. In addition, it is believed
that the design of interactive assistive technology in the
future will more meet the needs, wishes, and abilities of
wearers, and gait recognition and detection equipment also
has the characteristics of simplicity, comfort, quietness,
and acceptability [141].

4.2. Multimodal Information Fusion. According to the above
analysis of this manuscript, the lower limb exoskeleton
sensing system should have sufficient information acquisi-
tion, including not only human motion information and
biological signals but also the interaction information
between human and robot [119]. However, the more
information collected is not always the better. It will
increase the power consumption of the system and affect
the efficiency of practical application [142]. Moreover,
with the improvement and development of software and
hardware algorithms such as data mining, signal fusion,
machine learning, and deep learning, multimodal informa-
tion fusion based on artificial intelligence is expected to
become an important breakthrough in the future research
direction of lower exoskeleton gait recognition, which is
also an important means to realize human-computer inter-
action information fusion. It will be the research trend and
goal of exoskeleton robot to comprehensively use multi-
mode data for target classification and prediction, elimi-
nate ambiguity and uncertainty, extract more effective
data, and obtain more accurate motion gait recognition
types through information complementarity.

4.3. Personalized Gait Recognition. With the development of
exoskeleton technology, despite a lot of research on gait rec-
ognition, the results are still far from the emergence of
mature products. In fact, gait analysis should fully consider
the effects of physiological, psychological, pathological, and
other factors of the wearer [24]. The existing data sets have
a certain diversity in the walking environment, but it is still
not flexible enough to reliably perform various gait analysis,
and it is difficult to match the obtained gait patterns with
personalized human motion. For example, the gait data pro-
vided in the current study are not sufficient to summarize
the standard gait patterns of specific age groups, gender, or
rehabilitated patients. In addition, the gait recognition
method is only used for simple gait pattern recognition, such
as standing, sitting, walking on the ground, and climbing
stairs. According to literature reports, computer algorithm
technology based on support vector machine and neural
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TABLE 4: Gait recognition methods of lower limb exoskeleton robots.
Recognition algorithm Sensor type Wearable/ Real tlme( Gait recognition Accuracy rate  Reference
nonwearable postprocessing
SVMBP FSR Wearable  Postprocessing  Phase recognition 97.4593% [122]
HMM IMU Wearable  Postprocessing Phase recognition 91.88% [123]
LDA sEMG
KNN EEG Wearable  Postprocessing  Phase recognition ~ 98.56 +1.34% [124]
KSVM
Accelerometer

QDA Gyroscope Wearable  Postprocessing  Phase recognition >96.5% [117]

FSR
DCNN IMU Wearable  Postprocessing  Phase recognition 97% [125]

Position sensor
BLDA Interaction force ~ Wearable  Postprocessing  Phase recognition 97.8% [57]
GRF sEMG

IMU . . .
ED-FNN FSR Wearable  Postprocessing  Phase recognition 97.9+0.1% [126]
gnsemble. learning-based hybrid IMU Wearable  Postprocessing Behavior recognition 99.34% [121]

eep leaning framework
. . -, 99.33%/
GMM IMU Wearable  Postprocessing Behavior recognition 95.75% [127]
. ()
DDLMI Accelerometer Wearable Real time Behavior recognition 97.64% [128]
Gyroscope

IMU . . hs
SA-SVM FSR Wearable Real time Behavior recognition = 97.47+1.16% [129]
IGPG Motion capture Wearable Real time Behavior recognition >97% [130]

system
Onboard
LMR encoders Wearable Real time  Behavior recognition 99.4% [131]
Instrumented
sensorized shoes

MvGGAN Video Nonwearable Postprocessing Behavior recognition Higher accuracy — [132]
MCNN Video Nonwearable Postprocessing Behavior recognition Higher accuracy — [133]
SCN Video Nonwearable Postprocessing Behavior recognition 89.8% [134]
eMSM Video Nonwearable Postprocessing Behavior recognition 88% [135]

Note: The abbreviations in the table are reported in the Abbreviation section.

network has been widely used in gait analysis. To some
extent, the ability of data analysis has been improved, but
the system still cannot fully capture more personalized
wearer gait patterns. As LeCun et al. [143] believe, the orig-
inal form of processing natural data limits the traditional
computing technology. Fortunately, deep learning can be
employed to overcome the limitations of artificial engineer-
ing and will be more widely applied in gait data recognition,
classification, and anomaly detection.

5. Conclusions

This paper summarizes the research status, progress, exist-
ing problems, and development trend of gait recognition
of lower limb exoskeleton robot based on information
fusion technology. Firstly, the common information acqui-
sition methods, sensor placement, and target population of
exoskeleton robot are discussed. Secondly, the research
results of biomechanics and human-machine interaction
that may be involved in the research of exoskeleton robot

are reviewed and summarized. Furthermore, the specific
applications, advantages, and disadvantages of data fusion,
feature fusion, and decision fusion in gait recognition are
described. In addition, the feature extraction and recogni-
tion methods of gait recognition model are commented.
Finally, based on a large number of literature review, this
paper also makes an extensive analysis and discussion on
the limitations of sensor dislocation, lack of research on
human-machine interaction, no uniform information
fusion methods, recognition accuracy, and insufficient
rehabilitation training and clinical practice. The challenges,
application prospects, and solutions in information acqui-
sition technology, multimodal information fusion, and per-
sonalized gait recognition are put forward. It is predicted
that information fusion based on deep learning will be
the research trend of exoskeleton robot gait recognition
in the future. In conclusion, this review provides a useful
reference resource for the research of interactive informa-
tion fusion and gait recognition of rehabilitation exoskele-
ton robot.
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Abbreviations

NN: Neural network

LBKA: Length between the knee center of rotation and
the ankle

SEMG: Surface electromyography

IMU: Inertial measurement unit

ZVU: Zero velocity updating

EKEF: Extend Kalman filter

RNN: Recurrent neural network

ECG: Electrocardiography

MMG: Mechanomyography

CNN: Convolutional neural network

KE: Kalman filter

DL: Deep learning

FS: Floor sensor

AlS: Ambulatory inertial sensor

LR: Logistic regression

STS: Sit-to-stand and stand-to-sit transfers

SVMBP:  Back propagation neural network based on
support vector machine

FSR: Force sensitive resistor

HMM: Hidden Markov model

IMU: Inertial measurement unit

LDA: Linear discriminant analysis

KNN: K-nearest neighbor

KSVM: Kernel support vector machine

SEMG: Surface electromyography

EEG: Electroencephalography

QDA: Quadratic discriminant analysis

DCNN: Deep convolutional neural network

BLDA: Bayesian linear discriminant analysis

GRE: Ground reaction force

ED-FNN: Exponentially delayed fully connected
neural network

GMM: Gaussian mixture model

DDLMI:  Deep neural network-based deep location mode
identification

SA-SVM:  Simulated annealing algorithm-based support
vector machine

IGPG: Individualized gait pattern generation

LMR: Locomotion mode recognition

MvGGAN: Multi-view gait generative adversarial network

MCNN:  Multichannel convolutional neural network

SCN: Sequential convolutional network

eMSM: Enhanced mutual subspace method.
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